mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-08 13:22:53 +02:00
fc36d852ee
When both M/S coding and PNS are enabled, scalefactors and coding books would be mistakenly clobbered when setting the M/S flag on PNS'd bands. The flag needs to be set to signal the generation of correlated noise, but the scalefactors, coefficients and the coding books need to be kept intact.
999 lines
40 KiB
C
999 lines
40 KiB
C
/*
|
|
* AAC coefficients encoder
|
|
* Copyright (C) 2008-2009 Konstantin Shishkov
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* AAC coefficients encoder
|
|
*/
|
|
|
|
/***********************************
|
|
* TODOs:
|
|
* speedup quantizer selection
|
|
* add sane pulse detection
|
|
***********************************/
|
|
|
|
#include "libavutil/libm.h" // brought forward to work around cygwin header breakage
|
|
|
|
#include <float.h>
|
|
|
|
#include "libavutil/mathematics.h"
|
|
#include "mathops.h"
|
|
#include "avcodec.h"
|
|
#include "put_bits.h"
|
|
#include "aac.h"
|
|
#include "aacenc.h"
|
|
#include "aactab.h"
|
|
#include "aacenctab.h"
|
|
#include "aacenc_utils.h"
|
|
#include "aacenc_quantization.h"
|
|
#include "aac_tablegen_decl.h"
|
|
|
|
#include "aacenc_is.h"
|
|
#include "aacenc_tns.h"
|
|
#include "aacenc_ltp.h"
|
|
#include "aacenc_pred.h"
|
|
|
|
#include "libavcodec/aaccoder_twoloop.h"
|
|
|
|
/* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
|
|
* beyond which no PNS is used (since the SFBs contain tone rather than noise) */
|
|
#define NOISE_SPREAD_THRESHOLD 0.5073f
|
|
|
|
/* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to
|
|
* replace low energy non zero bands */
|
|
#define NOISE_LAMBDA_REPLACE 1.948f
|
|
|
|
#include "libavcodec/aaccoder_trellis.h"
|
|
|
|
/**
|
|
* structure used in optimal codebook search
|
|
*/
|
|
typedef struct BandCodingPath {
|
|
int prev_idx; ///< pointer to the previous path point
|
|
float cost; ///< path cost
|
|
int run;
|
|
} BandCodingPath;
|
|
|
|
/**
|
|
* Encode band info for single window group bands.
|
|
*/
|
|
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
|
|
int win, int group_len, const float lambda)
|
|
{
|
|
BandCodingPath path[120][CB_TOT_ALL];
|
|
int w, swb, cb, start, size;
|
|
int i, j;
|
|
const int max_sfb = sce->ics.max_sfb;
|
|
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
|
|
const int run_esc = (1 << run_bits) - 1;
|
|
int idx, ppos, count;
|
|
int stackrun[120], stackcb[120], stack_len;
|
|
float next_minrd = INFINITY;
|
|
int next_mincb = 0;
|
|
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
start = win*128;
|
|
for (cb = 0; cb < CB_TOT_ALL; cb++) {
|
|
path[0][cb].cost = 0.0f;
|
|
path[0][cb].prev_idx = -1;
|
|
path[0][cb].run = 0;
|
|
}
|
|
for (swb = 0; swb < max_sfb; swb++) {
|
|
size = sce->ics.swb_sizes[swb];
|
|
if (sce->zeroes[win*16 + swb]) {
|
|
for (cb = 0; cb < CB_TOT_ALL; cb++) {
|
|
path[swb+1][cb].prev_idx = cb;
|
|
path[swb+1][cb].cost = path[swb][cb].cost;
|
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
|
}
|
|
} else {
|
|
float minrd = next_minrd;
|
|
int mincb = next_mincb;
|
|
next_minrd = INFINITY;
|
|
next_mincb = 0;
|
|
for (cb = 0; cb < CB_TOT_ALL; cb++) {
|
|
float cost_stay_here, cost_get_here;
|
|
float rd = 0.0f;
|
|
if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] ||
|
|
cb < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) {
|
|
path[swb+1][cb].prev_idx = -1;
|
|
path[swb+1][cb].cost = INFINITY;
|
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
|
continue;
|
|
}
|
|
for (w = 0; w < group_len; w++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
|
|
rd += quantize_band_cost(s, &sce->coeffs[start + w*128],
|
|
&s->scoefs[start + w*128], size,
|
|
sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb],
|
|
lambda / band->threshold, INFINITY, NULL, NULL, 0);
|
|
}
|
|
cost_stay_here = path[swb][cb].cost + rd;
|
|
cost_get_here = minrd + rd + run_bits + 4;
|
|
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
|
|
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
|
|
cost_stay_here += run_bits;
|
|
if (cost_get_here < cost_stay_here) {
|
|
path[swb+1][cb].prev_idx = mincb;
|
|
path[swb+1][cb].cost = cost_get_here;
|
|
path[swb+1][cb].run = 1;
|
|
} else {
|
|
path[swb+1][cb].prev_idx = cb;
|
|
path[swb+1][cb].cost = cost_stay_here;
|
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
|
}
|
|
if (path[swb+1][cb].cost < next_minrd) {
|
|
next_minrd = path[swb+1][cb].cost;
|
|
next_mincb = cb;
|
|
}
|
|
}
|
|
}
|
|
start += sce->ics.swb_sizes[swb];
|
|
}
|
|
|
|
//convert resulting path from backward-linked list
|
|
stack_len = 0;
|
|
idx = 0;
|
|
for (cb = 1; cb < CB_TOT_ALL; cb++)
|
|
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
|
|
idx = cb;
|
|
ppos = max_sfb;
|
|
while (ppos > 0) {
|
|
av_assert1(idx >= 0);
|
|
cb = idx;
|
|
stackrun[stack_len] = path[ppos][cb].run;
|
|
stackcb [stack_len] = cb;
|
|
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
|
|
ppos -= path[ppos][cb].run;
|
|
stack_len++;
|
|
}
|
|
//perform actual band info encoding
|
|
start = 0;
|
|
for (i = stack_len - 1; i >= 0; i--) {
|
|
cb = aac_cb_out_map[stackcb[i]];
|
|
put_bits(&s->pb, 4, cb);
|
|
count = stackrun[i];
|
|
memset(sce->zeroes + win*16 + start, !cb, count);
|
|
//XXX: memset when band_type is also uint8_t
|
|
for (j = 0; j < count; j++) {
|
|
sce->band_type[win*16 + start] = cb;
|
|
start++;
|
|
}
|
|
while (count >= run_esc) {
|
|
put_bits(&s->pb, run_bits, run_esc);
|
|
count -= run_esc;
|
|
}
|
|
put_bits(&s->pb, run_bits, count);
|
|
}
|
|
}
|
|
|
|
|
|
typedef struct TrellisPath {
|
|
float cost;
|
|
int prev;
|
|
} TrellisPath;
|
|
|
|
#define TRELLIS_STAGES 121
|
|
#define TRELLIS_STATES (SCALE_MAX_DIFF+1)
|
|
|
|
static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
|
|
{
|
|
int w, g, start = 0;
|
|
int minscaler_n = sce->sf_idx[0], minscaler_i = sce->sf_idx[0];
|
|
int bands = 0;
|
|
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = 0;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
|
|
sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
|
|
minscaler_i = FFMIN(minscaler_i, sce->sf_idx[w*16+g]);
|
|
bands++;
|
|
} else if (sce->band_type[w*16+g] == NOISE_BT) {
|
|
sce->sf_idx[w*16+g] = av_clip(3+ceilf(log2f(sce->pns_ener[w*16+g])*2), -100, 155);
|
|
minscaler_n = FFMIN(minscaler_n, sce->sf_idx[w*16+g]);
|
|
bands++;
|
|
}
|
|
start += sce->ics.swb_sizes[g];
|
|
}
|
|
}
|
|
|
|
if (!bands)
|
|
return;
|
|
|
|
/* Clip the scalefactor indices */
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
|
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_i, minscaler_i + SCALE_MAX_DIFF);
|
|
} else if (sce->band_type[w*16+g] == NOISE_BT) {
|
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_n, minscaler_n + SCALE_MAX_DIFF);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int q, w, w2, g, start = 0;
|
|
int i, j;
|
|
int idx;
|
|
TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
|
|
int bandaddr[TRELLIS_STAGES];
|
|
int minq;
|
|
float mincost;
|
|
float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
|
|
int q0, q1, qcnt = 0;
|
|
|
|
for (i = 0; i < 1024; i++) {
|
|
float t = fabsf(sce->coeffs[i]);
|
|
if (t > 0.0f) {
|
|
q0f = FFMIN(q0f, t);
|
|
q1f = FFMAX(q1f, t);
|
|
qnrgf += t*t;
|
|
qcnt++;
|
|
}
|
|
}
|
|
|
|
if (!qcnt) {
|
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
|
|
memset(sce->zeroes, 1, sizeof(sce->zeroes));
|
|
return;
|
|
}
|
|
|
|
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
|
|
q0 = coef2minsf(q0f);
|
|
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
|
|
q1 = coef2maxsf(q1f);
|
|
if (q1 - q0 > 60) {
|
|
int q0low = q0;
|
|
int q1high = q1;
|
|
//minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
|
|
int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
|
|
q1 = qnrg + 30;
|
|
q0 = qnrg - 30;
|
|
if (q0 < q0low) {
|
|
q1 += q0low - q0;
|
|
q0 = q0low;
|
|
} else if (q1 > q1high) {
|
|
q0 -= q1 - q1high;
|
|
q1 = q1high;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < TRELLIS_STATES; i++) {
|
|
paths[0][i].cost = 0.0f;
|
|
paths[0][i].prev = -1;
|
|
}
|
|
for (j = 1; j < TRELLIS_STAGES; j++) {
|
|
for (i = 0; i < TRELLIS_STATES; i++) {
|
|
paths[j][i].cost = INFINITY;
|
|
paths[j][i].prev = -2;
|
|
}
|
|
}
|
|
idx = 1;
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *coefs = &sce->coeffs[start];
|
|
float qmin, qmax;
|
|
int nz = 0;
|
|
|
|
bandaddr[idx] = w * 16 + g;
|
|
qmin = INT_MAX;
|
|
qmax = 0.0f;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
if (band->energy <= band->threshold || band->threshold == 0.0f) {
|
|
sce->zeroes[(w+w2)*16+g] = 1;
|
|
continue;
|
|
}
|
|
sce->zeroes[(w+w2)*16+g] = 0;
|
|
nz = 1;
|
|
for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
|
|
float t = fabsf(coefs[w2*128+i]);
|
|
if (t > 0.0f)
|
|
qmin = FFMIN(qmin, t);
|
|
qmax = FFMAX(qmax, t);
|
|
}
|
|
}
|
|
if (nz) {
|
|
int minscale, maxscale;
|
|
float minrd = INFINITY;
|
|
float maxval;
|
|
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
|
|
minscale = coef2minsf(qmin);
|
|
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
|
|
maxscale = coef2maxsf(qmax);
|
|
minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
|
|
maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
|
|
maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
|
|
for (q = minscale; q < maxscale; q++) {
|
|
float dist = 0;
|
|
int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
|
|
q + q0, cb, lambda / band->threshold, INFINITY, NULL, NULL, 0);
|
|
}
|
|
minrd = FFMIN(minrd, dist);
|
|
|
|
for (i = 0; i < q1 - q0; i++) {
|
|
float cost;
|
|
cost = paths[idx - 1][i].cost + dist
|
|
+ ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
|
|
if (cost < paths[idx][q].cost) {
|
|
paths[idx][q].cost = cost;
|
|
paths[idx][q].prev = i;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (q = 0; q < q1 - q0; q++) {
|
|
paths[idx][q].cost = paths[idx - 1][q].cost + 1;
|
|
paths[idx][q].prev = q;
|
|
}
|
|
}
|
|
sce->zeroes[w*16+g] = !nz;
|
|
start += sce->ics.swb_sizes[g];
|
|
idx++;
|
|
}
|
|
}
|
|
idx--;
|
|
mincost = paths[idx][0].cost;
|
|
minq = 0;
|
|
for (i = 1; i < TRELLIS_STATES; i++) {
|
|
if (paths[idx][i].cost < mincost) {
|
|
mincost = paths[idx][i].cost;
|
|
minq = i;
|
|
}
|
|
}
|
|
while (idx) {
|
|
sce->sf_idx[bandaddr[idx]] = minq + q0;
|
|
minq = paths[idx][minq].prev;
|
|
idx--;
|
|
}
|
|
//set the same quantizers inside window groups
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
|
|
for (g = 0; g < sce->ics.num_swb; g++)
|
|
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
|
|
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
|
|
}
|
|
|
|
|
|
static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int start = 0, i, w, w2, g;
|
|
float uplim[128], maxq[128];
|
|
int minq, maxsf;
|
|
float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
|
|
int last = 0, lastband = 0, curband = 0;
|
|
float avg_energy = 0.0;
|
|
if (sce->ics.num_windows == 1) {
|
|
start = 0;
|
|
for (i = 0; i < 1024; i++) {
|
|
if (i - start >= sce->ics.swb_sizes[curband]) {
|
|
start += sce->ics.swb_sizes[curband];
|
|
curband++;
|
|
}
|
|
if (sce->coeffs[i]) {
|
|
avg_energy += sce->coeffs[i] * sce->coeffs[i];
|
|
last = i;
|
|
lastband = curband;
|
|
}
|
|
}
|
|
} else {
|
|
for (w = 0; w < 8; w++) {
|
|
const float *coeffs = &sce->coeffs[w*128];
|
|
curband = start = 0;
|
|
for (i = 0; i < 128; i++) {
|
|
if (i - start >= sce->ics.swb_sizes[curband]) {
|
|
start += sce->ics.swb_sizes[curband];
|
|
curband++;
|
|
}
|
|
if (coeffs[i]) {
|
|
avg_energy += coeffs[i] * coeffs[i];
|
|
last = FFMAX(last, i);
|
|
lastband = FFMAX(lastband, curband);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
last++;
|
|
avg_energy /= last;
|
|
if (avg_energy == 0.0f) {
|
|
for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
|
|
sce->sf_idx[i] = SCALE_ONE_POS;
|
|
return;
|
|
}
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
float *coefs = &sce->coeffs[start];
|
|
const int size = sce->ics.swb_sizes[g];
|
|
int start2 = start, end2 = start + size, peakpos = start;
|
|
float maxval = -1, thr = 0.0f, t;
|
|
maxq[w*16+g] = 0.0f;
|
|
if (g > lastband) {
|
|
maxq[w*16+g] = 0.0f;
|
|
start += size;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
|
|
memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
|
|
continue;
|
|
}
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
for (i = 0; i < size; i++) {
|
|
float t = coefs[w2*128+i]*coefs[w2*128+i];
|
|
maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
|
|
thr += t;
|
|
if (sce->ics.num_windows == 1 && maxval < t) {
|
|
maxval = t;
|
|
peakpos = start+i;
|
|
}
|
|
}
|
|
}
|
|
if (sce->ics.num_windows == 1) {
|
|
start2 = FFMAX(peakpos - 2, start2);
|
|
end2 = FFMIN(peakpos + 3, end2);
|
|
} else {
|
|
start2 -= start;
|
|
end2 -= start;
|
|
}
|
|
start += size;
|
|
thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
|
|
t = 1.0 - (1.0 * start2 / last);
|
|
uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
|
|
}
|
|
}
|
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *coefs = &sce->coeffs[start];
|
|
const float *scaled = &s->scoefs[start];
|
|
const int size = sce->ics.swb_sizes[g];
|
|
int scf, prev_scf, step;
|
|
int min_scf = -1, max_scf = 256;
|
|
float curdiff;
|
|
if (maxq[w*16+g] < 21.544) {
|
|
sce->zeroes[w*16+g] = 1;
|
|
start += size;
|
|
continue;
|
|
}
|
|
sce->zeroes[w*16+g] = 0;
|
|
scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
|
|
for (;;) {
|
|
float dist = 0.0f;
|
|
int quant_max;
|
|
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
int b;
|
|
dist += quantize_band_cost(s, coefs + w2*128,
|
|
scaled + w2*128,
|
|
sce->ics.swb_sizes[g],
|
|
scf,
|
|
ESC_BT,
|
|
lambda,
|
|
INFINITY,
|
|
&b, NULL,
|
|
0);
|
|
dist -= b;
|
|
}
|
|
dist *= 1.0f / 512.0f / lambda;
|
|
quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512], ROUND_STANDARD);
|
|
if (quant_max >= 8191) { // too much, return to the previous quantizer
|
|
sce->sf_idx[w*16+g] = prev_scf;
|
|
break;
|
|
}
|
|
prev_scf = scf;
|
|
curdiff = fabsf(dist - uplim[w*16+g]);
|
|
if (curdiff <= 1.0f)
|
|
step = 0;
|
|
else
|
|
step = log2f(curdiff);
|
|
if (dist > uplim[w*16+g])
|
|
step = -step;
|
|
scf += step;
|
|
scf = av_clip_uint8(scf);
|
|
step = scf - prev_scf;
|
|
if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
|
|
sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
|
|
break;
|
|
}
|
|
if (step > 0)
|
|
min_scf = prev_scf;
|
|
else
|
|
max_scf = prev_scf;
|
|
}
|
|
start += size;
|
|
}
|
|
}
|
|
minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
|
|
for (i = 1; i < 128; i++) {
|
|
if (!sce->sf_idx[i])
|
|
sce->sf_idx[i] = sce->sf_idx[i-1];
|
|
else
|
|
minq = FFMIN(minq, sce->sf_idx[i]);
|
|
}
|
|
if (minq == INT_MAX)
|
|
minq = 0;
|
|
minq = FFMIN(minq, SCALE_MAX_POS);
|
|
maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
|
|
for (i = 126; i >= 0; i--) {
|
|
if (!sce->sf_idx[i])
|
|
sce->sf_idx[i] = sce->sf_idx[i+1];
|
|
sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
|
|
}
|
|
}
|
|
|
|
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int i, w, w2, g;
|
|
int minq = 255;
|
|
|
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
if (band->energy <= band->threshold) {
|
|
sce->sf_idx[(w+w2)*16+g] = 218;
|
|
sce->zeroes[(w+w2)*16+g] = 1;
|
|
} else {
|
|
sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
|
|
sce->zeroes[(w+w2)*16+g] = 0;
|
|
}
|
|
minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < 128; i++) {
|
|
sce->sf_idx[i] = 140;
|
|
//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
|
|
}
|
|
//set the same quantizers inside window groups
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
|
|
for (g = 0; g < sce->ics.num_swb; g++)
|
|
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
|
|
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
|
|
}
|
|
|
|
static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
|
|
{
|
|
FFPsyBand *band;
|
|
int w, g, w2, i;
|
|
int wlen = 1024 / sce->ics.num_windows;
|
|
int bandwidth, cutoff;
|
|
float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128];
|
|
float *NOR34 = &s->scoefs[3*128];
|
|
const float lambda = s->lambda;
|
|
const float freq_mult = avctx->sample_rate*0.5f/wlen;
|
|
const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
|
|
const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
|
|
const float dist_bias = av_clipf(4.f * 120 / lambda, 0.25f, 4.0f);
|
|
const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
|
|
|
|
int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
|
|
/ ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
|
|
* (lambda / 120.f);
|
|
|
|
/** Keep this in sync with twoloop's cutoff selection */
|
|
float rate_bandwidth_multiplier = 1.5f;
|
|
int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE)
|
|
? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
|
|
: (avctx->bit_rate / avctx->channels);
|
|
|
|
frame_bit_rate *= 1.15f;
|
|
|
|
if (avctx->cutoff > 0) {
|
|
bandwidth = avctx->cutoff;
|
|
} else {
|
|
bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
|
|
}
|
|
|
|
cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
|
|
|
|
memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
int wstart = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
int noise_sfi;
|
|
float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
|
|
float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
|
|
float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
|
|
float min_energy = -1.0f, max_energy = 0.0f;
|
|
const int start = wstart+sce->ics.swb_offset[g];
|
|
const float freq = (start-wstart)*freq_mult;
|
|
const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
|
|
if (freq < NOISE_LOW_LIMIT || (start-wstart) >= cutoff)
|
|
continue;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
sfb_energy += band->energy;
|
|
spread = FFMIN(spread, band->spread);
|
|
threshold += band->threshold;
|
|
if (!w2) {
|
|
min_energy = max_energy = band->energy;
|
|
} else {
|
|
min_energy = FFMIN(min_energy, band->energy);
|
|
max_energy = FFMAX(max_energy, band->energy);
|
|
}
|
|
}
|
|
|
|
/* Ramps down at ~8000Hz and loosens the dist threshold */
|
|
dist_thresh = av_clipf(2.5f*NOISE_LOW_LIMIT/freq, 0.5f, 2.5f) * dist_bias;
|
|
|
|
/* PNS is acceptable when all of these are true:
|
|
* 1. high spread energy (noise-like band)
|
|
* 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
|
|
* 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
|
|
*
|
|
* At this stage, point 2 is relaxed for zeroed bands near the noise threshold (hole avoidance is more important)
|
|
*/
|
|
if (((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.5f/freq_boost)) || spread < spread_threshold ||
|
|
(!sce->zeroes[w*16+g] && sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) ||
|
|
min_energy < pns_transient_energy_r * max_energy ) {
|
|
sce->pns_ener[w*16+g] = sfb_energy;
|
|
continue;
|
|
}
|
|
|
|
pns_tgt_energy = sfb_energy*FFMIN(1.0f, spread*spread);
|
|
noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */
|
|
noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO]; /* Dequantize */
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
float band_energy, scale, pns_senergy;
|
|
const int start_c = (w+w2)*128+sce->ics.swb_offset[g];
|
|
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
for (i = 0; i < sce->ics.swb_sizes[g]; i++)
|
|
PNS[i] = s->random_state = lcg_random(s->random_state);
|
|
band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
|
|
scale = noise_amp/sqrtf(band_energy);
|
|
s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]);
|
|
pns_senergy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
|
|
pns_energy += pns_senergy;
|
|
abs_pow34_v(NOR34, &sce->coeffs[start_c], sce->ics.swb_sizes[g]);
|
|
abs_pow34_v(PNS34, PNS, sce->ics.swb_sizes[g]);
|
|
dist1 += quantize_band_cost(s, &sce->coeffs[start_c],
|
|
NOR34,
|
|
sce->ics.swb_sizes[g],
|
|
sce->sf_idx[(w+w2)*16+g],
|
|
sce->band_alt[(w+w2)*16+g],
|
|
lambda/band->threshold, INFINITY, NULL, NULL, 0);
|
|
/* Estimate rd on average as 5 bits for SF, 4 for the CB, plus spread energy * lambda/thr */
|
|
dist2 += band->energy/(band->spread*band->spread)*lambda*dist_thresh/band->threshold;
|
|
}
|
|
if (g && sce->sf_idx[(w+w2)*16+g-1] == NOISE_BT) {
|
|
dist2 += 5;
|
|
} else {
|
|
dist2 += 9;
|
|
}
|
|
energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */
|
|
sce->pns_ener[w*16+g] = energy_ratio*pns_tgt_energy;
|
|
if (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) {
|
|
sce->band_type[w*16+g] = NOISE_BT;
|
|
sce->zeroes[w*16+g] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
|
|
{
|
|
FFPsyBand *band;
|
|
int w, g, w2;
|
|
int wlen = 1024 / sce->ics.num_windows;
|
|
int bandwidth, cutoff;
|
|
const float lambda = s->lambda;
|
|
const float freq_mult = avctx->sample_rate*0.5f/wlen;
|
|
const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
|
|
const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
|
|
|
|
int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
|
|
/ ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
|
|
* (lambda / 120.f);
|
|
|
|
/** Keep this in sync with twoloop's cutoff selection */
|
|
float rate_bandwidth_multiplier = 1.5f;
|
|
int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE)
|
|
? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
|
|
: (avctx->bit_rate / avctx->channels);
|
|
|
|
frame_bit_rate *= 1.15f;
|
|
|
|
if (avctx->cutoff > 0) {
|
|
bandwidth = avctx->cutoff;
|
|
} else {
|
|
bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
|
|
}
|
|
|
|
cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
|
|
|
|
memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
|
|
float min_energy = -1.0f, max_energy = 0.0f;
|
|
const int start = sce->ics.swb_offset[g];
|
|
const float freq = start*freq_mult;
|
|
const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
|
|
if (freq < NOISE_LOW_LIMIT || start >= cutoff) {
|
|
sce->can_pns[w*16+g] = 0;
|
|
continue;
|
|
}
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
sfb_energy += band->energy;
|
|
spread = FFMIN(spread, band->spread);
|
|
threshold += band->threshold;
|
|
if (!w2) {
|
|
min_energy = max_energy = band->energy;
|
|
} else {
|
|
min_energy = FFMIN(min_energy, band->energy);
|
|
max_energy = FFMAX(max_energy, band->energy);
|
|
}
|
|
}
|
|
|
|
/* PNS is acceptable when all of these are true:
|
|
* 1. high spread energy (noise-like band)
|
|
* 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
|
|
* 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
|
|
*/
|
|
sce->pns_ener[w*16+g] = sfb_energy;
|
|
if (sfb_energy < threshold*sqrtf(1.5f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) {
|
|
sce->can_pns[w*16+g] = 0;
|
|
} else {
|
|
sce->can_pns[w*16+g] = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
|
|
{
|
|
int start = 0, i, w, w2, g, sid_sf_boost;
|
|
float M[128], S[128];
|
|
float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
|
|
const float lambda = s->lambda;
|
|
const float mslambda = FFMIN(1.0f, lambda / 120.f);
|
|
SingleChannelElement *sce0 = &cpe->ch[0];
|
|
SingleChannelElement *sce1 = &cpe->ch[1];
|
|
if (!cpe->common_window)
|
|
return;
|
|
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
|
|
int min_sf_idx_mid = SCALE_MAX_POS;
|
|
int min_sf_idx_side = SCALE_MAX_POS;
|
|
for (g = 0; g < sce0->ics.num_swb; g++) {
|
|
if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT)
|
|
min_sf_idx_mid = FFMIN(min_sf_idx_mid, sce0->sf_idx[w*16+g]);
|
|
if (!sce1->zeroes[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
|
|
min_sf_idx_side = FFMIN(min_sf_idx_side, sce1->sf_idx[w*16+g]);
|
|
}
|
|
|
|
start = 0;
|
|
for (g = 0; g < sce0->ics.num_swb; g++) {
|
|
float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f;
|
|
cpe->ms_mask[w*16+g] = 0;
|
|
if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
|
|
float Mmax = 0.0f, Smax = 0.0f;
|
|
|
|
/* Must compute mid/side SF and book for the whole window group */
|
|
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
|
|
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
|
|
M[i] = (sce0->coeffs[start+(w+w2)*128+i]
|
|
+ sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
|
|
S[i] = M[i]
|
|
- sce1->coeffs[start+(w+w2)*128+i];
|
|
}
|
|
abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
|
|
abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
|
|
for (i = 0; i < sce0->ics.swb_sizes[g]; i++ ) {
|
|
Mmax = FFMAX(Mmax, M34[i]);
|
|
Smax = FFMAX(Smax, S34[i]);
|
|
}
|
|
}
|
|
|
|
for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) {
|
|
float dist1 = 0.0f, dist2 = 0.0f;
|
|
int B0 = 0, B1 = 0;
|
|
int minidx;
|
|
int mididx, sididx;
|
|
int midcb, sidcb;
|
|
|
|
minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]);
|
|
mididx = av_clip(minidx, min_sf_idx_mid, min_sf_idx_mid + SCALE_MAX_DIFF);
|
|
sididx = av_clip(minidx - sid_sf_boost * 3, min_sf_idx_side, min_sf_idx_side + SCALE_MAX_DIFF);
|
|
midcb = find_min_book(Mmax, mididx);
|
|
sidcb = find_min_book(Smax, sididx);
|
|
|
|
if ((mididx > minidx) || (sididx > minidx)) {
|
|
/* scalefactor range violation, bad stuff, will decrease quality unacceptably */
|
|
continue;
|
|
}
|
|
|
|
/* No CB can be zero */
|
|
midcb = FFMAX(1,midcb);
|
|
sidcb = FFMAX(1,sidcb);
|
|
|
|
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
|
|
FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
|
|
float minthr = FFMIN(band0->threshold, band1->threshold);
|
|
int b1,b2,b3,b4;
|
|
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
|
|
M[i] = (sce0->coeffs[start+(w+w2)*128+i]
|
|
+ sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
|
|
S[i] = M[i]
|
|
- sce1->coeffs[start+(w+w2)*128+i];
|
|
}
|
|
|
|
abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
|
|
abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
|
|
abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
|
|
abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
|
|
dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
|
|
L34,
|
|
sce0->ics.swb_sizes[g],
|
|
sce0->sf_idx[(w+w2)*16+g],
|
|
sce0->band_type[(w+w2)*16+g],
|
|
lambda / band0->threshold, INFINITY, &b1, NULL, 0);
|
|
dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
|
|
R34,
|
|
sce1->ics.swb_sizes[g],
|
|
sce1->sf_idx[(w+w2)*16+g],
|
|
sce1->band_type[(w+w2)*16+g],
|
|
lambda / band1->threshold, INFINITY, &b2, NULL, 0);
|
|
dist2 += quantize_band_cost(s, M,
|
|
M34,
|
|
sce0->ics.swb_sizes[g],
|
|
sce0->sf_idx[(w+w2)*16+g],
|
|
sce0->band_type[(w+w2)*16+g],
|
|
lambda / minthr, INFINITY, &b3, NULL, 0);
|
|
dist2 += quantize_band_cost(s, S,
|
|
S34,
|
|
sce1->ics.swb_sizes[g],
|
|
sce1->sf_idx[(w+w2)*16+g],
|
|
sce1->band_type[(w+w2)*16+g],
|
|
mslambda / (minthr * bmax), INFINITY, &b4, NULL, 0);
|
|
B0 += b1+b2;
|
|
B1 += b3+b4;
|
|
dist1 -= B0;
|
|
dist2 -= B1;
|
|
}
|
|
cpe->ms_mask[w*16+g] = dist2 <= dist1 && B1 < B0;
|
|
if (cpe->ms_mask[w*16+g]) {
|
|
/* Setting the M/S mask is useful with I/S or PNS, but only the flag */
|
|
if (!cpe->is_mask[w*16+g] && sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT) {
|
|
sce0->sf_idx[w*16+g] = mididx;
|
|
sce1->sf_idx[w*16+g] = sididx;
|
|
sce0->band_type[w*16+g] = midcb;
|
|
sce1->band_type[w*16+g] = sidcb;
|
|
}
|
|
break;
|
|
} else if (B1 > B0) {
|
|
/* More boost won't fix this */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
start += sce0->ics.swb_sizes[g];
|
|
}
|
|
}
|
|
}
|
|
|
|
AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
|
|
[AAC_CODER_FAAC] = {
|
|
search_for_quantizers_faac,
|
|
encode_window_bands_info,
|
|
quantize_and_encode_band,
|
|
ff_aac_encode_tns_info,
|
|
ff_aac_encode_ltp_info,
|
|
ff_aac_encode_main_pred,
|
|
ff_aac_adjust_common_pred,
|
|
ff_aac_adjust_common_ltp,
|
|
ff_aac_apply_main_pred,
|
|
ff_aac_apply_tns,
|
|
ff_aac_update_ltp,
|
|
ff_aac_ltp_insert_new_frame,
|
|
set_special_band_scalefactors,
|
|
search_for_pns,
|
|
mark_pns,
|
|
ff_aac_search_for_tns,
|
|
ff_aac_search_for_ltp,
|
|
search_for_ms,
|
|
ff_aac_search_for_is,
|
|
ff_aac_search_for_pred,
|
|
},
|
|
[AAC_CODER_ANMR] = {
|
|
search_for_quantizers_anmr,
|
|
encode_window_bands_info,
|
|
quantize_and_encode_band,
|
|
ff_aac_encode_tns_info,
|
|
ff_aac_encode_ltp_info,
|
|
ff_aac_encode_main_pred,
|
|
ff_aac_adjust_common_pred,
|
|
ff_aac_adjust_common_ltp,
|
|
ff_aac_apply_main_pred,
|
|
ff_aac_apply_tns,
|
|
ff_aac_update_ltp,
|
|
ff_aac_ltp_insert_new_frame,
|
|
set_special_band_scalefactors,
|
|
search_for_pns,
|
|
mark_pns,
|
|
ff_aac_search_for_tns,
|
|
ff_aac_search_for_ltp,
|
|
search_for_ms,
|
|
ff_aac_search_for_is,
|
|
ff_aac_search_for_pred,
|
|
},
|
|
[AAC_CODER_TWOLOOP] = {
|
|
search_for_quantizers_twoloop,
|
|
codebook_trellis_rate,
|
|
quantize_and_encode_band,
|
|
ff_aac_encode_tns_info,
|
|
ff_aac_encode_ltp_info,
|
|
ff_aac_encode_main_pred,
|
|
ff_aac_adjust_common_pred,
|
|
ff_aac_adjust_common_ltp,
|
|
ff_aac_apply_main_pred,
|
|
ff_aac_apply_tns,
|
|
ff_aac_update_ltp,
|
|
ff_aac_ltp_insert_new_frame,
|
|
set_special_band_scalefactors,
|
|
search_for_pns,
|
|
mark_pns,
|
|
ff_aac_search_for_tns,
|
|
ff_aac_search_for_ltp,
|
|
search_for_ms,
|
|
ff_aac_search_for_is,
|
|
ff_aac_search_for_pred,
|
|
},
|
|
[AAC_CODER_FAST] = {
|
|
search_for_quantizers_fast,
|
|
encode_window_bands_info,
|
|
quantize_and_encode_band,
|
|
ff_aac_encode_tns_info,
|
|
ff_aac_encode_ltp_info,
|
|
ff_aac_encode_main_pred,
|
|
ff_aac_adjust_common_pred,
|
|
ff_aac_adjust_common_ltp,
|
|
ff_aac_apply_main_pred,
|
|
ff_aac_apply_tns,
|
|
ff_aac_update_ltp,
|
|
ff_aac_ltp_insert_new_frame,
|
|
set_special_band_scalefactors,
|
|
search_for_pns,
|
|
mark_pns,
|
|
ff_aac_search_for_tns,
|
|
ff_aac_search_for_ltp,
|
|
search_for_ms,
|
|
ff_aac_search_for_is,
|
|
ff_aac_search_for_pred,
|
|
},
|
|
};
|