1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavcodec/ra288.c
Vitor Sessak 5e707c5905 Remove redundant comments
Originally committed as revision 14450 to svn://svn.ffmpeg.org/ffmpeg/trunk
2008-07-28 04:25:51 +00:00

266 lines
7.4 KiB
C

/*
* RealAudio 2.0 (28.8K)
* Copyright (c) 2003 the ffmpeg project
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "avcodec.h"
#define ALT_BITSTREAM_READER_LE
#include "bitstream.h"
#include "ra288.h"
typedef struct {
float sp_lpc[36]; ///< LPC coefficients for speech data (spec: A)
float gain_lpc[10]; ///< LPC coefficients for gain (spec: GB)
int phase;
float sp_hist[111]; ///< Speech data history (spec: SB)
/** Speech part of the gain autocorrelation (spec: REXP) */
float sp_rec[37];
float gain_hist[38]; ///< Log-gain history (spec: SBLG)
/** Recursive part of the gain autocorrelation (spec: REXPLG) */
float gain_rec[11];
float sb[41];
float lhist[10];
} RA288Context;
static inline float scalar_product_float(const float * v1, const float * v2,
int size)
{
float res = 0.;
while (size--)
res += *v1++ * *v2++;
return res;
}
static void colmult(float *tgt, const float *m1, const float *m2, int n)
{
while (n--)
*tgt++ = *m1++ * *m2++;
}
static void decode(RA288Context *ractx, float gain, int cb_coef)
{
int x, y;
double sumsum;
float sum, buffer[5];
memmove(ractx->sb + 5, ractx->sb, 36 * sizeof(*ractx->sb));
for (x=4; x >= 0; x--)
ractx->sb[x] = -scalar_product_float(ractx->sb + x + 1,
ractx->sp_lpc, 36);
/* block 46 of G.728 spec */
sum = 32. - scalar_product_float(ractx->gain_lpc, ractx->lhist, 10);
/* block 47 of G.728 spec */
sum = av_clipf(sum, 0, 60);
/* block 48 of G.728 spec */
sumsum = exp(sum * 0.1151292546497) * gain; /* pow(10.0,sum/20)*f */
for (x=0; x < 5; x++)
buffer[x] = codetable[cb_coef][x] * sumsum;
sum = scalar_product_float(buffer, buffer, 5) / 5;
sum = FFMAX(sum, 1);
/* shift and store */
memmove(ractx->lhist, ractx->lhist - 1, 10 * sizeof(*ractx->lhist));
*ractx->lhist = 10 * log10(sum) - 32;
for (x=1; x < 5; x++)
for (y=x-1; y >= 0; y--)
buffer[x] -= ractx->sp_lpc[x-y-1] * buffer[y];
/* output */
for (x=0; x < 5; x++)
ractx->sb[4-x] = av_clipf(ractx->sb[4-x] + buffer[x], -4095, 4095);
}
/**
* Converts autocorrelation coefficients to LPC coefficients using the
* Levinson-Durbin algorithm. See blocks 37 and 50 of the G.728 specification.
*
* @return 0 if success, -1 if fail
*/
static int eval_lpc_coeffs(const float *in, float *tgt, int n)
{
int x, y;
double f0, f1, f2;
if (in[n] == 0)
return -1;
if ((f0 = *in) <= 0)
return -1;
in--; // To avoid a -1 subtraction in the inner loop
for (x=1; x <= n; x++) {
f1 = in[x+1];
for (y=0; y < x - 1; y++)
f1 += in[x-y]*tgt[y];
tgt[x-1] = f2 = -f1/f0;
for (y=0; y < x >> 1; y++) {
float temp = tgt[y] + tgt[x-y-2]*f2;
tgt[x-y-2] += tgt[y]*f2;
tgt[y] = temp;
}
if ((f0 += f1*f2) < 0)
return -1;
}
return 0;
}
static void prodsum(float *tgt, const float *src, int len, int n)
{
for (; n >= 0; n--)
tgt[n] = scalar_product_float(src, src - n, len);
}
/**
* Hybrid window filtering. See blocks 36 and 49 of the G.728 specification.
*
* @note This function is slightly different from that described in the spec.
* It expects in[0] to be the newest sample and in[n-1] to be the oldest
* one stored. The spec has in the more ordinary way (in[0] the oldest
* and in[n-1] the newest).
*
* @param order the order of the filter
* @param n the length of the input
* @param non_rec the number of non-recursive samples
* @param out the filter output
* @param in pointer to the input of the filter
* @param hist pointer to the input history of the filter. It is updated by
* this function.
* @param out pointer to the non-recursive part of the output
* @param out2 pointer to the recursive part of the output
* @param window pointer to the windowing function table
*/
static void do_hybrid_window(int order, int n, int non_rec, const float *in,
float *out, float *hist, float *out2,
const float *window)
{
unsigned int x;
float buffer1[37];
float buffer2[37];
float work[111];
/* update history */
memmove(hist, hist + n, (order + non_rec)*sizeof(*hist));
for (x=0; x < n; x++)
hist[order + non_rec + x] = in[n-x-1];
colmult(work, window, hist, order + n + non_rec);
prodsum(buffer1, work + order , n , order);
prodsum(buffer2, work + order + n, non_rec, order);
for (x=0; x <= order; x++) {
out2[x] = out2[x] * 0.5625 + buffer1[x];
out [x] = out2[x] + buffer2[x];
}
/* Multiply by the white noise correcting factor (WNCF) */
*out *= 257./256.;
}
/**
* Backward synthesis filter. Find the LPC coefficients from past speech data.
*/
static void backward_filter(RA288Context *ractx)
{
float temp1[37]; // RTMP in the spec
float temp2[11]; // GPTPMP in the spec
do_hybrid_window(36, 40, 35, ractx->sb, temp1, ractx->sp_hist,
ractx->sp_rec, syn_window);
if (!eval_lpc_coeffs(temp1, ractx->sp_lpc, 36))
colmult(ractx->sp_lpc, ractx->sp_lpc, syn_bw_tab, 36);
do_hybrid_window(10, 8, 20, ractx->lhist, temp2, ractx->gain_hist,
ractx->gain_rec, gain_window);
if (!eval_lpc_coeffs(temp2, ractx->gain_lpc, 10))
colmult(ractx->gain_lpc, ractx->gain_lpc, gain_bw_tab, 10);
}
static int ra288_decode_frame(AVCodecContext * avctx, void *data,
int *data_size, const uint8_t * buf,
int buf_size)
{
int16_t *out = data;
int x, y;
RA288Context *ractx = avctx->priv_data;
GetBitContext gb;
if (buf_size < avctx->block_align) {
av_log(avctx, AV_LOG_ERROR,
"Error! Input buffer is too small [%d<%d]\n",
buf_size, avctx->block_align);
return 0;
}
init_get_bits(&gb, buf, avctx->block_align * 8);
for (x=0; x < 32; x++) {
float gain = amptable[get_bits(&gb, 3)];
int cb_coef = get_bits(&gb, 6 + (x&1));
ractx->phase = (x + 4) & 7;
decode(ractx, gain, cb_coef);
for (y=0; y < 5; y++)
*(out++) = 8 * ractx->sb[4 - y];
if (ractx->phase == 7)
backward_filter(ractx);
}
*data_size = (char *)out - (char *)data;
return avctx->block_align;
}
AVCodec ra_288_decoder =
{
"real_288",
CODEC_TYPE_AUDIO,
CODEC_ID_RA_288,
sizeof(RA288Context),
NULL,
NULL,
NULL,
ra288_decode_frame,
.long_name = NULL_IF_CONFIG_SMALL("RealAudio 2.0 (28.8K)"),
};