1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-02 03:06:28 +02:00
FFmpeg/libavcodec/svq3.c
Martin Storsjö 601c2015bc svq3: Avoid a division by zero
If the height is zero, the decompression will probably end up
failing due to not fitting into the allocated buffer later
anyway, so this doesn't need any more elaborate check.

Reported-by: Mateusz "j00ru" Jurczyk and Gynvael Coldwind
CC: libav-stable@libav.org
Signed-off-by: Martin Storsjö <martin@martin.st>
2013-09-19 22:45:16 +03:00

1327 lines
47 KiB
C

/*
* Copyright (c) 2003 The Libav Project
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* How to use this decoder:
* SVQ3 data is transported within Apple Quicktime files. Quicktime files
* have stsd atoms to describe media trak properties. A stsd atom for a
* video trak contains 1 or more ImageDescription atoms. These atoms begin
* with the 4-byte length of the atom followed by the codec fourcc. Some
* decoders need information in this atom to operate correctly. Such
* is the case with SVQ3. In order to get the best use out of this decoder,
* the calling app must make the SVQ3 ImageDescription atom available
* via the AVCodecContext's extradata[_size] field:
*
* AVCodecContext.extradata = pointer to ImageDescription, first characters
* are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
* AVCodecContext.extradata_size = size of ImageDescription atom memory
* buffer (which will be the same as the ImageDescription atom size field
* from the QT file, minus 4 bytes since the length is missing)
*
* You will know you have these parameters passed correctly when the decoder
* correctly decodes this file:
* http://samples.libav.org/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
*/
#include "libavutil/attributes.h"
#include "internal.h"
#include "avcodec.h"
#include "mpegvideo.h"
#include "h264.h"
#include "h264data.h" // FIXME FIXME FIXME
#include "h264_mvpred.h"
#include "golomb.h"
#include "hpeldsp.h"
#include "rectangle.h"
#if CONFIG_ZLIB
#include <zlib.h>
#endif
#include "svq1.h"
#include "svq3.h"
/**
* @file
* svq3 decoder.
*/
typedef struct {
H264Context h;
HpelDSPContext hdsp;
Picture *cur_pic;
Picture *next_pic;
Picture *last_pic;
int halfpel_flag;
int thirdpel_flag;
int unknown_flag;
int next_slice_index;
uint32_t watermark_key;
int adaptive_quant;
int next_p_frame_damaged;
int h_edge_pos;
int v_edge_pos;
int last_frame_output;
} SVQ3Context;
#define FULLPEL_MODE 1
#define HALFPEL_MODE 2
#define THIRDPEL_MODE 3
#define PREDICT_MODE 4
/* dual scan (from some older h264 draft)
* o-->o-->o o
* | /|
* o o o / o
* | / | |/ |
* o o o o
* /
* o-->o-->o-->o
*/
static const uint8_t svq3_scan[16] = {
0 + 0 * 4, 1 + 0 * 4, 2 + 0 * 4, 2 + 1 * 4,
2 + 2 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4,
0 + 1 * 4, 0 + 2 * 4, 1 + 1 * 4, 1 + 2 * 4,
0 + 3 * 4, 1 + 3 * 4, 2 + 3 * 4, 3 + 3 * 4,
};
static const uint8_t luma_dc_zigzag_scan[16] = {
0 * 16 + 0 * 64, 1 * 16 + 0 * 64, 2 * 16 + 0 * 64, 0 * 16 + 2 * 64,
3 * 16 + 0 * 64, 0 * 16 + 1 * 64, 1 * 16 + 1 * 64, 2 * 16 + 1 * 64,
1 * 16 + 2 * 64, 2 * 16 + 2 * 64, 3 * 16 + 2 * 64, 0 * 16 + 3 * 64,
3 * 16 + 1 * 64, 1 * 16 + 3 * 64, 2 * 16 + 3 * 64, 3 * 16 + 3 * 64,
};
static const uint8_t svq3_pred_0[25][2] = {
{ 0, 0 },
{ 1, 0 }, { 0, 1 },
{ 0, 2 }, { 1, 1 }, { 2, 0 },
{ 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
{ 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
{ 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
{ 2, 4 }, { 3, 3 }, { 4, 2 },
{ 4, 3 }, { 3, 4 },
{ 4, 4 }
};
static const int8_t svq3_pred_1[6][6][5] = {
{ { 2, -1, -1, -1, -1 }, { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 },
{ 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 }, { 1, 2, -1, -1, -1 } },
{ { 0, 2, -1, -1, -1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
{ 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
{ { 2, 0, -1, -1, -1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
{ 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
{ { 2, 0, -1, -1, -1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
{ 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
{ { 0, 2, -1, -1, -1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
{ 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
{ { 0, 2, -1, -1, -1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
{ 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
};
static const struct {
uint8_t run;
uint8_t level;
} svq3_dct_tables[2][16] = {
{ { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
{ 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
{ { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
{ 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
};
static const uint32_t svq3_dequant_coeff[32] = {
3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
61694, 68745, 77615, 89113, 100253, 109366, 126635, 141533
};
void ff_svq3_luma_dc_dequant_idct_c(int16_t *output, int16_t *input, int qp)
{
const int qmul = svq3_dequant_coeff[qp];
#define stride 16
int i;
int temp[16];
static const uint8_t x_offset[4] = { 0, 1 * stride, 4 * stride, 5 * stride };
for (i = 0; i < 4; i++) {
const int z0 = 13 * (input[4 * i + 0] + input[4 * i + 2]);
const int z1 = 13 * (input[4 * i + 0] - input[4 * i + 2]);
const int z2 = 7 * input[4 * i + 1] - 17 * input[4 * i + 3];
const int z3 = 17 * input[4 * i + 1] + 7 * input[4 * i + 3];
temp[4 * i + 0] = z0 + z3;
temp[4 * i + 1] = z1 + z2;
temp[4 * i + 2] = z1 - z2;
temp[4 * i + 3] = z0 - z3;
}
for (i = 0; i < 4; i++) {
const int offset = x_offset[i];
const int z0 = 13 * (temp[4 * 0 + i] + temp[4 * 2 + i]);
const int z1 = 13 * (temp[4 * 0 + i] - temp[4 * 2 + i]);
const int z2 = 7 * temp[4 * 1 + i] - 17 * temp[4 * 3 + i];
const int z3 = 17 * temp[4 * 1 + i] + 7 * temp[4 * 3 + i];
output[stride * 0 + offset] = (z0 + z3) * qmul + 0x80000 >> 20;
output[stride * 2 + offset] = (z1 + z2) * qmul + 0x80000 >> 20;
output[stride * 8 + offset] = (z1 - z2) * qmul + 0x80000 >> 20;
output[stride * 10 + offset] = (z0 - z3) * qmul + 0x80000 >> 20;
}
}
#undef stride
void ff_svq3_add_idct_c(uint8_t *dst, int16_t *block,
int stride, int qp, int dc)
{
const int qmul = svq3_dequant_coeff[qp];
int i;
if (dc) {
dc = 13 * 13 * (dc == 1 ? 1538 * block[0]
: qmul * (block[0] >> 3) / 2);
block[0] = 0;
}
for (i = 0; i < 4; i++) {
const int z0 = 13 * (block[0 + 4 * i] + block[2 + 4 * i]);
const int z1 = 13 * (block[0 + 4 * i] - block[2 + 4 * i]);
const int z2 = 7 * block[1 + 4 * i] - 17 * block[3 + 4 * i];
const int z3 = 17 * block[1 + 4 * i] + 7 * block[3 + 4 * i];
block[0 + 4 * i] = z0 + z3;
block[1 + 4 * i] = z1 + z2;
block[2 + 4 * i] = z1 - z2;
block[3 + 4 * i] = z0 - z3;
}
for (i = 0; i < 4; i++) {
const int z0 = 13 * (block[i + 4 * 0] + block[i + 4 * 2]);
const int z1 = 13 * (block[i + 4 * 0] - block[i + 4 * 2]);
const int z2 = 7 * block[i + 4 * 1] - 17 * block[i + 4 * 3];
const int z3 = 17 * block[i + 4 * 1] + 7 * block[i + 4 * 3];
const int rr = (dc + 0x80000);
dst[i + stride * 0] = av_clip_uint8(dst[i + stride * 0] + ((z0 + z3) * qmul + rr >> 20));
dst[i + stride * 1] = av_clip_uint8(dst[i + stride * 1] + ((z1 + z2) * qmul + rr >> 20));
dst[i + stride * 2] = av_clip_uint8(dst[i + stride * 2] + ((z1 - z2) * qmul + rr >> 20));
dst[i + stride * 3] = av_clip_uint8(dst[i + stride * 3] + ((z0 - z3) * qmul + rr >> 20));
}
memset(block, 0, 16 * sizeof(int16_t));
}
static inline int svq3_decode_block(GetBitContext *gb, int16_t *block,
int index, const int type)
{
static const uint8_t *const scan_patterns[4] =
{ luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
int run, level, limit;
unsigned vlc;
const int intra = 3 * type >> 2;
const uint8_t *const scan = scan_patterns[type];
for (limit = (16 >> intra); index < 16; index = limit, limit += 8) {
for (; (vlc = svq3_get_ue_golomb(gb)) != 0; index++) {
int sign = (vlc & 1) ? 0 : -1;
vlc = vlc + 1 >> 1;
if (type == 3) {
if (vlc < 3) {
run = 0;
level = vlc;
} else if (vlc < 4) {
run = 1;
level = 1;
} else {
run = vlc & 0x3;
level = (vlc + 9 >> 2) - run;
}
} else {
if (vlc < 16) {
run = svq3_dct_tables[intra][vlc].run;
level = svq3_dct_tables[intra][vlc].level;
} else if (intra) {
run = vlc & 0x7;
level = (vlc >> 3) +
((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
} else {
run = vlc & 0xF;
level = (vlc >> 4) +
((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
}
}
if ((index += run) >= limit)
return -1;
block[scan[index]] = (level ^ sign) - sign;
}
if (type != 2) {
break;
}
}
return 0;
}
static inline void svq3_mc_dir_part(SVQ3Context *s,
int x, int y, int width, int height,
int mx, int my, int dxy,
int thirdpel, int dir, int avg)
{
H264Context *h = &s->h;
const Picture *pic = (dir == 0) ? s->last_pic : s->next_pic;
uint8_t *src, *dest;
int i, emu = 0;
int blocksize = 2 - (width >> 3); // 16->0, 8->1, 4->2
mx += x;
my += y;
if (mx < 0 || mx >= s->h_edge_pos - width - 1 ||
my < 0 || my >= s->v_edge_pos - height - 1) {
emu = 1;
mx = av_clip(mx, -16, s->h_edge_pos - width + 15);
my = av_clip(my, -16, s->v_edge_pos - height + 15);
}
/* form component predictions */
dest = h->cur_pic.f.data[0] + x + y * h->linesize;
src = pic->f.data[0] + mx + my * h->linesize;
if (emu) {
h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src, h->linesize,
width + 1, height + 1,
mx, my, s->h_edge_pos, s->v_edge_pos);
src = h->edge_emu_buffer;
}
if (thirdpel)
(avg ? h->dsp.avg_tpel_pixels_tab
: h->dsp.put_tpel_pixels_tab)[dxy](dest, src, h->linesize,
width, height);
else
(avg ? s->hdsp.avg_pixels_tab
: s->hdsp.put_pixels_tab)[blocksize][dxy](dest, src, h->linesize,
height);
if (!(h->flags & CODEC_FLAG_GRAY)) {
mx = mx + (mx < (int) x) >> 1;
my = my + (my < (int) y) >> 1;
width = width >> 1;
height = height >> 1;
blocksize++;
for (i = 1; i < 3; i++) {
dest = h->cur_pic.f.data[i] + (x >> 1) + (y >> 1) * h->uvlinesize;
src = pic->f.data[i] + mx + my * h->uvlinesize;
if (emu) {
h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src, h->uvlinesize,
width + 1, height + 1,
mx, my, (s->h_edge_pos >> 1),
s->v_edge_pos >> 1);
src = h->edge_emu_buffer;
}
if (thirdpel)
(avg ? h->dsp.avg_tpel_pixels_tab
: h->dsp.put_tpel_pixels_tab)[dxy](dest, src,
h->uvlinesize,
width, height);
else
(avg ? s->hdsp.avg_pixels_tab
: s->hdsp.put_pixels_tab)[blocksize][dxy](dest, src,
h->uvlinesize,
height);
}
}
}
static inline int svq3_mc_dir(SVQ3Context *s, int size, int mode,
int dir, int avg)
{
int i, j, k, mx, my, dx, dy, x, y;
H264Context *h = &s->h;
const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
const int part_height = 16 >> ((unsigned)(size + 1) / 3);
const int extra_width = (mode == PREDICT_MODE) ? -16 * 6 : 0;
const int h_edge_pos = 6 * (s->h_edge_pos - part_width) - extra_width;
const int v_edge_pos = 6 * (s->v_edge_pos - part_height) - extra_width;
for (i = 0; i < 16; i += part_height)
for (j = 0; j < 16; j += part_width) {
const int b_xy = (4 * h->mb_x + (j >> 2)) +
(4 * h->mb_y + (i >> 2)) * h->b_stride;
int dxy;
x = 16 * h->mb_x + j;
y = 16 * h->mb_y + i;
k = (j >> 2 & 1) + (i >> 1 & 2) +
(j >> 1 & 4) + (i & 8);
if (mode != PREDICT_MODE) {
pred_motion(h, k, part_width >> 2, dir, 1, &mx, &my);
} else {
mx = s->next_pic->motion_val[0][b_xy][0] << 1;
my = s->next_pic->motion_val[0][b_xy][1] << 1;
if (dir == 0) {
mx = mx * h->frame_num_offset /
h->prev_frame_num_offset + 1 >> 1;
my = my * h->frame_num_offset /
h->prev_frame_num_offset + 1 >> 1;
} else {
mx = mx * (h->frame_num_offset - h->prev_frame_num_offset) /
h->prev_frame_num_offset + 1 >> 1;
my = my * (h->frame_num_offset - h->prev_frame_num_offset) /
h->prev_frame_num_offset + 1 >> 1;
}
}
/* clip motion vector prediction to frame border */
mx = av_clip(mx, extra_width - 6 * x, h_edge_pos - 6 * x);
my = av_clip(my, extra_width - 6 * y, v_edge_pos - 6 * y);
/* get (optional) motion vector differential */
if (mode == PREDICT_MODE) {
dx = dy = 0;
} else {
dy = svq3_get_se_golomb(&h->gb);
dx = svq3_get_se_golomb(&h->gb);
if (dx == INVALID_VLC || dy == INVALID_VLC) {
av_log(h->avctx, AV_LOG_ERROR, "invalid MV vlc\n");
return -1;
}
}
/* compute motion vector */
if (mode == THIRDPEL_MODE) {
int fx, fy;
mx = (mx + 1 >> 1) + dx;
my = (my + 1 >> 1) + dy;
fx = (unsigned)(mx + 0x3000) / 3 - 0x1000;
fy = (unsigned)(my + 0x3000) / 3 - 0x1000;
dxy = (mx - 3 * fx) + 4 * (my - 3 * fy);
svq3_mc_dir_part(s, x, y, part_width, part_height,
fx, fy, dxy, 1, dir, avg);
mx += mx;
my += my;
} else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
mx = (unsigned)(mx + 1 + 0x3000) / 3 + dx - 0x1000;
my = (unsigned)(my + 1 + 0x3000) / 3 + dy - 0x1000;
dxy = (mx & 1) + 2 * (my & 1);
svq3_mc_dir_part(s, x, y, part_width, part_height,
mx >> 1, my >> 1, dxy, 0, dir, avg);
mx *= 3;
my *= 3;
} else {
mx = (unsigned)(mx + 3 + 0x6000) / 6 + dx - 0x1000;
my = (unsigned)(my + 3 + 0x6000) / 6 + dy - 0x1000;
svq3_mc_dir_part(s, x, y, part_width, part_height,
mx, my, 0, 0, dir, avg);
mx *= 6;
my *= 6;
}
/* update mv_cache */
if (mode != PREDICT_MODE) {
int32_t mv = pack16to32(mx, my);
if (part_height == 8 && i < 8) {
AV_WN32A(h->mv_cache[dir][scan8[k] + 1 * 8], mv);
if (part_width == 8 && j < 8)
AV_WN32A(h->mv_cache[dir][scan8[k] + 1 + 1 * 8], mv);
}
if (part_width == 8 && j < 8)
AV_WN32A(h->mv_cache[dir][scan8[k] + 1], mv);
if (part_width == 4 || part_height == 4)
AV_WN32A(h->mv_cache[dir][scan8[k]], mv);
}
/* write back motion vectors */
fill_rectangle(h->cur_pic.motion_val[dir][b_xy],
part_width >> 2, part_height >> 2, h->b_stride,
pack16to32(mx, my), 4);
}
return 0;
}
static int svq3_decode_mb(SVQ3Context *s, unsigned int mb_type)
{
H264Context *h = &s->h;
int i, j, k, m, dir, mode;
int cbp = 0;
uint32_t vlc;
int8_t *top, *left;
const int mb_xy = h->mb_xy;
const int b_xy = 4 * h->mb_x + 4 * h->mb_y * h->b_stride;
h->top_samples_available = (h->mb_y == 0) ? 0x33FF : 0xFFFF;
h->left_samples_available = (h->mb_x == 0) ? 0x5F5F : 0xFFFF;
h->topright_samples_available = 0xFFFF;
if (mb_type == 0) { /* SKIP */
if (h->pict_type == AV_PICTURE_TYPE_P ||
s->next_pic->mb_type[mb_xy] == -1) {
svq3_mc_dir_part(s, 16 * h->mb_x, 16 * h->mb_y, 16, 16,
0, 0, 0, 0, 0, 0);
if (h->pict_type == AV_PICTURE_TYPE_B)
svq3_mc_dir_part(s, 16 * h->mb_x, 16 * h->mb_y, 16, 16,
0, 0, 0, 0, 1, 1);
mb_type = MB_TYPE_SKIP;
} else {
mb_type = FFMIN(s->next_pic->mb_type[mb_xy], 6);
if (svq3_mc_dir(s, mb_type, PREDICT_MODE, 0, 0) < 0)
return -1;
if (svq3_mc_dir(s, mb_type, PREDICT_MODE, 1, 1) < 0)
return -1;
mb_type = MB_TYPE_16x16;
}
} else if (mb_type < 8) { /* INTER */
if (s->thirdpel_flag && s->halfpel_flag == !get_bits1(&h->gb))
mode = THIRDPEL_MODE;
else if (s->halfpel_flag &&
s->thirdpel_flag == !get_bits1(&h->gb))
mode = HALFPEL_MODE;
else
mode = FULLPEL_MODE;
/* fill caches */
/* note ref_cache should contain here:
* ????????
* ???11111
* N??11111
* N??11111
* N??11111
*/
for (m = 0; m < 2; m++) {
if (h->mb_x > 0 && h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1] + 6] != -1) {
for (i = 0; i < 4; i++)
AV_COPY32(h->mv_cache[m][scan8[0] - 1 + i * 8],
h->cur_pic.motion_val[m][b_xy - 1 + i * h->b_stride]);
} else {
for (i = 0; i < 4; i++)
AV_ZERO32(h->mv_cache[m][scan8[0] - 1 + i * 8]);
}
if (h->mb_y > 0) {
memcpy(h->mv_cache[m][scan8[0] - 1 * 8],
h->cur_pic.motion_val[m][b_xy - h->b_stride],
4 * 2 * sizeof(int16_t));
memset(&h->ref_cache[m][scan8[0] - 1 * 8],
(h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - h->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1, 4);
if (h->mb_x < h->mb_width - 1) {
AV_COPY32(h->mv_cache[m][scan8[0] + 4 - 1 * 8],
h->cur_pic.motion_val[m][b_xy - h->b_stride + 4]);
h->ref_cache[m][scan8[0] + 4 - 1 * 8] =
(h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - h->mb_stride + 1] + 6] == -1 ||
h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - h->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1;
} else
h->ref_cache[m][scan8[0] + 4 - 1 * 8] = PART_NOT_AVAILABLE;
if (h->mb_x > 0) {
AV_COPY32(h->mv_cache[m][scan8[0] - 1 - 1 * 8],
h->cur_pic.motion_val[m][b_xy - h->b_stride - 1]);
h->ref_cache[m][scan8[0] - 1 - 1 * 8] =
(h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - h->mb_stride - 1] + 3] == -1) ? PART_NOT_AVAILABLE : 1;
} else
h->ref_cache[m][scan8[0] - 1 - 1 * 8] = PART_NOT_AVAILABLE;
} else
memset(&h->ref_cache[m][scan8[0] - 1 * 8 - 1],
PART_NOT_AVAILABLE, 8);
if (h->pict_type != AV_PICTURE_TYPE_B)
break;
}
/* decode motion vector(s) and form prediction(s) */
if (h->pict_type == AV_PICTURE_TYPE_P) {
if (svq3_mc_dir(s, mb_type - 1, mode, 0, 0) < 0)
return -1;
} else { /* AV_PICTURE_TYPE_B */
if (mb_type != 2) {
if (svq3_mc_dir(s, 0, mode, 0, 0) < 0)
return -1;
} else {
for (i = 0; i < 4; i++)
memset(h->cur_pic.motion_val[0][b_xy + i * h->b_stride],
0, 4 * 2 * sizeof(int16_t));
}
if (mb_type != 1) {
if (svq3_mc_dir(s, 0, mode, 1, mb_type == 3) < 0)
return -1;
} else {
for (i = 0; i < 4; i++)
memset(h->cur_pic.motion_val[1][b_xy + i * h->b_stride],
0, 4 * 2 * sizeof(int16_t));
}
}
mb_type = MB_TYPE_16x16;
} else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
memset(h->intra4x4_pred_mode_cache, -1, 8 * 5 * sizeof(int8_t));
if (mb_type == 8) {
if (h->mb_x > 0) {
for (i = 0; i < 4; i++)
h->intra4x4_pred_mode_cache[scan8[0] - 1 + i * 8] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1] + 6 - i];
if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1)
h->left_samples_available = 0x5F5F;
}
if (h->mb_y > 0) {
h->intra4x4_pred_mode_cache[4 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - h->mb_stride] + 0];
h->intra4x4_pred_mode_cache[5 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - h->mb_stride] + 1];
h->intra4x4_pred_mode_cache[6 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - h->mb_stride] + 2];
h->intra4x4_pred_mode_cache[7 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - h->mb_stride] + 3];
if (h->intra4x4_pred_mode_cache[4 + 8 * 0] == -1)
h->top_samples_available = 0x33FF;
}
/* decode prediction codes for luma blocks */
for (i = 0; i < 16; i += 2) {
vlc = svq3_get_ue_golomb(&h->gb);
if (vlc >= 25) {
av_log(h->avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc);
return -1;
}
left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
if (left[1] == -1 || left[2] == -1) {
av_log(h->avctx, AV_LOG_ERROR, "weird prediction\n");
return -1;
}
}
} else { /* mb_type == 33, DC_128_PRED block type */
for (i = 0; i < 4; i++)
memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_PRED, 4);
}
write_back_intra_pred_mode(h);
if (mb_type == 8) {
ff_h264_check_intra4x4_pred_mode(h);
h->top_samples_available = (h->mb_y == 0) ? 0x33FF : 0xFFFF;
h->left_samples_available = (h->mb_x == 0) ? 0x5F5F : 0xFFFF;
} else {
for (i = 0; i < 4; i++)
memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_128_PRED, 4);
h->top_samples_available = 0x33FF;
h->left_samples_available = 0x5F5F;
}
mb_type = MB_TYPE_INTRA4x4;
} else { /* INTRA16x16 */
dir = i_mb_type_info[mb_type - 8].pred_mode;
dir = (dir >> 1) ^ 3 * (dir & 1) ^ 1;
if ((h->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(h, dir, 0)) < 0) {
av_log(h->avctx, AV_LOG_ERROR, "ff_h264_check_intra_pred_mode < 0\n");
return h->intra16x16_pred_mode;
}
cbp = i_mb_type_info[mb_type - 8].cbp;
mb_type = MB_TYPE_INTRA16x16;
}
if (!IS_INTER(mb_type) && h->pict_type != AV_PICTURE_TYPE_I) {
for (i = 0; i < 4; i++)
memset(h->cur_pic.motion_val[0][b_xy + i * h->b_stride],
0, 4 * 2 * sizeof(int16_t));
if (h->pict_type == AV_PICTURE_TYPE_B) {
for (i = 0; i < 4; i++)
memset(h->cur_pic.motion_val[1][b_xy + i * h->b_stride],
0, 4 * 2 * sizeof(int16_t));
}
}
if (!IS_INTRA4x4(mb_type)) {
memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy], DC_PRED, 8);
}
if (!IS_SKIP(mb_type) || h->pict_type == AV_PICTURE_TYPE_B) {
memset(h->non_zero_count_cache + 8, 0, 14 * 8 * sizeof(uint8_t));
}
if (!IS_INTRA16x16(mb_type) &&
(!IS_SKIP(mb_type) || h->pict_type == AV_PICTURE_TYPE_B)) {
if ((vlc = svq3_get_ue_golomb(&h->gb)) >= 48) {
av_log(h->avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc);
return -1;
}
cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc]
: golomb_to_inter_cbp[vlc];
}
if (IS_INTRA16x16(mb_type) ||
(h->pict_type != AV_PICTURE_TYPE_I && s->adaptive_quant && cbp)) {
h->qscale += svq3_get_se_golomb(&h->gb);
if (h->qscale > 31u) {
av_log(h->avctx, AV_LOG_ERROR, "qscale:%d\n", h->qscale);
return -1;
}
}
if (IS_INTRA16x16(mb_type)) {
AV_ZERO128(h->mb_luma_dc[0] + 0);
AV_ZERO128(h->mb_luma_dc[0] + 8);
if (svq3_decode_block(&h->gb, h->mb_luma_dc[0], 0, 1)) {
av_log(h->avctx, AV_LOG_ERROR,
"error while decoding intra luma dc\n");
return -1;
}
}
if (cbp) {
const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
const int type = ((h->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
for (i = 0; i < 4; i++)
if ((cbp & (1 << i))) {
for (j = 0; j < 4; j++) {
k = index ? (1 * (j & 1) + 2 * (i & 1) +
2 * (j & 2) + 4 * (i & 2))
: (4 * i + j);
h->non_zero_count_cache[scan8[k]] = 1;
if (svq3_decode_block(&h->gb, &h->mb[16 * k], index, type)) {
av_log(h->avctx, AV_LOG_ERROR,
"error while decoding block\n");
return -1;
}
}
}
if ((cbp & 0x30)) {
for (i = 1; i < 3; ++i)
if (svq3_decode_block(&h->gb, &h->mb[16 * 16 * i], 0, 3)) {
av_log(h->avctx, AV_LOG_ERROR,
"error while decoding chroma dc block\n");
return -1;
}
if ((cbp & 0x20)) {
for (i = 1; i < 3; i++) {
for (j = 0; j < 4; j++) {
k = 16 * i + j;
h->non_zero_count_cache[scan8[k]] = 1;
if (svq3_decode_block(&h->gb, &h->mb[16 * k], 1, 1)) {
av_log(h->avctx, AV_LOG_ERROR,
"error while decoding chroma ac block\n");
return -1;
}
}
}
}
}
}
h->cbp = cbp;
h->cur_pic.mb_type[mb_xy] = mb_type;
if (IS_INTRA(mb_type))
h->chroma_pred_mode = ff_h264_check_intra_pred_mode(h, DC_PRED8x8, 1);
return 0;
}
static int svq3_decode_slice_header(AVCodecContext *avctx)
{
SVQ3Context *s = avctx->priv_data;
H264Context *h = &s->h;
const int mb_xy = h->mb_xy;
int i, header;
unsigned slice_id;
header = get_bits(&h->gb, 8);
if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
/* TODO: what? */
av_log(avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
return -1;
} else {
int length = header >> 5 & 3;
s->next_slice_index = get_bits_count(&h->gb) +
8 * show_bits(&h->gb, 8 * length) +
8 * length;
if (s->next_slice_index > h->gb.size_in_bits) {
av_log(avctx, AV_LOG_ERROR, "slice after bitstream end\n");
return -1;
}
h->gb.size_in_bits = s->next_slice_index - 8 * (length - 1);
skip_bits(&h->gb, 8);
if (s->watermark_key) {
uint32_t header = AV_RL32(&h->gb.buffer[(get_bits_count(&h->gb) >> 3) + 1]);
AV_WL32(&h->gb.buffer[(get_bits_count(&h->gb) >> 3) + 1],
header ^ s->watermark_key);
}
if (length > 0) {
memcpy((uint8_t *) &h->gb.buffer[get_bits_count(&h->gb) >> 3],
&h->gb.buffer[h->gb.size_in_bits >> 3], length - 1);
}
skip_bits_long(&h->gb, 0);
}
if ((slice_id = svq3_get_ue_golomb(&h->gb)) >= 3) {
av_log(h->avctx, AV_LOG_ERROR, "illegal slice type %d \n", slice_id);
return -1;
}
h->slice_type = golomb_to_pict_type[slice_id];
if ((header & 0x9F) == 2) {
i = (h->mb_num < 64) ? 6 : (1 + av_log2(h->mb_num - 1));
h->mb_skip_run = get_bits(&h->gb, i) -
(h->mb_y * h->mb_width + h->mb_x);
} else {
skip_bits1(&h->gb);
h->mb_skip_run = 0;
}
h->slice_num = get_bits(&h->gb, 8);
h->qscale = get_bits(&h->gb, 5);
s->adaptive_quant = get_bits1(&h->gb);
/* unknown fields */
skip_bits1(&h->gb);
if (s->unknown_flag)
skip_bits1(&h->gb);
skip_bits1(&h->gb);
skip_bits(&h->gb, 2);
while (get_bits1(&h->gb))
skip_bits(&h->gb, 8);
/* reset intra predictors and invalidate motion vector references */
if (h->mb_x > 0) {
memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy - 1] + 3,
-1, 4 * sizeof(int8_t));
memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy - h->mb_x],
-1, 8 * sizeof(int8_t) * h->mb_x);
}
if (h->mb_y > 0) {
memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy - h->mb_stride],
-1, 8 * sizeof(int8_t) * (h->mb_width - h->mb_x));
if (h->mb_x > 0)
h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - h->mb_stride - 1] + 3] = -1;
}
return 0;
}
static av_cold int svq3_decode_init(AVCodecContext *avctx)
{
SVQ3Context *s = avctx->priv_data;
H264Context *h = &s->h;
int m;
unsigned char *extradata;
unsigned char *extradata_end;
unsigned int size;
int marker_found = 0;
s->cur_pic = av_mallocz(sizeof(*s->cur_pic));
s->last_pic = av_mallocz(sizeof(*s->last_pic));
s->next_pic = av_mallocz(sizeof(*s->next_pic));
if (!s->next_pic || !s->last_pic || !s->cur_pic) {
av_freep(&s->cur_pic);
av_freep(&s->last_pic);
av_freep(&s->next_pic);
return AVERROR(ENOMEM);
}
if (ff_h264_decode_init(avctx) < 0)
return -1;
ff_hpeldsp_init(&s->hdsp, avctx->flags);
h->flags = avctx->flags;
h->is_complex = 1;
h->picture_structure = PICT_FRAME;
avctx->pix_fmt = avctx->codec->pix_fmts[0];
h->chroma_qp[0] = h->chroma_qp[1] = 4;
h->chroma_x_shift = h->chroma_y_shift = 1;
s->halfpel_flag = 1;
s->thirdpel_flag = 1;
s->unknown_flag = 0;
/* prowl for the "SEQH" marker in the extradata */
extradata = (unsigned char *)avctx->extradata;
extradata_end = avctx->extradata + avctx->extradata_size;
if (extradata) {
for (m = 0; m + 8 < avctx->extradata_size; m++) {
if (!memcmp(extradata, "SEQH", 4)) {
marker_found = 1;
break;
}
extradata++;
}
}
/* if a match was found, parse the extra data */
if (marker_found) {
GetBitContext gb;
int frame_size_code;
size = AV_RB32(&extradata[4]);
if (size > extradata_end - extradata - 8)
return AVERROR_INVALIDDATA;
init_get_bits(&gb, extradata + 8, size * 8);
/* 'frame size code' and optional 'width, height' */
frame_size_code = get_bits(&gb, 3);
switch (frame_size_code) {
case 0:
avctx->width = 160;
avctx->height = 120;
break;
case 1:
avctx->width = 128;
avctx->height = 96;
break;
case 2:
avctx->width = 176;
avctx->height = 144;
break;
case 3:
avctx->width = 352;
avctx->height = 288;
break;
case 4:
avctx->width = 704;
avctx->height = 576;
break;
case 5:
avctx->width = 240;
avctx->height = 180;
break;
case 6:
avctx->width = 320;
avctx->height = 240;
break;
case 7:
avctx->width = get_bits(&gb, 12);
avctx->height = get_bits(&gb, 12);
break;
}
s->halfpel_flag = get_bits1(&gb);
s->thirdpel_flag = get_bits1(&gb);
/* unknown fields */
skip_bits1(&gb);
skip_bits1(&gb);
skip_bits1(&gb);
skip_bits1(&gb);
h->low_delay = get_bits1(&gb);
/* unknown field */
skip_bits1(&gb);
while (get_bits1(&gb))
skip_bits(&gb, 8);
s->unknown_flag = get_bits1(&gb);
avctx->has_b_frames = !h->low_delay;
if (s->unknown_flag) {
#if CONFIG_ZLIB
unsigned watermark_width = svq3_get_ue_golomb(&gb);
unsigned watermark_height = svq3_get_ue_golomb(&gb);
int u1 = svq3_get_ue_golomb(&gb);
int u2 = get_bits(&gb, 8);
int u3 = get_bits(&gb, 2);
int u4 = svq3_get_ue_golomb(&gb);
unsigned long buf_len = watermark_width *
watermark_height * 4;
int offset = get_bits_count(&gb) + 7 >> 3;
uint8_t *buf;
if (watermark_height > 0 &&
(uint64_t)watermark_width * 4 > UINT_MAX / watermark_height)
return -1;
buf = av_malloc(buf_len);
av_log(avctx, AV_LOG_DEBUG, "watermark size: %dx%d\n",
watermark_width, watermark_height);
av_log(avctx, AV_LOG_DEBUG,
"u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n",
u1, u2, u3, u4, offset);
if (uncompress(buf, &buf_len, extradata + 8 + offset,
size - offset) != Z_OK) {
av_log(avctx, AV_LOG_ERROR,
"could not uncompress watermark logo\n");
av_free(buf);
return -1;
}
s->watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0);
s->watermark_key = s->watermark_key << 16 | s->watermark_key;
av_log(avctx, AV_LOG_DEBUG,
"watermark key %#x\n", s->watermark_key);
av_free(buf);
#else
av_log(avctx, AV_LOG_ERROR,
"this svq3 file contains watermark which need zlib support compiled in\n");
return -1;
#endif
}
}
h->width = avctx->width;
h->height = avctx->height;
h->mb_width = (h->width + 15) / 16;
h->mb_height = (h->height + 15) / 16;
h->mb_stride = h->mb_width + 1;
h->mb_num = h->mb_width * h->mb_height;
h->b_stride = 4 * h->mb_width;
s->h_edge_pos = h->mb_width * 16;
s->v_edge_pos = h->mb_height * 16;
if (ff_h264_alloc_tables(h) < 0) {
av_log(avctx, AV_LOG_ERROR, "svq3 memory allocation failed\n");
return AVERROR(ENOMEM);
}
return 0;
}
static void free_picture(AVCodecContext *avctx, Picture *pic)
{
int i;
for (i = 0; i < 2; i++) {
av_buffer_unref(&pic->motion_val_buf[i]);
av_buffer_unref(&pic->ref_index_buf[i]);
}
av_buffer_unref(&pic->mb_type_buf);
av_frame_unref(&pic->f);
}
static int get_buffer(AVCodecContext *avctx, Picture *pic)
{
SVQ3Context *s = avctx->priv_data;
H264Context *h = &s->h;
const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
const int mb_array_size = h->mb_stride * h->mb_height;
const int b4_stride = h->mb_width * 4 + 1;
const int b4_array_size = b4_stride * h->mb_height * 4;
int ret;
if (!pic->motion_val_buf[0]) {
int i;
pic->mb_type_buf = av_buffer_allocz((big_mb_num + h->mb_stride) * sizeof(uint32_t));
if (!pic->mb_type_buf)
return AVERROR(ENOMEM);
pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
for (i = 0; i < 2; i++) {
pic->motion_val_buf[i] = av_buffer_allocz(2 * (b4_array_size + 4) * sizeof(int16_t));
pic->ref_index_buf[i] = av_buffer_allocz(4 * mb_array_size);
if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i]) {
ret = AVERROR(ENOMEM);
goto fail;
}
pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
pic->ref_index[i] = pic->ref_index_buf[i]->data;
}
}
pic->reference = !(h->pict_type == AV_PICTURE_TYPE_B);
ret = ff_get_buffer(avctx, &pic->f,
pic->reference ? AV_GET_BUFFER_FLAG_REF : 0);
if (ret < 0)
goto fail;
if (!h->edge_emu_buffer) {
h->edge_emu_buffer = av_mallocz(pic->f.linesize[0] * 17);
if (!h->edge_emu_buffer)
return AVERROR(ENOMEM);
}
h->linesize = pic->f.linesize[0];
h->uvlinesize = pic->f.linesize[1];
return 0;
fail:
free_picture(avctx, pic);
return ret;
}
static int svq3_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
SVQ3Context *s = avctx->priv_data;
H264Context *h = &s->h;
int buf_size = avpkt->size;
int ret, m, i;
/* special case for last picture */
if (buf_size == 0) {
if (s->next_pic->f.data[0] && !h->low_delay && !s->last_frame_output) {
ret = av_frame_ref(data, &s->next_pic->f);
if (ret < 0)
return ret;
s->last_frame_output = 1;
*got_frame = 1;
}
return 0;
}
init_get_bits(&h->gb, buf, 8 * buf_size);
h->mb_x = h->mb_y = h->mb_xy = 0;
if (svq3_decode_slice_header(avctx))
return -1;
h->pict_type = h->slice_type;
if (h->pict_type != AV_PICTURE_TYPE_B)
FFSWAP(Picture*, s->next_pic, s->last_pic);
av_frame_unref(&s->cur_pic->f);
/* for skipping the frame */
s->cur_pic->f.pict_type = h->pict_type;
s->cur_pic->f.key_frame = (h->pict_type == AV_PICTURE_TYPE_I);
ret = get_buffer(avctx, s->cur_pic);
if (ret < 0)
return ret;
h->cur_pic_ptr = s->cur_pic;
av_frame_unref(&h->cur_pic.f);
h->cur_pic = *s->cur_pic;
ret = av_frame_ref(&h->cur_pic.f, &s->cur_pic->f);
if (ret < 0)
return ret;
for (i = 0; i < 16; i++) {
h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 4 * h->linesize * ((scan8[i] - scan8[0]) >> 3);
h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 8 * h->linesize * ((scan8[i] - scan8[0]) >> 3);
}
for (i = 0; i < 16; i++) {
h->block_offset[16 + i] =
h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 4 * h->uvlinesize * ((scan8[i] - scan8[0]) >> 3);
h->block_offset[48 + 16 + i] =
h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7)) + 8 * h->uvlinesize * ((scan8[i] - scan8[0]) >> 3);
}
if (h->pict_type != AV_PICTURE_TYPE_I) {
if (!s->last_pic->f.data[0]) {
av_log(avctx, AV_LOG_ERROR, "Missing reference frame.\n");
ret = get_buffer(avctx, s->last_pic);
if (ret < 0)
return ret;
memset(s->last_pic->f.data[0], 0, avctx->height * s->last_pic->f.linesize[0]);
memset(s->last_pic->f.data[1], 0x80, (avctx->height / 2) *
s->last_pic->f.linesize[1]);
memset(s->last_pic->f.data[2], 0x80, (avctx->height / 2) *
s->last_pic->f.linesize[2]);
}
if (h->pict_type == AV_PICTURE_TYPE_B && !s->next_pic->f.data[0]) {
av_log(avctx, AV_LOG_ERROR, "Missing reference frame.\n");
ret = get_buffer(avctx, s->next_pic);
if (ret < 0)
return ret;
memset(s->next_pic->f.data[0], 0, avctx->height * s->next_pic->f.linesize[0]);
memset(s->next_pic->f.data[1], 0x80, (avctx->height / 2) *
s->next_pic->f.linesize[1]);
memset(s->next_pic->f.data[2], 0x80, (avctx->height / 2) *
s->next_pic->f.linesize[2]);
}
}
if (avctx->debug & FF_DEBUG_PICT_INFO)
av_log(h->avctx, AV_LOG_DEBUG,
"%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
av_get_picture_type_char(h->pict_type),
s->halfpel_flag, s->thirdpel_flag,
s->adaptive_quant, h->qscale, h->slice_num);
if (avctx->skip_frame >= AVDISCARD_NONREF && h->pict_type == AV_PICTURE_TYPE_B ||
avctx->skip_frame >= AVDISCARD_NONKEY && h->pict_type != AV_PICTURE_TYPE_I ||
avctx->skip_frame >= AVDISCARD_ALL)
return 0;
if (s->next_p_frame_damaged) {
if (h->pict_type == AV_PICTURE_TYPE_B)
return 0;
else
s->next_p_frame_damaged = 0;
}
if (h->pict_type == AV_PICTURE_TYPE_B) {
h->frame_num_offset = h->slice_num - h->prev_frame_num;
if (h->frame_num_offset < 0)
h->frame_num_offset += 256;
if (h->frame_num_offset == 0 ||
h->frame_num_offset >= h->prev_frame_num_offset) {
av_log(h->avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
return -1;
}
} else {
h->prev_frame_num = h->frame_num;
h->frame_num = h->slice_num;
h->prev_frame_num_offset = h->frame_num - h->prev_frame_num;
if (h->prev_frame_num_offset < 0)
h->prev_frame_num_offset += 256;
}
for (m = 0; m < 2; m++) {
int i;
for (i = 0; i < 4; i++) {
int j;
for (j = -1; j < 4; j++)
h->ref_cache[m][scan8[0] + 8 * i + j] = 1;
if (i < 3)
h->ref_cache[m][scan8[0] + 8 * i + j] = PART_NOT_AVAILABLE;
}
}
for (h->mb_y = 0; h->mb_y < h->mb_height; h->mb_y++) {
for (h->mb_x = 0; h->mb_x < h->mb_width; h->mb_x++) {
unsigned mb_type;
h->mb_xy = h->mb_x + h->mb_y * h->mb_stride;
if ((get_bits_count(&h->gb) + 7) >= h->gb.size_in_bits &&
((get_bits_count(&h->gb) & 7) == 0 ||
show_bits(&h->gb, -get_bits_count(&h->gb) & 7) == 0)) {
skip_bits(&h->gb, s->next_slice_index - get_bits_count(&h->gb));
h->gb.size_in_bits = 8 * buf_size;
if (svq3_decode_slice_header(avctx))
return -1;
/* TODO: support s->mb_skip_run */
}
mb_type = svq3_get_ue_golomb(&h->gb);
if (h->pict_type == AV_PICTURE_TYPE_I)
mb_type += 8;
else if (h->pict_type == AV_PICTURE_TYPE_B && mb_type >= 4)
mb_type += 4;
if (mb_type > 33 || svq3_decode_mb(s, mb_type)) {
av_log(h->avctx, AV_LOG_ERROR,
"error while decoding MB %d %d\n", h->mb_x, h->mb_y);
return -1;
}
if (mb_type != 0)
ff_h264_hl_decode_mb(h);
if (h->pict_type != AV_PICTURE_TYPE_B && !h->low_delay)
h->cur_pic.mb_type[h->mb_x + h->mb_y * h->mb_stride] =
(h->pict_type == AV_PICTURE_TYPE_P && mb_type < 8) ? (mb_type - 1) : -1;
}
ff_draw_horiz_band(avctx, NULL, s->cur_pic, s->last_pic->f.data[0] ? s->last_pic : NULL,
16 * h->mb_y, 16, h->picture_structure, 0, 0,
h->low_delay, h->mb_height * 16, h->mb_width * 16);
}
if (h->pict_type == AV_PICTURE_TYPE_B || h->low_delay)
ret = av_frame_ref(data, &s->cur_pic->f);
else if (s->last_pic->f.data[0])
ret = av_frame_ref(data, &s->last_pic->f);
if (ret < 0)
return ret;
/* Do not output the last pic after seeking. */
if (s->last_pic->f.data[0] || h->low_delay)
*got_frame = 1;
if (h->pict_type != AV_PICTURE_TYPE_B) {
FFSWAP(Picture*, s->cur_pic, s->next_pic);
} else {
av_frame_unref(&s->cur_pic->f);
}
return buf_size;
}
static av_cold int svq3_decode_end(AVCodecContext *avctx)
{
SVQ3Context *s = avctx->priv_data;
H264Context *h = &s->h;
free_picture(avctx, s->cur_pic);
free_picture(avctx, s->next_pic);
free_picture(avctx, s->last_pic);
av_freep(&s->cur_pic);
av_freep(&s->next_pic);
av_freep(&s->last_pic);
av_frame_unref(&h->cur_pic.f);
ff_h264_free_context(h);
return 0;
}
AVCodec ff_svq3_decoder = {
.name = "svq3",
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_SVQ3,
.priv_data_size = sizeof(SVQ3Context),
.init = svq3_decode_init,
.close = svq3_decode_end,
.decode = svq3_decode_frame,
.capabilities = CODEC_CAP_DRAW_HORIZ_BAND |
CODEC_CAP_DR1 |
CODEC_CAP_DELAY,
.long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"),
.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_NONE},
};