1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libswscale/utils.c
Martin Storsjö d192ac3e03 swscale: Disallow conversion to GBRP16
This reverts parts of d6d5ef5534, that didn't work right. (The
tests that were added failed on big endian, and the output looked
garbled on little endian as well.)

This is due to the fact that the intermediate scaling values (from
e.g. hScale8To19_c or hScale16To19_c) are stored as int32_t and
thus requires a separate output function, while yuv2gbrp_full_X_c
only interprets it as int16_t.

Signed-off-by: Martin Storsjö <martin@martin.st>
2013-02-11 20:03:16 +02:00

1759 lines
62 KiB
C

/*
* Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config.h"
#define _SVID_SOURCE // needed for MAP_ANONYMOUS
#include <assert.h>
#include <inttypes.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#if HAVE_SYS_MMAN_H
#include <sys/mman.h>
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
#endif
#if HAVE_VIRTUALALLOC
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include "libavutil/attributes.h"
#include "libavutil/avutil.h"
#include "libavutil/bswap.h"
#include "libavutil/cpu.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mathematics.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/x86/asm.h"
#include "libavutil/x86/cpu.h"
#include "rgb2rgb.h"
#include "swscale.h"
#include "swscale_internal.h"
unsigned swscale_version(void)
{
return LIBSWSCALE_VERSION_INT;
}
const char *swscale_configuration(void)
{
return LIBAV_CONFIGURATION;
}
const char *swscale_license(void)
{
#define LICENSE_PREFIX "libswscale license: "
return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
}
#define RET 0xC3 // near return opcode for x86
typedef struct FormatEntry {
int is_supported_in, is_supported_out;
} FormatEntry;
static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
[AV_PIX_FMT_YUV420P] = { 1, 1 },
[AV_PIX_FMT_YUYV422] = { 1, 1 },
[AV_PIX_FMT_RGB24] = { 1, 1 },
[AV_PIX_FMT_BGR24] = { 1, 1 },
[AV_PIX_FMT_YUV422P] = { 1, 1 },
[AV_PIX_FMT_YUV444P] = { 1, 1 },
[AV_PIX_FMT_YUV410P] = { 1, 1 },
[AV_PIX_FMT_YUV411P] = { 1, 1 },
[AV_PIX_FMT_GRAY8] = { 1, 1 },
[AV_PIX_FMT_MONOWHITE] = { 1, 1 },
[AV_PIX_FMT_MONOBLACK] = { 1, 1 },
[AV_PIX_FMT_PAL8] = { 1, 0 },
[AV_PIX_FMT_YUVJ420P] = { 1, 1 },
[AV_PIX_FMT_YUVJ422P] = { 1, 1 },
[AV_PIX_FMT_YUVJ444P] = { 1, 1 },
[AV_PIX_FMT_UYVY422] = { 1, 1 },
[AV_PIX_FMT_UYYVYY411] = { 0, 0 },
[AV_PIX_FMT_BGR8] = { 1, 1 },
[AV_PIX_FMT_BGR4] = { 0, 1 },
[AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
[AV_PIX_FMT_RGB8] = { 1, 1 },
[AV_PIX_FMT_RGB4] = { 0, 1 },
[AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
[AV_PIX_FMT_NV12] = { 1, 1 },
[AV_PIX_FMT_NV21] = { 1, 1 },
[AV_PIX_FMT_ARGB] = { 1, 1 },
[AV_PIX_FMT_RGBA] = { 1, 1 },
[AV_PIX_FMT_ABGR] = { 1, 1 },
[AV_PIX_FMT_BGRA] = { 1, 1 },
[AV_PIX_FMT_GRAY16BE] = { 1, 1 },
[AV_PIX_FMT_GRAY16LE] = { 1, 1 },
[AV_PIX_FMT_YUV440P] = { 1, 1 },
[AV_PIX_FMT_YUVJ440P] = { 1, 1 },
[AV_PIX_FMT_YUVA420P] = { 1, 1 },
[AV_PIX_FMT_YUVA422P] = { 1, 1 },
[AV_PIX_FMT_YUVA444P] = { 1, 1 },
[AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
[AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
[AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
[AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
[AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
[AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
[AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
[AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
[AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
[AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
[AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
[AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
[AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
[AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
[AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
[AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
[AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
[AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
[AV_PIX_FMT_RGB48BE] = { 1, 1 },
[AV_PIX_FMT_RGB48LE] = { 1, 1 },
[AV_PIX_FMT_RGB565BE] = { 1, 1 },
[AV_PIX_FMT_RGB565LE] = { 1, 1 },
[AV_PIX_FMT_RGB555BE] = { 1, 1 },
[AV_PIX_FMT_RGB555LE] = { 1, 1 },
[AV_PIX_FMT_BGR565BE] = { 1, 1 },
[AV_PIX_FMT_BGR565LE] = { 1, 1 },
[AV_PIX_FMT_BGR555BE] = { 1, 1 },
[AV_PIX_FMT_BGR555LE] = { 1, 1 },
[AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
[AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
[AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
[AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
[AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
[AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
[AV_PIX_FMT_RGB444LE] = { 1, 1 },
[AV_PIX_FMT_RGB444BE] = { 1, 1 },
[AV_PIX_FMT_BGR444LE] = { 1, 1 },
[AV_PIX_FMT_BGR444BE] = { 1, 1 },
[AV_PIX_FMT_Y400A] = { 1, 0 },
[AV_PIX_FMT_BGR48BE] = { 1, 1 },
[AV_PIX_FMT_BGR48LE] = { 1, 1 },
[AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
[AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
[AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
[AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
[AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
[AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
[AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
[AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
[AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
[AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
[AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
[AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
[AV_PIX_FMT_GBRP] = { 1, 1 },
[AV_PIX_FMT_GBRP9LE] = { 1, 1 },
[AV_PIX_FMT_GBRP9BE] = { 1, 1 },
[AV_PIX_FMT_GBRP10LE] = { 1, 1 },
[AV_PIX_FMT_GBRP10BE] = { 1, 1 },
[AV_PIX_FMT_GBRP16LE] = { 1, 0 },
[AV_PIX_FMT_GBRP16BE] = { 1, 0 },
};
int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
{
return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
format_entries[pix_fmt].is_supported_in : 0;
}
int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
{
return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
format_entries[pix_fmt].is_supported_out : 0;
}
extern const int32_t ff_yuv2rgb_coeffs[8][4];
const char *sws_format_name(enum AVPixelFormat format)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
if (desc)
return desc->name;
else
return "Unknown format";
}
static double getSplineCoeff(double a, double b, double c, double d,
double dist)
{
if (dist <= 1.0)
return ((d * dist + c) * dist + b) * dist + a;
else
return getSplineCoeff(0.0,
b + 2.0 * c + 3.0 * d,
c + 3.0 * d,
-b - 3.0 * c - 6.0 * d,
dist - 1.0);
}
static int initFilter(int16_t **outFilter, int32_t **filterPos,
int *outFilterSize, int xInc, int srcW, int dstW,
int filterAlign, int one, int flags, int cpu_flags,
SwsVector *srcFilter, SwsVector *dstFilter,
double param[2], int is_horizontal)
{
int i;
int filterSize;
int filter2Size;
int minFilterSize;
int64_t *filter = NULL;
int64_t *filter2 = NULL;
const int64_t fone = 1LL << 54;
int ret = -1;
emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
// NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
if (FFABS(xInc - 0x10000) < 10) { // unscaled
int i;
filterSize = 1;
FF_ALLOCZ_OR_GOTO(NULL, filter,
dstW * sizeof(*filter) * filterSize, fail);
for (i = 0; i < dstW; i++) {
filter[i * filterSize] = fone;
(*filterPos)[i] = i;
}
} else if (flags & SWS_POINT) { // lame looking point sampling mode
int i;
int xDstInSrc;
filterSize = 1;
FF_ALLOC_OR_GOTO(NULL, filter,
dstW * sizeof(*filter) * filterSize, fail);
xDstInSrc = xInc / 2 - 0x8000;
for (i = 0; i < dstW; i++) {
int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
(*filterPos)[i] = xx;
filter[i] = fone;
xDstInSrc += xInc;
}
} else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
(flags & SWS_FAST_BILINEAR)) { // bilinear upscale
int i;
int xDstInSrc;
filterSize = 2;
FF_ALLOC_OR_GOTO(NULL, filter,
dstW * sizeof(*filter) * filterSize, fail);
xDstInSrc = xInc / 2 - 0x8000;
for (i = 0; i < dstW; i++) {
int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
int j;
(*filterPos)[i] = xx;
// bilinear upscale / linear interpolate / area averaging
for (j = 0; j < filterSize; j++) {
int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
(fone >> 16);
if (coeff < 0)
coeff = 0;
filter[i * filterSize + j] = coeff;
xx++;
}
xDstInSrc += xInc;
}
} else {
int64_t xDstInSrc;
int sizeFactor;
if (flags & SWS_BICUBIC)
sizeFactor = 4;
else if (flags & SWS_X)
sizeFactor = 8;
else if (flags & SWS_AREA)
sizeFactor = 1; // downscale only, for upscale it is bilinear
else if (flags & SWS_GAUSS)
sizeFactor = 8; // infinite ;)
else if (flags & SWS_LANCZOS)
sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
else if (flags & SWS_SINC)
sizeFactor = 20; // infinite ;)
else if (flags & SWS_SPLINE)
sizeFactor = 20; // infinite ;)
else if (flags & SWS_BILINEAR)
sizeFactor = 2;
else {
sizeFactor = 0; // GCC warning killer
assert(0);
}
if (xInc <= 1 << 16)
filterSize = 1 + sizeFactor; // upscale
else
filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
filterSize = FFMIN(filterSize, srcW - 2);
filterSize = FFMAX(filterSize, 1);
FF_ALLOC_OR_GOTO(NULL, filter,
dstW * sizeof(*filter) * filterSize, fail);
xDstInSrc = xInc - 0x10000;
for (i = 0; i < dstW; i++) {
int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
int j;
(*filterPos)[i] = xx;
for (j = 0; j < filterSize; j++) {
int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
double floatd;
int64_t coeff;
if (xInc > 1 << 16)
d = d * dstW / srcW;
floatd = d * (1.0 / (1 << 30));
if (flags & SWS_BICUBIC) {
int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
if (d >= 1LL << 31) {
coeff = 0.0;
} else {
int64_t dd = (d * d) >> 30;
int64_t ddd = (dd * d) >> 30;
if (d < 1LL << 30)
coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
(-18 * (1 << 24) + 12 * B + 6 * C) * dd +
(6 * (1 << 24) - 2 * B) * (1 << 30);
else
coeff = (-B - 6 * C) * ddd +
(6 * B + 30 * C) * dd +
(-12 * B - 48 * C) * d +
(8 * B + 24 * C) * (1 << 30);
}
coeff *= fone >> (30 + 24);
}
#if 0
else if (flags & SWS_X) {
double p = param ? param * 0.01 : 0.3;
coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
coeff *= pow(2.0, -p * d * d);
}
#endif
else if (flags & SWS_X) {
double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
double c;
if (floatd < 1.0)
c = cos(floatd * M_PI);
else
c = -1.0;
if (c < 0.0)
c = -pow(-c, A);
else
c = pow(c, A);
coeff = (c * 0.5 + 0.5) * fone;
} else if (flags & SWS_AREA) {
int64_t d2 = d - (1 << 29);
if (d2 * xInc < -(1LL << (29 + 16)))
coeff = 1.0 * (1LL << (30 + 16));
else if (d2 * xInc < (1LL << (29 + 16)))
coeff = -d2 * xInc + (1LL << (29 + 16));
else
coeff = 0.0;
coeff *= fone >> (30 + 16);
} else if (flags & SWS_GAUSS) {
double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
coeff = (pow(2.0, -p * floatd * floatd)) * fone;
} else if (flags & SWS_SINC) {
coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
} else if (flags & SWS_LANCZOS) {
double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
(floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
if (floatd > p)
coeff = 0;
} else if (flags & SWS_BILINEAR) {
coeff = (1 << 30) - d;
if (coeff < 0)
coeff = 0;
coeff *= fone >> 30;
} else if (flags & SWS_SPLINE) {
double p = -2.196152422706632;
coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
} else {
coeff = 0.0; // GCC warning killer
assert(0);
}
filter[i * filterSize + j] = coeff;
xx++;
}
xDstInSrc += 2 * xInc;
}
}
/* apply src & dst Filter to filter -> filter2
* av_free(filter);
*/
assert(filterSize > 0);
filter2Size = filterSize;
if (srcFilter)
filter2Size += srcFilter->length - 1;
if (dstFilter)
filter2Size += dstFilter->length - 1;
assert(filter2Size > 0);
FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
for (i = 0; i < dstW; i++) {
int j, k;
if (srcFilter) {
for (k = 0; k < srcFilter->length; k++) {
for (j = 0; j < filterSize; j++)
filter2[i * filter2Size + k + j] +=
srcFilter->coeff[k] * filter[i * filterSize + j];
}
} else {
for (j = 0; j < filterSize; j++)
filter2[i * filter2Size + j] = filter[i * filterSize + j];
}
// FIXME dstFilter
(*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
}
av_freep(&filter);
/* try to reduce the filter-size (step1 find size and shift left) */
// Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
minFilterSize = 0;
for (i = dstW - 1; i >= 0; i--) {
int min = filter2Size;
int j;
int64_t cutOff = 0.0;
/* get rid of near zero elements on the left by shifting left */
for (j = 0; j < filter2Size; j++) {
int k;
cutOff += FFABS(filter2[i * filter2Size]);
if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
break;
/* preserve monotonicity because the core can't handle the
* filter otherwise */
if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
break;
// move filter coefficients left
for (k = 1; k < filter2Size; k++)
filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
filter2[i * filter2Size + k - 1] = 0;
(*filterPos)[i]++;
}
cutOff = 0;
/* count near zeros on the right */
for (j = filter2Size - 1; j > 0; j--) {
cutOff += FFABS(filter2[i * filter2Size + j]);
if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
break;
min--;
}
if (min > minFilterSize)
minFilterSize = min;
}
if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
// we can handle the special case 4, so we don't want to go the full 8
if (minFilterSize < 5)
filterAlign = 4;
/* We really don't want to waste our time doing useless computation, so
* fall back on the scalar C code for very small filters.
* Vectorizing is worth it only if you have a decent-sized vector. */
if (minFilterSize < 3)
filterAlign = 1;
}
if (INLINE_MMX(cpu_flags)) {
// special case for unscaled vertical filtering
if (minFilterSize == 1 && filterAlign == 2)
filterAlign = 1;
}
assert(minFilterSize > 0);
filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
assert(filterSize > 0);
filter = av_malloc(filterSize * dstW * sizeof(*filter));
if (filterSize >= MAX_FILTER_SIZE * 16 /
((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
goto fail;
*outFilterSize = filterSize;
if (flags & SWS_PRINT_INFO)
av_log(NULL, AV_LOG_VERBOSE,
"SwScaler: reducing / aligning filtersize %d -> %d\n",
filter2Size, filterSize);
/* try to reduce the filter-size (step2 reduce it) */
for (i = 0; i < dstW; i++) {
int j;
for (j = 0; j < filterSize; j++) {
if (j >= filter2Size)
filter[i * filterSize + j] = 0;
else
filter[i * filterSize + j] = filter2[i * filter2Size + j];
if ((flags & SWS_BITEXACT) && j >= minFilterSize)
filter[i * filterSize + j] = 0;
}
}
// FIXME try to align filterPos if possible
// fix borders
if (is_horizontal) {
for (i = 0; i < dstW; i++) {
int j;
if ((*filterPos)[i] < 0) {
// move filter coefficients left to compensate for filterPos
for (j = 1; j < filterSize; j++) {
int left = FFMAX(j + (*filterPos)[i], 0);
filter[i * filterSize + left] += filter[i * filterSize + j];
filter[i * filterSize + j] = 0;
}
(*filterPos)[i] = 0;
}
if ((*filterPos)[i] + filterSize > srcW) {
int shift = (*filterPos)[i] + filterSize - srcW;
// move filter coefficients right to compensate for filterPos
for (j = filterSize - 2; j >= 0; j--) {
int right = FFMIN(j + shift, filterSize - 1);
filter[i * filterSize + right] += filter[i * filterSize + j];
filter[i * filterSize + j] = 0;
}
(*filterPos)[i] = srcW - filterSize;
}
}
}
// Note the +1 is for the MMX scaler which reads over the end
/* align at 16 for AltiVec (needed by hScale_altivec_real) */
FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
*outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
/* normalize & store in outFilter */
for (i = 0; i < dstW; i++) {
int j;
int64_t error = 0;
int64_t sum = 0;
for (j = 0; j < filterSize; j++) {
sum += filter[i * filterSize + j];
}
sum = (sum + one / 2) / one;
for (j = 0; j < *outFilterSize; j++) {
int64_t v = filter[i * filterSize + j] + error;
int intV = ROUNDED_DIV(v, sum);
(*outFilter)[i * (*outFilterSize) + j] = intV;
error = v - intV * sum;
}
}
(*filterPos)[dstW + 0] =
(*filterPos)[dstW + 1] =
(*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
* read over the end */
for (i = 0; i < *outFilterSize; i++) {
int k = (dstW - 1) * (*outFilterSize) + i;
(*outFilter)[k + 1 * (*outFilterSize)] =
(*outFilter)[k + 2 * (*outFilterSize)] =
(*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
}
ret = 0;
fail:
av_free(filter);
av_free(filter2);
return ret;
}
#if HAVE_MMXEXT_INLINE
static int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
int16_t *filter, int32_t *filterPos,
int numSplits)
{
uint8_t *fragmentA;
x86_reg imm8OfPShufW1A;
x86_reg imm8OfPShufW2A;
x86_reg fragmentLengthA;
uint8_t *fragmentB;
x86_reg imm8OfPShufW1B;
x86_reg imm8OfPShufW2B;
x86_reg fragmentLengthB;
int fragmentPos;
int xpos, i;
// create an optimized horizontal scaling routine
/* This scaler is made of runtime-generated MMXEXT code using specially tuned
* pshufw instructions. For every four output pixels, if four input pixels
* are enough for the fast bilinear scaling, then a chunk of fragmentB is
* used. If five input pixels are needed, then a chunk of fragmentA is used.
*/
// code fragment
__asm__ volatile (
"jmp 9f \n\t"
// Begin
"0: \n\t"
"movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
"movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
"movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
"punpcklbw %%mm7, %%mm1 \n\t"
"punpcklbw %%mm7, %%mm0 \n\t"
"pshufw $0xFF, %%mm1, %%mm1 \n\t"
"1: \n\t"
"pshufw $0xFF, %%mm0, %%mm0 \n\t"
"2: \n\t"
"psubw %%mm1, %%mm0 \n\t"
"movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
"pmullw %%mm3, %%mm0 \n\t"
"psllw $7, %%mm1 \n\t"
"paddw %%mm1, %%mm0 \n\t"
"movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
"add $8, %%"REG_a" \n\t"
// End
"9: \n\t"
// "int $3 \n\t"
"lea " LOCAL_MANGLE(0b) ", %0 \n\t"
"lea " LOCAL_MANGLE(1b) ", %1 \n\t"
"lea " LOCAL_MANGLE(2b) ", %2 \n\t"
"dec %1 \n\t"
"dec %2 \n\t"
"sub %0, %1 \n\t"
"sub %0, %2 \n\t"
"lea " LOCAL_MANGLE(9b) ", %3 \n\t"
"sub %0, %3 \n\t"
: "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
"=r" (fragmentLengthA)
);
__asm__ volatile (
"jmp 9f \n\t"
// Begin
"0: \n\t"
"movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
"movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
"punpcklbw %%mm7, %%mm0 \n\t"
"pshufw $0xFF, %%mm0, %%mm1 \n\t"
"1: \n\t"
"pshufw $0xFF, %%mm0, %%mm0 \n\t"
"2: \n\t"
"psubw %%mm1, %%mm0 \n\t"
"movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
"pmullw %%mm3, %%mm0 \n\t"
"psllw $7, %%mm1 \n\t"
"paddw %%mm1, %%mm0 \n\t"
"movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
"add $8, %%"REG_a" \n\t"
// End
"9: \n\t"
// "int $3 \n\t"
"lea " LOCAL_MANGLE(0b) ", %0 \n\t"
"lea " LOCAL_MANGLE(1b) ", %1 \n\t"
"lea " LOCAL_MANGLE(2b) ", %2 \n\t"
"dec %1 \n\t"
"dec %2 \n\t"
"sub %0, %1 \n\t"
"sub %0, %2 \n\t"
"lea " LOCAL_MANGLE(9b) ", %3 \n\t"
"sub %0, %3 \n\t"
: "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
"=r" (fragmentLengthB)
);
xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
fragmentPos = 0;
for (i = 0; i < dstW / numSplits; i++) {
int xx = xpos >> 16;
if ((i & 3) == 0) {
int a = 0;
int b = ((xpos + xInc) >> 16) - xx;
int c = ((xpos + xInc * 2) >> 16) - xx;
int d = ((xpos + xInc * 3) >> 16) - xx;
int inc = (d + 1 < 4);
uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
int maxShift = 3 - (d + inc);
int shift = 0;
if (filterCode) {
filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
filterPos[i / 2] = xx;
memcpy(filterCode + fragmentPos, fragment, fragmentLength);
filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
((b + inc) << 2) |
((c + inc) << 4) |
((d + inc) << 6);
filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
(c << 4) |
(d << 6);
if (i + 4 - inc >= dstW)
shift = maxShift; // avoid overread
else if ((filterPos[i / 2] & 3) <= maxShift)
shift = filterPos[i / 2] & 3; // align
if (shift && i >= shift) {
filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
filterPos[i / 2] -= shift;
}
}
fragmentPos += fragmentLength;
if (filterCode)
filterCode[fragmentPos] = RET;
}
xpos += xInc;
}
if (filterCode)
filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
return fragmentPos + 1;
}
#endif /* HAVE_MMXEXT_INLINE */
static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
*h = desc->log2_chroma_w;
*v = desc->log2_chroma_h;
}
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
int srcRange, const int table[4], int dstRange,
int brightness, int contrast, int saturation)
{
const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
c->brightness = brightness;
c->contrast = contrast;
c->saturation = saturation;
c->srcRange = srcRange;
c->dstRange = dstRange;
if (isYUV(c->dstFormat) || isGray(c->dstFormat))
return -1;
c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
contrast, saturation);
// FIXME factorize
if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness,
contrast, saturation);
return 0;
}
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
int *srcRange, int **table, int *dstRange,
int *brightness, int *contrast, int *saturation)
{
if (isYUV(c->dstFormat) || isGray(c->dstFormat))
return -1;
*inv_table = c->srcColorspaceTable;
*table = c->dstColorspaceTable;
*srcRange = c->srcRange;
*dstRange = c->dstRange;
*brightness = c->brightness;
*contrast = c->contrast;
*saturation = c->saturation;
return 0;
}
static int handle_jpeg(enum AVPixelFormat *format)
{
switch (*format) {
case AV_PIX_FMT_YUVJ420P:
*format = AV_PIX_FMT_YUV420P;
return 1;
case AV_PIX_FMT_YUVJ422P:
*format = AV_PIX_FMT_YUV422P;
return 1;
case AV_PIX_FMT_YUVJ444P:
*format = AV_PIX_FMT_YUV444P;
return 1;
case AV_PIX_FMT_YUVJ440P:
*format = AV_PIX_FMT_YUV440P;
return 1;
default:
return 0;
}
}
SwsContext *sws_alloc_context(void)
{
SwsContext *c = av_mallocz(sizeof(SwsContext));
if (c) {
c->av_class = &sws_context_class;
av_opt_set_defaults(c);
}
return c;
}
av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
SwsFilter *dstFilter)
{
int i;
int usesVFilter, usesHFilter;
int unscaled;
SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
int srcW = c->srcW;
int srcH = c->srcH;
int dstW = c->dstW;
int dstH = c->dstH;
int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
int dst_stride_px = dst_stride >> 1;
int flags, cpu_flags;
enum AVPixelFormat srcFormat = c->srcFormat;
enum AVPixelFormat dstFormat = c->dstFormat;
const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
cpu_flags = av_get_cpu_flags();
flags = c->flags;
emms_c();
if (!rgb15to16)
sws_rgb2rgb_init();
unscaled = (srcW == dstW && srcH == dstH);
if (!sws_isSupportedInput(srcFormat)) {
av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
sws_format_name(srcFormat));
return AVERROR(EINVAL);
}
if (!sws_isSupportedOutput(dstFormat)) {
av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
sws_format_name(dstFormat));
return AVERROR(EINVAL);
}
i = flags & (SWS_POINT |
SWS_AREA |
SWS_BILINEAR |
SWS_FAST_BILINEAR |
SWS_BICUBIC |
SWS_X |
SWS_GAUSS |
SWS_LANCZOS |
SWS_SINC |
SWS_SPLINE |
SWS_BICUBLIN);
if (!i || (i & (i - 1))) {
av_log(c, AV_LOG_ERROR,
"Exactly one scaler algorithm must be chosen\n");
return AVERROR(EINVAL);
}
/* sanity check */
if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
/* FIXME check if these are enough and try to lower them after
* fixing the relevant parts of the code */
av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
srcW, srcH, dstW, dstH);
return AVERROR(EINVAL);
}
if (!dstFilter)
dstFilter = &dummyFilter;
if (!srcFilter)
srcFilter = &dummyFilter;
c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
c->vRounder = 4 * 0x0001000100010001ULL;
usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
(srcFilter->chrV && srcFilter->chrV->length > 1) ||
(dstFilter->lumV && dstFilter->lumV->length > 1) ||
(dstFilter->chrV && dstFilter->chrV->length > 1);
usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
(srcFilter->chrH && srcFilter->chrH->length > 1) ||
(dstFilter->lumH && dstFilter->lumH->length > 1) ||
(dstFilter->chrH && dstFilter->chrH->length > 1);
getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
if (isPlanarRGB(dstFormat)) {
if (!(flags & SWS_FULL_CHR_H_INT)) {
av_log(c, AV_LOG_DEBUG,
"%s output is not supported with half chroma resolution, switching to full\n",
av_get_pix_fmt_name(dstFormat));
flags |= SWS_FULL_CHR_H_INT;
c->flags = flags;
}
}
/* reuse chroma for 2 pixels RGB/BGR unless user wants full
* chroma interpolation */
if (flags & SWS_FULL_CHR_H_INT &&
isAnyRGB(dstFormat) &&
!isPlanarRGB(dstFormat) &&
dstFormat != AV_PIX_FMT_RGBA &&
dstFormat != AV_PIX_FMT_ARGB &&
dstFormat != AV_PIX_FMT_BGRA &&
dstFormat != AV_PIX_FMT_ABGR &&
dstFormat != AV_PIX_FMT_RGB24 &&
dstFormat != AV_PIX_FMT_BGR24) {
av_log(c, AV_LOG_ERROR,
"full chroma interpolation for destination format '%s' not yet implemented\n",
sws_format_name(dstFormat));
flags &= ~SWS_FULL_CHR_H_INT;
c->flags = flags;
}
if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
c->chrDstHSubSample = 1;
// drop some chroma lines if the user wants it
c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
SWS_SRC_V_CHR_DROP_SHIFT;
c->chrSrcVSubSample += c->vChrDrop;
/* drop every other pixel for chroma calculation unless user
* wants full chroma */
if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
(flags & SWS_FAST_BILINEAR)))
c->chrSrcHSubSample = 1;
// Note the -((-x)>>y) is so that we always round toward +inf.
c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
/* unscaled special cases */
if (unscaled && !usesHFilter && !usesVFilter &&
(c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
ff_get_unscaled_swscale(c);
if (c->swScale) {
if (flags & SWS_PRINT_INFO)
av_log(c, AV_LOG_INFO,
"using unscaled %s -> %s special converter\n",
sws_format_name(srcFormat), sws_format_name(dstFormat));
return 0;
}
}
c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
if (c->srcBpc < 8)
c->srcBpc = 8;
c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
if (c->dstBpc < 8)
c->dstBpc = 8;
if (c->dstBpc == 16)
dst_stride <<= 1;
FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
(FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
fail);
if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 10) {
c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
(srcW & 15) == 0) ? 1 : 0;
if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
&& (flags & SWS_FAST_BILINEAR)) {
if (flags & SWS_PRINT_INFO)
av_log(c, AV_LOG_INFO,
"output width is not a multiple of 32 -> no MMXEXT scaler\n");
}
if (usesHFilter)
c->canMMXEXTBeUsed = 0;
} else
c->canMMXEXTBeUsed = 0;
c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
/* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
* to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
* correct scaling.
* n-2 is the last chrominance sample available.
* This is not perfect, but no one should notice the difference, the more
* correct variant would be like the vertical one, but that would require
* some special code for the first and last pixel */
if (flags & SWS_FAST_BILINEAR) {
if (c->canMMXEXTBeUsed) {
c->lumXInc += 20;
c->chrXInc += 20;
}
// we don't use the x86 asm scaler if MMX is available
else if (INLINE_MMX(cpu_flags)) {
c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
}
}
#define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
/* precalculate horizontal scaler filter coefficients */
{
#if HAVE_MMXEXT_INLINE
// can't downscale !!!
if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
NULL, NULL, 8);
c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
NULL, NULL, NULL, 4);
#if USE_MMAP
c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);
c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);
#elif HAVE_VIRTUALALLOC
c->lumMmxextFilterCode = VirtualAlloc(NULL,
c->lumMmxextFilterCodeSize,
MEM_COMMIT,
PAGE_EXECUTE_READWRITE);
c->chrMmxextFilterCode = VirtualAlloc(NULL,
c->chrMmxextFilterCodeSize,
MEM_COMMIT,
PAGE_EXECUTE_READWRITE);
#else
c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
#endif
if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
return AVERROR(ENOMEM);
FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
init_hscaler_mmxext(dstW, c->lumXInc, c->lumMmxextFilterCode,
c->hLumFilter, c->hLumFilterPos, 8);
init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
c->hChrFilter, c->hChrFilterPos, 4);
#if USE_MMAP
mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
#endif
} else
#endif /* HAVE_MMXEXT_INLINE */
{
const int filterAlign =
(HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
(HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
1;
if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
&c->hLumFilterSize, c->lumXInc,
srcW, dstW, filterAlign, 1 << 14,
(flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
cpu_flags, srcFilter->lumH, dstFilter->lumH,
c->param, 1) < 0)
goto fail;
if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
&c->hChrFilterSize, c->chrXInc,
c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
(flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
cpu_flags, srcFilter->chrH, dstFilter->chrH,
c->param, 1) < 0)
goto fail;
}
} // initialize horizontal stuff
/* precalculate vertical scaler filter coefficients */
{
const int filterAlign =
(HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 2 :
(HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
1;
if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
(flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
cpu_flags, srcFilter->lumV, dstFilter->lumV,
c->param, 0) < 0)
goto fail;
if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
c->chrYInc, c->chrSrcH, c->chrDstH,
filterAlign, (1 << 12),
(flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
cpu_flags, srcFilter->chrV, dstFilter->chrV,
c->param, 0) < 0)
goto fail;
#if HAVE_ALTIVEC
FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
int j;
short *p = (short *)&c->vYCoeffsBank[i];
for (j = 0; j < 8; j++)
p[j] = c->vLumFilter[i];
}
for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
int j;
short *p = (short *)&c->vCCoeffsBank[i];
for (j = 0; j < 8; j++)
p[j] = c->vChrFilter[i];
}
#endif
}
// calculate buffer sizes so that they won't run out while handling these damn slices
c->vLumBufSize = c->vLumFilterSize;
c->vChrBufSize = c->vChrFilterSize;
for (i = 0; i < dstH; i++) {
int chrI = (int64_t)i * c->chrDstH / dstH;
int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
<< c->chrSrcVSubSample));
nextSlice >>= c->chrSrcVSubSample;
nextSlice <<= c->chrSrcVSubSample;
if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
if (c->vChrFilterPos[chrI] + c->vChrBufSize <
(nextSlice >> c->chrSrcVSubSample))
c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
c->vChrFilterPos[chrI];
}
/* Allocate pixbufs (we use dynamic allocation because otherwise we would
* need to allocate several megabytes to handle all possible cases) */
FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
/* Note we need at least one pixel more at the end because of the MMX code
* (just in case someone wants to replace the 4000/8000). */
/* align at 16 bytes for AltiVec */
for (i = 0; i < c->vLumBufSize; i++) {
FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
dst_stride + 16, fail);
c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
}
// 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
c->uv_off_byte = dst_stride + 16;
for (i = 0; i < c->vChrBufSize; i++) {
FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
dst_stride * 2 + 32, fail);
c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
= c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
}
if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
for (i = 0; i < c->vLumBufSize; i++) {
FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
dst_stride + 16, fail);
c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
}
// try to avoid drawing green stuff between the right end and the stride end
for (i = 0; i < c->vChrBufSize; i++)
memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
assert(c->chrDstH <= dstH);
if (flags & SWS_PRINT_INFO) {
if (flags & SWS_FAST_BILINEAR)
av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
else if (flags & SWS_BILINEAR)
av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
else if (flags & SWS_BICUBIC)
av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
else if (flags & SWS_X)
av_log(c, AV_LOG_INFO, "Experimental scaler, ");
else if (flags & SWS_POINT)
av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
else if (flags & SWS_AREA)
av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
else if (flags & SWS_BICUBLIN)
av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
else if (flags & SWS_GAUSS)
av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
else if (flags & SWS_SINC)
av_log(c, AV_LOG_INFO, "Sinc scaler, ");
else if (flags & SWS_LANCZOS)
av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
else if (flags & SWS_SPLINE)
av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
else
av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
av_log(c, AV_LOG_INFO, "from %s to %s%s ",
sws_format_name(srcFormat),
#ifdef DITHER1XBPP
dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
"dithered " : "",
#else
"",
#endif
sws_format_name(dstFormat));
if (INLINE_MMXEXT(cpu_flags))
av_log(c, AV_LOG_INFO, "using MMXEXT\n");
else if (INLINE_AMD3DNOW(cpu_flags))
av_log(c, AV_LOG_INFO, "using 3DNOW\n");
else if (INLINE_MMX(cpu_flags))
av_log(c, AV_LOG_INFO, "using MMX\n");
else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC)
av_log(c, AV_LOG_INFO, "using AltiVec\n");
else
av_log(c, AV_LOG_INFO, "using C\n");
av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
av_log(c, AV_LOG_DEBUG,
"lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
av_log(c, AV_LOG_DEBUG,
"chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
c->chrXInc, c->chrYInc);
}
c->swScale = ff_getSwsFunc(c);
return 0;
fail: // FIXME replace things by appropriate error codes
return -1;
}
#if FF_API_SWS_GETCONTEXT
SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
int dstW, int dstH, enum AVPixelFormat dstFormat,
int flags, SwsFilter *srcFilter,
SwsFilter *dstFilter, const double *param)
{
SwsContext *c;
if (!(c = sws_alloc_context()))
return NULL;
c->flags = flags;
c->srcW = srcW;
c->srcH = srcH;
c->dstW = dstW;
c->dstH = dstH;
c->srcRange = handle_jpeg(&srcFormat);
c->dstRange = handle_jpeg(&dstFormat);
c->srcFormat = srcFormat;
c->dstFormat = dstFormat;
if (param) {
c->param[0] = param[0];
c->param[1] = param[1];
}
sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
c->dstRange, 0, 1 << 16, 1 << 16);
if (sws_init_context(c, srcFilter, dstFilter) < 0) {
sws_freeContext(c);
return NULL;
}
return c;
}
#endif
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
float lumaSharpen, float chromaSharpen,
float chromaHShift, float chromaVShift,
int verbose)
{
SwsFilter *filter = av_malloc(sizeof(SwsFilter));
if (!filter)
return NULL;
if (lumaGBlur != 0.0) {
filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
} else {
filter->lumH = sws_getIdentityVec();
filter->lumV = sws_getIdentityVec();
}
if (chromaGBlur != 0.0) {
filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
} else {
filter->chrH = sws_getIdentityVec();
filter->chrV = sws_getIdentityVec();
}
if (chromaSharpen != 0.0) {
SwsVector *id = sws_getIdentityVec();
sws_scaleVec(filter->chrH, -chromaSharpen);
sws_scaleVec(filter->chrV, -chromaSharpen);
sws_addVec(filter->chrH, id);
sws_addVec(filter->chrV, id);
sws_freeVec(id);
}
if (lumaSharpen != 0.0) {
SwsVector *id = sws_getIdentityVec();
sws_scaleVec(filter->lumH, -lumaSharpen);
sws_scaleVec(filter->lumV, -lumaSharpen);
sws_addVec(filter->lumH, id);
sws_addVec(filter->lumV, id);
sws_freeVec(id);
}
if (chromaHShift != 0.0)
sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
if (chromaVShift != 0.0)
sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
sws_normalizeVec(filter->chrH, 1.0);
sws_normalizeVec(filter->chrV, 1.0);
sws_normalizeVec(filter->lumH, 1.0);
sws_normalizeVec(filter->lumV, 1.0);
if (verbose)
sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
if (verbose)
sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
return filter;
}
SwsVector *sws_allocVec(int length)
{
SwsVector *vec = av_malloc(sizeof(SwsVector));
if (!vec)
return NULL;
vec->length = length;
vec->coeff = av_malloc(sizeof(double) * length);
if (!vec->coeff)
av_freep(&vec);
return vec;
}
SwsVector *sws_getGaussianVec(double variance, double quality)
{
const int length = (int)(variance * quality + 0.5) | 1;
int i;
double middle = (length - 1) * 0.5;
SwsVector *vec = sws_allocVec(length);
if (!vec)
return NULL;
for (i = 0; i < length; i++) {
double dist = i - middle;
vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
sqrt(2 * variance * M_PI);
}
sws_normalizeVec(vec, 1.0);
return vec;
}
SwsVector *sws_getConstVec(double c, int length)
{
int i;
SwsVector *vec = sws_allocVec(length);
if (!vec)
return NULL;
for (i = 0; i < length; i++)
vec->coeff[i] = c;
return vec;
}
SwsVector *sws_getIdentityVec(void)
{
return sws_getConstVec(1.0, 1);
}
static double sws_dcVec(SwsVector *a)
{
int i;
double sum = 0;
for (i = 0; i < a->length; i++)
sum += a->coeff[i];
return sum;
}
void sws_scaleVec(SwsVector *a, double scalar)
{
int i;
for (i = 0; i < a->length; i++)
a->coeff[i] *= scalar;
}
void sws_normalizeVec(SwsVector *a, double height)
{
sws_scaleVec(a, height / sws_dcVec(a));
}
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
{
int length = a->length + b->length - 1;
int i, j;
SwsVector *vec = sws_getConstVec(0.0, length);
if (!vec)
return NULL;
for (i = 0; i < a->length; i++) {
for (j = 0; j < b->length; j++) {
vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
}
}
return vec;
}
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
{
int length = FFMAX(a->length, b->length);
int i;
SwsVector *vec = sws_getConstVec(0.0, length);
if (!vec)
return NULL;
for (i = 0; i < a->length; i++)
vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
for (i = 0; i < b->length; i++)
vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
return vec;
}
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
{
int length = FFMAX(a->length, b->length);
int i;
SwsVector *vec = sws_getConstVec(0.0, length);
if (!vec)
return NULL;
for (i = 0; i < a->length; i++)
vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
for (i = 0; i < b->length; i++)
vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
return vec;
}
/* shift left / or right if "shift" is negative */
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
{
int length = a->length + FFABS(shift) * 2;
int i;
SwsVector *vec = sws_getConstVec(0.0, length);
if (!vec)
return NULL;
for (i = 0; i < a->length; i++) {
vec->coeff[i + (length - 1) / 2 -
(a->length - 1) / 2 - shift] = a->coeff[i];
}
return vec;
}
void sws_shiftVec(SwsVector *a, int shift)
{
SwsVector *shifted = sws_getShiftedVec(a, shift);
av_free(a->coeff);
a->coeff = shifted->coeff;
a->length = shifted->length;
av_free(shifted);
}
void sws_addVec(SwsVector *a, SwsVector *b)
{
SwsVector *sum = sws_sumVec(a, b);
av_free(a->coeff);
a->coeff = sum->coeff;
a->length = sum->length;
av_free(sum);
}
void sws_subVec(SwsVector *a, SwsVector *b)
{
SwsVector *diff = sws_diffVec(a, b);
av_free(a->coeff);
a->coeff = diff->coeff;
a->length = diff->length;
av_free(diff);
}
void sws_convVec(SwsVector *a, SwsVector *b)
{
SwsVector *conv = sws_getConvVec(a, b);
av_free(a->coeff);
a->coeff = conv->coeff;
a->length = conv->length;
av_free(conv);
}
SwsVector *sws_cloneVec(SwsVector *a)
{
int i;
SwsVector *vec = sws_allocVec(a->length);
if (!vec)
return NULL;
for (i = 0; i < a->length; i++)
vec->coeff[i] = a->coeff[i];
return vec;
}
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
{
int i;
double max = 0;
double min = 0;
double range;
for (i = 0; i < a->length; i++)
if (a->coeff[i] > max)
max = a->coeff[i];
for (i = 0; i < a->length; i++)
if (a->coeff[i] < min)
min = a->coeff[i];
range = max - min;
for (i = 0; i < a->length; i++) {
int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
for (; x > 0; x--)
av_log(log_ctx, log_level, " ");
av_log(log_ctx, log_level, "|\n");
}
}
void sws_freeVec(SwsVector *a)
{
if (!a)
return;
av_freep(&a->coeff);
a->length = 0;
av_free(a);
}
void sws_freeFilter(SwsFilter *filter)
{
if (!filter)
return;
if (filter->lumH)
sws_freeVec(filter->lumH);
if (filter->lumV)
sws_freeVec(filter->lumV);
if (filter->chrH)
sws_freeVec(filter->chrH);
if (filter->chrV)
sws_freeVec(filter->chrV);
av_free(filter);
}
void sws_freeContext(SwsContext *c)
{
int i;
if (!c)
return;
if (c->lumPixBuf) {
for (i = 0; i < c->vLumBufSize; i++)
av_freep(&c->lumPixBuf[i]);
av_freep(&c->lumPixBuf);
}
if (c->chrUPixBuf) {
for (i = 0; i < c->vChrBufSize; i++)
av_freep(&c->chrUPixBuf[i]);
av_freep(&c->chrUPixBuf);
av_freep(&c->chrVPixBuf);
}
if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
for (i = 0; i < c->vLumBufSize; i++)
av_freep(&c->alpPixBuf[i]);
av_freep(&c->alpPixBuf);
}
av_freep(&c->vLumFilter);
av_freep(&c->vChrFilter);
av_freep(&c->hLumFilter);
av_freep(&c->hChrFilter);
#if HAVE_ALTIVEC
av_freep(&c->vYCoeffsBank);
av_freep(&c->vCCoeffsBank);
#endif
av_freep(&c->vLumFilterPos);
av_freep(&c->vChrFilterPos);
av_freep(&c->hLumFilterPos);
av_freep(&c->hChrFilterPos);
#if HAVE_MMX_INLINE
#if USE_MMAP
if (c->lumMmxextFilterCode)
munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
if (c->chrMmxextFilterCode)
munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
#elif HAVE_VIRTUALALLOC
if (c->lumMmxextFilterCode)
VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
if (c->chrMmxextFilterCode)
VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
#else
av_free(c->lumMmxextFilterCode);
av_free(c->chrMmxextFilterCode);
#endif
c->lumMmxextFilterCode = NULL;
c->chrMmxextFilterCode = NULL;
#endif /* HAVE_MMX_INLINE */
av_freep(&c->yuvTable);
av_free(c->formatConvBuffer);
av_free(c);
}
struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
int srcH, enum AVPixelFormat srcFormat,
int dstW, int dstH,
enum AVPixelFormat dstFormat, int flags,
SwsFilter *srcFilter,
SwsFilter *dstFilter,
const double *param)
{
static const double default_param[2] = { SWS_PARAM_DEFAULT,
SWS_PARAM_DEFAULT };
if (!param)
param = default_param;
if (context &&
(context->srcW != srcW ||
context->srcH != srcH ||
context->srcFormat != srcFormat ||
context->dstW != dstW ||
context->dstH != dstH ||
context->dstFormat != dstFormat ||
context->flags != flags ||
context->param[0] != param[0] ||
context->param[1] != param[1])) {
sws_freeContext(context);
context = NULL;
}
if (!context) {
if (!(context = sws_alloc_context()))
return NULL;
context->srcW = srcW;
context->srcH = srcH;
context->srcRange = handle_jpeg(&srcFormat);
context->srcFormat = srcFormat;
context->dstW = dstW;
context->dstH = dstH;
context->dstRange = handle_jpeg(&dstFormat);
context->dstFormat = dstFormat;
context->flags = flags;
context->param[0] = param[0];
context->param[1] = param[1];
sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
context->srcRange,
ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
context->dstRange, 0, 1 << 16, 1 << 16);
if (sws_init_context(context, srcFilter, dstFilter) < 0) {
sws_freeContext(context);
return NULL;
}
}
return context;
}