1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavfilter/vf_bm3d.c
Andreas Rheinhardt b4f5201967 avfilter: Replace query_formats callback with union of list and callback
If one looks at the many query_formats callbacks in existence,
one will immediately recognize that there is one type of default
callback for video and a slightly different default callback for
audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);"
for video with a filter-specific pix_fmts list. For audio, it is
the same with a filter-specific sample_fmts list together with
ff_set_common_all_samplerates() and ff_set_common_all_channel_counts().

This commit allows to remove the boilerplate query_formats callbacks
by replacing said callback with a union consisting the old callback
and pointers for pixel and sample format arrays. For the not uncommon
case in which these lists only contain a single entry (besides the
sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also
added to the union to store them directly in the AVFilter,
thereby avoiding a relocation.

The state of said union will be contained in a new, dedicated AVFilter
field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t
in order to create a hole for this new field; this is no problem, as
the maximum of all the nb_inputs is four; for nb_outputs it is only
two).

The state's default value coincides with the earlier default of
query_formats being unset, namely that the filter accepts all formats
(and also sample rates and channel counts/layouts for audio)
provided that these properties agree coincide for all inputs and
outputs.

By using different union members for audio and video filters
the type-unsafety of using the same functions for audio and video
lists will furthermore be more confined to formats.c than before.

When the new fields are used, they will also avoid allocations:
Currently something nearly equivalent to ff_default_query_formats()
is called after every successful call to a query_formats callback;
yet in the common case that the newly allocated AVFilterFormats
are not used at all (namely if there are no free links) these newly
allocated AVFilterFormats are freed again without ever being used.
Filters no longer using the callback will not exhibit this any more.

Reviewed-by: Paul B Mahol <onemda@gmail.com>
Reviewed-by: Nicolas George <george@nsup.org>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-10-05 17:48:25 +02:00

1064 lines
35 KiB
C

/*
* Copyright (c) 2015-2016 mawen1250
* Copyright (c) 2018 Paul B Mahol
*
* This file is part of FFmpeg.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/**
* @todo
* - non-power of 2 DCT
* - opponent color space
* - temporal support
*/
#include <float.h>
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavcodec/avfft.h"
#include "avfilter.h"
#include "filters.h"
#include "formats.h"
#include "framesync.h"
#include "internal.h"
#include "video.h"
#define MAX_NB_THREADS 32
enum FilterModes {
BASIC,
FINAL,
NB_MODES,
};
typedef struct ThreadData {
const uint8_t *src;
int src_linesize;
const uint8_t *ref;
int ref_linesize;
int plane;
} ThreadData;
typedef struct PosCode {
int x, y;
} PosCode;
typedef struct PosPairCode {
double score;
int x, y;
} PosPairCode;
typedef struct SliceContext {
DCTContext *gdctf, *gdcti;
DCTContext *dctf, *dcti;
FFTSample *bufferh;
FFTSample *bufferv;
FFTSample *bufferz;
FFTSample *buffer;
FFTSample *rbufferh;
FFTSample *rbufferv;
FFTSample *rbufferz;
FFTSample *rbuffer;
float *num, *den;
PosPairCode match_blocks[256];
int nb_match_blocks;
PosCode *search_positions;
} SliceContext;
typedef struct BM3DContext {
const AVClass *class;
float sigma;
int block_size;
int block_step;
int group_size;
int bm_range;
int bm_step;
float th_mse;
float hard_threshold;
int mode;
int ref;
int planes;
int depth;
int max;
int nb_planes;
int planewidth[4];
int planeheight[4];
int group_bits;
int pgroup_size;
SliceContext slices[MAX_NB_THREADS];
FFFrameSync fs;
int nb_threads;
void (*get_block_row)(const uint8_t *srcp, int src_linesize,
int y, int x, int block_size, float *dst);
double (*do_block_ssd)(struct BM3DContext *s, PosCode *pos,
const uint8_t *src, int src_stride,
int r_y, int r_x);
void (*do_output)(struct BM3DContext *s, uint8_t *dst, int dst_linesize,
int plane, int nb_jobs);
void (*block_filtering)(struct BM3DContext *s,
const uint8_t *src, int src_linesize,
const uint8_t *ref, int ref_linesize,
int y, int x, int plane, int jobnr);
} BM3DContext;
#define OFFSET(x) offsetof(BM3DContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption bm3d_options[] = {
{ "sigma", "set denoising strength",
OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 99999.9, FLAGS },
{ "block", "set log2(size) of local patch",
OFFSET(block_size), AV_OPT_TYPE_INT, {.i64=4}, 4, 6, FLAGS },
{ "bstep", "set sliding step for processing blocks",
OFFSET(block_step), AV_OPT_TYPE_INT, {.i64=4}, 1, 64, FLAGS },
{ "group", "set maximal number of similar blocks",
OFFSET(group_size), AV_OPT_TYPE_INT, {.i64=1}, 1, 256, FLAGS },
{ "range", "set block matching range",
OFFSET(bm_range), AV_OPT_TYPE_INT, {.i64=9}, 1, INT32_MAX, FLAGS },
{ "mstep", "set step for block matching",
OFFSET(bm_step), AV_OPT_TYPE_INT, {.i64=1}, 1, 64, FLAGS },
{ "thmse", "set threshold of mean square error for block matching",
OFFSET(th_mse), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, INT32_MAX, FLAGS },
{ "hdthr", "set hard threshold for 3D transfer domain",
OFFSET(hard_threshold), AV_OPT_TYPE_FLOAT, {.dbl=2.7}, 0, INT32_MAX, FLAGS },
{ "estim", "set filtering estimation mode",
OFFSET(mode), AV_OPT_TYPE_INT, {.i64=BASIC}, 0, NB_MODES-1, FLAGS, "mode" },
{ "basic", "basic estimate",
0, AV_OPT_TYPE_CONST, {.i64=BASIC}, 0, 0, FLAGS, "mode" },
{ "final", "final estimate",
0, AV_OPT_TYPE_CONST, {.i64=FINAL}, 0, 0, FLAGS, "mode" },
{ "ref", "have reference stream",
OFFSET(ref), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
{ "planes", "set planes to filter",
OFFSET(planes), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(bm3d);
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10,
AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV440P10,
AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_NONE
};
return ff_set_common_formats_from_list(ctx, pix_fmts);
}
static int do_search_boundary(int pos, int plane_boundary, int search_range, int search_step)
{
int search_boundary;
search_range = search_range / search_step * search_step;
if (pos == plane_boundary) {
search_boundary = plane_boundary;
} else if (pos > plane_boundary) {
search_boundary = pos - search_range;
while (search_boundary < plane_boundary) {
search_boundary += search_step;
}
} else {
search_boundary = pos + search_range;
while (search_boundary > plane_boundary) {
search_boundary -= search_step;
}
}
return search_boundary;
}
static int search_boundary(int plane_boundary, int search_range, int search_step, int vertical, int y, int x)
{
return do_search_boundary(vertical ? y : x, plane_boundary, search_range, search_step);
}
static int cmp_scores(const void *a, const void *b)
{
const struct PosPairCode *pair1 = a;
const struct PosPairCode *pair2 = b;
return FFDIFFSIGN(pair1->score, pair2->score);
}
static double do_block_ssd(BM3DContext *s, PosCode *pos, const uint8_t *src, int src_stride, int r_y, int r_x)
{
const uint8_t *srcp = src + pos->y * src_stride + pos->x;
const uint8_t *refp = src + r_y * src_stride + r_x;
const int block_size = s->block_size;
double dist = 0.;
int x, y;
for (y = 0; y < block_size; y++) {
for (x = 0; x < block_size; x++) {
double temp = refp[x] - srcp[x];
dist += temp * temp;
}
srcp += src_stride;
refp += src_stride;
}
return dist;
}
static double do_block_ssd16(BM3DContext *s, PosCode *pos, const uint8_t *src, int src_stride, int r_y, int r_x)
{
const uint16_t *srcp = (uint16_t *)src + pos->y * src_stride / 2 + pos->x;
const uint16_t *refp = (uint16_t *)src + r_y * src_stride / 2 + r_x;
const int block_size = s->block_size;
double dist = 0.;
int x, y;
for (y = 0; y < block_size; y++) {
for (x = 0; x < block_size; x++) {
double temp = refp[x] - srcp[x];
dist += temp * temp;
}
srcp += src_stride / 2;
refp += src_stride / 2;
}
return dist;
}
static void do_block_matching_multi(BM3DContext *s, const uint8_t *src, int src_stride, int src_range,
const PosCode *search_pos, int search_size, float th_mse,
int r_y, int r_x, int plane, int jobnr)
{
SliceContext *sc = &s->slices[jobnr];
double MSE2SSE = s->group_size * s->block_size * s->block_size * src_range * src_range / (s->max * s->max);
double distMul = 1. / MSE2SSE;
double th_sse = th_mse * MSE2SSE;
int i, index = sc->nb_match_blocks;
for (i = 0; i < search_size; i++) {
PosCode pos = search_pos[i];
double dist;
dist = s->do_block_ssd(s, &pos, src, src_stride, r_y, r_x);
// Only match similar blocks but not identical blocks
if (dist <= th_sse && dist != 0) {
const double score = dist * distMul;
if (index >= s->group_size && score >= sc->match_blocks[index - 1].score) {
continue;
}
if (index >= s->group_size)
index = s->group_size - 1;
sc->match_blocks[index].score = score;
sc->match_blocks[index].y = pos.y;
sc->match_blocks[index].x = pos.x;
index++;
qsort(sc->match_blocks, index, sizeof(PosPairCode), cmp_scores);
}
}
sc->nb_match_blocks = index;
}
static void block_matching_multi(BM3DContext *s, const uint8_t *ref, int ref_linesize, int y, int x,
int exclude_cur_pos, int plane, int jobnr)
{
SliceContext *sc = &s->slices[jobnr];
const int width = s->planewidth[plane];
const int height = s->planeheight[plane];
const int block_size = s->block_size;
const int step = s->bm_step;
const int range = s->bm_range / step * step;
int l = search_boundary(0, range, step, 0, y, x);
int r = search_boundary(width - block_size, range, step, 0, y, x);
int t = search_boundary(0, range, step, 1, y, x);
int b = search_boundary(height - block_size, range, step, 1, y, x);
int j, i, index = 0;
for (j = t; j <= b; j += step) {
for (i = l; i <= r; i += step) {
PosCode pos;
if (exclude_cur_pos > 0 && j == y && i == x) {
continue;
}
pos.y = j;
pos.x = i;
sc->search_positions[index++] = pos;
}
}
if (exclude_cur_pos == 1) {
sc->match_blocks[0].score = 0;
sc->match_blocks[0].y = y;
sc->match_blocks[0].x = x;
sc->nb_match_blocks = 1;
}
do_block_matching_multi(s, ref, ref_linesize, s->bm_range,
sc->search_positions, index, s->th_mse, y, x, plane, jobnr);
}
static void block_matching(BM3DContext *s, const uint8_t *ref, int ref_linesize,
int j, int i, int plane, int jobnr)
{
SliceContext *sc = &s->slices[jobnr];
if (s->group_size == 1 || s->th_mse <= 0.f) {
sc->match_blocks[0].score = 1;
sc->match_blocks[0].x = i;
sc->match_blocks[0].y = j;
sc->nb_match_blocks = 1;
return;
}
sc->nb_match_blocks = 0;
block_matching_multi(s, ref, ref_linesize, j, i, 1, plane, jobnr);
}
static void get_block_row(const uint8_t *srcp, int src_linesize,
int y, int x, int block_size, float *dst)
{
const uint8_t *src = srcp + y * src_linesize + x;
int j;
for (j = 0; j < block_size; j++) {
dst[j] = src[j];
}
}
static void get_block_row16(const uint8_t *srcp, int src_linesize,
int y, int x, int block_size, float *dst)
{
const uint16_t *src = (uint16_t *)srcp + y * src_linesize / 2 + x;
int j;
for (j = 0; j < block_size; j++) {
dst[j] = src[j];
}
}
static void basic_block_filtering(BM3DContext *s, const uint8_t *src, int src_linesize,
const uint8_t *ref, int ref_linesize,
int y, int x, int plane, int jobnr)
{
SliceContext *sc = &s->slices[jobnr];
const int buffer_linesize = s->block_size * s->block_size;
const int nb_match_blocks = sc->nb_match_blocks;
const int block_size = s->block_size;
const int width = s->planewidth[plane];
const int pgroup_size = s->pgroup_size;
const int group_size = s->group_size;
float *buffer = sc->buffer;
float *bufferh = sc->bufferh;
float *bufferv = sc->bufferv;
float *bufferz = sc->bufferz;
float threshold[4];
float den_weight, num_weight;
int retained = 0;
int i, j, k;
for (k = 0; k < nb_match_blocks; k++) {
const int y = sc->match_blocks[k].y;
const int x = sc->match_blocks[k].x;
for (i = 0; i < block_size; i++) {
s->get_block_row(src, src_linesize, y + i, x, block_size, bufferh + block_size * i);
av_dct_calc(sc->dctf, bufferh + block_size * i);
}
for (i = 0; i < block_size; i++) {
for (j = 0; j < block_size; j++) {
bufferv[i * block_size + j] = bufferh[j * block_size + i];
}
av_dct_calc(sc->dctf, bufferv + i * block_size);
}
for (i = 0; i < block_size; i++) {
memcpy(buffer + k * buffer_linesize + i * block_size,
bufferv + i * block_size, block_size * 4);
}
}
for (i = 0; i < block_size; i++) {
for (j = 0; j < block_size; j++) {
for (k = 0; k < nb_match_blocks; k++)
bufferz[k] = buffer[buffer_linesize * k + i * block_size + j];
if (group_size > 1)
av_dct_calc(sc->gdctf, bufferz);
bufferz += pgroup_size;
}
}
threshold[0] = s->hard_threshold * s->sigma * M_SQRT2 * block_size * block_size * (1 << (s->depth - 8)) / 255.f;
threshold[1] = threshold[0] * sqrtf(2.f);
threshold[2] = threshold[0] * 2.f;
threshold[3] = threshold[0] * sqrtf(8.f);
bufferz = sc->bufferz;
for (i = 0; i < block_size; i++) {
for (j = 0; j < block_size; j++) {
for (k = 0; k < nb_match_blocks; k++) {
const float thresh = threshold[(j == 0) + (i == 0) + (k == 0)];
if (bufferz[k] > thresh || bufferz[k] < -thresh) {
retained++;
} else {
bufferz[k] = 0;
}
}
bufferz += pgroup_size;
}
}
bufferz = sc->bufferz;
buffer = sc->buffer;
for (i = 0; i < block_size; i++) {
for (j = 0; j < block_size; j++) {
if (group_size > 1)
av_dct_calc(sc->gdcti, bufferz);
for (k = 0; k < nb_match_blocks; k++) {
buffer[buffer_linesize * k + i * block_size + j] = bufferz[k];
}
bufferz += pgroup_size;
}
}
den_weight = retained < 1 ? 1.f : 1.f / retained;
num_weight = den_weight;
buffer = sc->buffer;
for (k = 0; k < nb_match_blocks; k++) {
float *num = sc->num + y * width + x;
float *den = sc->den + y * width + x;
for (i = 0; i < block_size; i++) {
memcpy(bufferv + i * block_size,
buffer + k * buffer_linesize + i * block_size,
block_size * 4);
}
for (i = 0; i < block_size; i++) {
av_dct_calc(sc->dcti, bufferv + block_size * i);
for (j = 0; j < block_size; j++) {
bufferh[j * block_size + i] = bufferv[i * block_size + j];
}
}
for (i = 0; i < block_size; i++) {
av_dct_calc(sc->dcti, bufferh + block_size * i);
for (j = 0; j < block_size; j++) {
num[j] += bufferh[i * block_size + j] * num_weight;
den[j] += den_weight;
}
num += width;
den += width;
}
}
}
static void final_block_filtering(BM3DContext *s, const uint8_t *src, int src_linesize,
const uint8_t *ref, int ref_linesize,
int y, int x, int plane, int jobnr)
{
SliceContext *sc = &s->slices[jobnr];
const int buffer_linesize = s->block_size * s->block_size;
const int nb_match_blocks = sc->nb_match_blocks;
const int block_size = s->block_size;
const int width = s->planewidth[plane];
const int pgroup_size = s->pgroup_size;
const int group_size = s->group_size;
const float sigma_sqr = s->sigma * s->sigma;
float *buffer = sc->buffer;
float *bufferh = sc->bufferh;
float *bufferv = sc->bufferv;
float *bufferz = sc->bufferz;
float *rbuffer = sc->rbuffer;
float *rbufferh = sc->rbufferh;
float *rbufferv = sc->rbufferv;
float *rbufferz = sc->rbufferz;
float den_weight, num_weight;
float l2_wiener = 0;
int i, j, k;
for (k = 0; k < nb_match_blocks; k++) {
const int y = sc->match_blocks[k].y;
const int x = sc->match_blocks[k].x;
for (i = 0; i < block_size; i++) {
s->get_block_row(src, src_linesize, y + i, x, block_size, bufferh + block_size * i);
s->get_block_row(ref, ref_linesize, y + i, x, block_size, rbufferh + block_size * i);
av_dct_calc(sc->dctf, bufferh + block_size * i);
av_dct_calc(sc->dctf, rbufferh + block_size * i);
}
for (i = 0; i < block_size; i++) {
for (j = 0; j < block_size; j++) {
bufferv[i * block_size + j] = bufferh[j * block_size + i];
rbufferv[i * block_size + j] = rbufferh[j * block_size + i];
}
av_dct_calc(sc->dctf, bufferv + i * block_size);
av_dct_calc(sc->dctf, rbufferv + i * block_size);
}
for (i = 0; i < block_size; i++) {
memcpy(buffer + k * buffer_linesize + i * block_size,
bufferv + i * block_size, block_size * 4);
memcpy(rbuffer + k * buffer_linesize + i * block_size,
rbufferv + i * block_size, block_size * 4);
}
}
for (i = 0; i < block_size; i++) {
for (j = 0; j < block_size; j++) {
for (k = 0; k < nb_match_blocks; k++) {
bufferz[k] = buffer[buffer_linesize * k + i * block_size + j];
rbufferz[k] = rbuffer[buffer_linesize * k + i * block_size + j];
}
if (group_size > 1) {
av_dct_calc(sc->gdctf, bufferz);
av_dct_calc(sc->gdctf, rbufferz);
}
bufferz += pgroup_size;
rbufferz += pgroup_size;
}
}
bufferz = sc->bufferz;
rbufferz = sc->rbufferz;
for (i = 0; i < block_size; i++) {
for (j = 0; j < block_size; j++) {
for (k = 0; k < nb_match_blocks; k++) {
const float ref_sqr = rbufferz[k] * rbufferz[k];
float wiener_coef = ref_sqr / (ref_sqr + sigma_sqr);
if (isnan(wiener_coef))
wiener_coef = 1;
bufferz[k] *= wiener_coef;
l2_wiener += wiener_coef * wiener_coef;
}
bufferz += pgroup_size;
rbufferz += pgroup_size;
}
}
bufferz = sc->bufferz;
buffer = sc->buffer;
for (i = 0; i < block_size; i++) {
for (j = 0; j < block_size; j++) {
if (group_size > 1)
av_dct_calc(sc->gdcti, bufferz);
for (k = 0; k < nb_match_blocks; k++) {
buffer[buffer_linesize * k + i * block_size + j] = bufferz[k];
}
bufferz += pgroup_size;
}
}
l2_wiener = FFMAX(l2_wiener, 1e-15f);
den_weight = 1.f / l2_wiener;
num_weight = den_weight;
for (k = 0; k < nb_match_blocks; k++) {
float *num = sc->num + y * width + x;
float *den = sc->den + y * width + x;
for (i = 0; i < block_size; i++) {
memcpy(bufferv + i * block_size,
buffer + k * buffer_linesize + i * block_size,
block_size * 4);
}
for (i = 0; i < block_size; i++) {
av_dct_calc(sc->dcti, bufferv + block_size * i);
for (j = 0; j < block_size; j++) {
bufferh[j * block_size + i] = bufferv[i * block_size + j];
}
}
for (i = 0; i < block_size; i++) {
av_dct_calc(sc->dcti, bufferh + block_size * i);
for (j = 0; j < block_size; j++) {
num[j] += bufferh[i * block_size + j] * num_weight;
den[j] += den_weight;
}
num += width;
den += width;
}
}
}
static void do_output(BM3DContext *s, uint8_t *dst, int dst_linesize,
int plane, int nb_jobs)
{
const int height = s->planeheight[plane];
const int width = s->planewidth[plane];
int i, j, k;
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
uint8_t *dstp = dst + i * dst_linesize;
float sum_den = 0.f;
float sum_num = 0.f;
for (k = 0; k < nb_jobs; k++) {
SliceContext *sc = &s->slices[k];
float num = sc->num[i * width + j];
float den = sc->den[i * width + j];
sum_num += num;
sum_den += den;
}
dstp[j] = av_clip_uint8(lrintf(sum_num / sum_den));
}
}
}
static void do_output16(BM3DContext *s, uint8_t *dst, int dst_linesize,
int plane, int nb_jobs)
{
const int height = s->planeheight[plane];
const int width = s->planewidth[plane];
const int depth = s->depth;
int i, j, k;
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
uint16_t *dstp = (uint16_t *)dst + i * dst_linesize / 2;
float sum_den = 0.f;
float sum_num = 0.f;
for (k = 0; k < nb_jobs; k++) {
SliceContext *sc = &s->slices[k];
float num = sc->num[i * width + j];
float den = sc->den[i * width + j];
sum_num += num;
sum_den += den;
}
dstp[j] = av_clip_uintp2_c(lrintf(sum_num / sum_den), depth);
}
}
}
static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
BM3DContext *s = ctx->priv;
SliceContext *sc = &s->slices[jobnr];
const int block_step = s->block_step;
ThreadData *td = arg;
const uint8_t *src = td->src;
const uint8_t *ref = td->ref;
const int src_linesize = td->src_linesize;
const int ref_linesize = td->ref_linesize;
const int plane = td->plane;
const int width = s->planewidth[plane];
const int height = s->planeheight[plane];
const int block_pos_bottom = FFMAX(0, height - s->block_size);
const int block_pos_right = FFMAX(0, width - s->block_size);
const int slice_start = (((height + block_step - 1) / block_step) * jobnr / nb_jobs) * block_step;
const int slice_end = (jobnr == nb_jobs - 1) ? block_pos_bottom + block_step :
(((height + block_step - 1) / block_step) * (jobnr + 1) / nb_jobs) * block_step;
int i, j;
memset(sc->num, 0, width * height * sizeof(FFTSample));
memset(sc->den, 0, width * height * sizeof(FFTSample));
for (j = slice_start; j < slice_end; j += block_step) {
if (j > block_pos_bottom) {
j = block_pos_bottom;
}
for (i = 0; i < block_pos_right + block_step; i += block_step) {
if (i > block_pos_right) {
i = block_pos_right;
}
block_matching(s, ref, ref_linesize, j, i, plane, jobnr);
s->block_filtering(s, src, src_linesize,
ref, ref_linesize, j, i, plane, jobnr);
}
}
return 0;
}
static int filter_frame(AVFilterContext *ctx, AVFrame **out, AVFrame *in, AVFrame *ref)
{
BM3DContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
int p;
*out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!*out)
return AVERROR(ENOMEM);
av_frame_copy_props(*out, in);
for (p = 0; p < s->nb_planes; p++) {
const int nb_jobs = FFMAX(1, FFMIN(s->nb_threads, s->planeheight[p] / s->block_size));
ThreadData td;
if (!((1 << p) & s->planes) || ctx->is_disabled) {
av_image_copy_plane((*out)->data[p], (*out)->linesize[p],
in->data[p], in->linesize[p],
s->planewidth[p], s->planeheight[p]);
continue;
}
td.src = in->data[p];
td.src_linesize = in->linesize[p];
td.ref = ref->data[p];
td.ref_linesize = ref->linesize[p];
td.plane = p;
ff_filter_execute(ctx, filter_slice, &td, NULL, nb_jobs);
s->do_output(s, (*out)->data[p], (*out)->linesize[p], p, nb_jobs);
}
return 0;
}
#define SQR(x) ((x) * (x))
static int config_input(AVFilterLink *inlink)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
AVFilterContext *ctx = inlink->dst;
BM3DContext *s = ctx->priv;
int i, group_bits;
s->nb_threads = FFMIN(ff_filter_get_nb_threads(ctx), MAX_NB_THREADS);
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
s->depth = desc->comp[0].depth;
s->max = (1 << s->depth) - 1;
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planeheight[0] = s->planeheight[3] = inlink->h;
s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->planewidth[0] = s->planewidth[3] = inlink->w;
for (group_bits = 4; 1 << group_bits < s->group_size; group_bits++);
s->group_bits = group_bits;
s->pgroup_size = 1 << group_bits;
for (i = 0; i < s->nb_threads; i++) {
SliceContext *sc = &s->slices[i];
sc->num = av_calloc(FFALIGN(s->planewidth[0], s->block_size) * FFALIGN(s->planeheight[0], s->block_size), sizeof(FFTSample));
sc->den = av_calloc(FFALIGN(s->planewidth[0], s->block_size) * FFALIGN(s->planeheight[0], s->block_size), sizeof(FFTSample));
if (!sc->num || !sc->den)
return AVERROR(ENOMEM);
sc->dctf = av_dct_init(av_log2(s->block_size), DCT_II);
sc->dcti = av_dct_init(av_log2(s->block_size), DCT_III);
if (!sc->dctf || !sc->dcti)
return AVERROR(ENOMEM);
if (s->group_bits > 1) {
sc->gdctf = av_dct_init(s->group_bits, DCT_II);
sc->gdcti = av_dct_init(s->group_bits, DCT_III);
if (!sc->gdctf || !sc->gdcti)
return AVERROR(ENOMEM);
}
sc->buffer = av_calloc(s->block_size * s->block_size * s->pgroup_size, sizeof(*sc->buffer));
sc->bufferz = av_calloc(s->block_size * s->block_size * s->pgroup_size, sizeof(*sc->bufferz));
sc->bufferh = av_calloc(s->block_size * s->block_size, sizeof(*sc->bufferh));
sc->bufferv = av_calloc(s->block_size * s->block_size, sizeof(*sc->bufferv));
if (!sc->bufferh || !sc->bufferv || !sc->buffer || !sc->bufferz)
return AVERROR(ENOMEM);
if (s->mode == FINAL) {
sc->rbuffer = av_calloc(s->block_size * s->block_size * s->pgroup_size, sizeof(*sc->rbuffer));
sc->rbufferz = av_calloc(s->block_size * s->block_size * s->pgroup_size, sizeof(*sc->rbufferz));
sc->rbufferh = av_calloc(s->block_size * s->block_size, sizeof(*sc->rbufferh));
sc->rbufferv = av_calloc(s->block_size * s->block_size, sizeof(*sc->rbufferv));
if (!sc->rbufferh || !sc->rbufferv || !sc->rbuffer || !sc->rbufferz)
return AVERROR(ENOMEM);
}
sc->search_positions = av_calloc(SQR(2 * s->bm_range / s->bm_step + 1), sizeof(*sc->search_positions));
if (!sc->search_positions)
return AVERROR(ENOMEM);
}
s->do_output = do_output;
s->do_block_ssd = do_block_ssd;
s->get_block_row = get_block_row;
if (s->depth > 8) {
s->do_output = do_output16;
s->do_block_ssd = do_block_ssd16;
s->get_block_row = get_block_row16;
}
return 0;
}
static int activate(AVFilterContext *ctx)
{
BM3DContext *s = ctx->priv;
if (!s->ref) {
AVFrame *frame = NULL;
AVFrame *out = NULL;
int ret, status;
int64_t pts;
FF_FILTER_FORWARD_STATUS_BACK(ctx->outputs[0], ctx->inputs[0]);
if ((ret = ff_inlink_consume_frame(ctx->inputs[0], &frame)) > 0) {
ret = filter_frame(ctx, &out, frame, frame);
av_frame_free(&frame);
if (ret < 0)
return ret;
ret = ff_filter_frame(ctx->outputs[0], out);
}
if (ret < 0) {
return ret;
} else if (ff_inlink_acknowledge_status(ctx->inputs[0], &status, &pts)) {
ff_outlink_set_status(ctx->outputs[0], status, pts);
return 0;
} else {
if (ff_outlink_frame_wanted(ctx->outputs[0]))
ff_inlink_request_frame(ctx->inputs[0]);
return 0;
}
} else {
return ff_framesync_activate(&s->fs);
}
}
static int process_frame(FFFrameSync *fs)
{
AVFilterContext *ctx = fs->parent;
BM3DContext *s = fs->opaque;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out = NULL, *src, *ref;
int ret;
if ((ret = ff_framesync_get_frame(&s->fs, 0, &src, 0)) < 0 ||
(ret = ff_framesync_get_frame(&s->fs, 1, &ref, 0)) < 0)
return ret;
if ((ret = filter_frame(ctx, &out, src, ref)) < 0)
return ret;
out->pts = av_rescale_q(src->pts, s->fs.time_base, outlink->time_base);
return ff_filter_frame(outlink, out);
}
static av_cold int init(AVFilterContext *ctx)
{
BM3DContext *s = ctx->priv;
AVFilterPad pad = { 0 };
int ret;
if (s->mode == BASIC) {
if (s->th_mse == 0.f)
s->th_mse = 400.f + s->sigma * 80.f;
s->block_filtering = basic_block_filtering;
} else if (s->mode == FINAL) {
if (!s->ref) {
av_log(ctx, AV_LOG_WARNING, "Reference stream is mandatory in final estimation mode.\n");
s->ref = 1;
}
if (s->th_mse == 0.f)
s->th_mse = 200.f + s->sigma * 10.f;
s->block_filtering = final_block_filtering;
} else {
return AVERROR_BUG;
}
s->block_size = 1 << s->block_size;
if (s->block_step > s->block_size) {
av_log(ctx, AV_LOG_WARNING, "bstep: %d can't be bigger than block size. Changing to %d.\n",
s->block_step, s->block_size);
s->block_step = s->block_size;
}
if (s->bm_step > s->bm_range) {
av_log(ctx, AV_LOG_WARNING, "mstep: %d can't be bigger than block matching range. Changing to %d.\n",
s->bm_step, s->bm_range);
s->bm_step = s->bm_range;
}
pad.type = AVMEDIA_TYPE_VIDEO;
pad.name = "source";
pad.config_props = config_input;
if ((ret = ff_append_inpad(ctx, &pad)) < 0)
return ret;
if (s->ref) {
pad.type = AVMEDIA_TYPE_VIDEO;
pad.name = "reference";
pad.config_props = NULL;
if ((ret = ff_append_inpad(ctx, &pad)) < 0)
return ret;
}
return 0;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
BM3DContext *s = ctx->priv;
AVFilterLink *src = ctx->inputs[0];
AVFilterLink *ref;
FFFrameSyncIn *in;
int ret;
if (s->ref) {
ref = ctx->inputs[1];
if (src->w != ref->w ||
src->h != ref->h) {
av_log(ctx, AV_LOG_ERROR, "First input link %s parameters "
"(size %dx%d) do not match the corresponding "
"second input link %s parameters (%dx%d) ",
ctx->input_pads[0].name, src->w, src->h,
ctx->input_pads[1].name, ref->w, ref->h);
return AVERROR(EINVAL);
}
}
outlink->w = src->w;
outlink->h = src->h;
outlink->time_base = src->time_base;
outlink->sample_aspect_ratio = src->sample_aspect_ratio;
outlink->frame_rate = src->frame_rate;
if (!s->ref)
return 0;
if ((ret = ff_framesync_init(&s->fs, ctx, 2)) < 0)
return ret;
in = s->fs.in;
in[0].time_base = src->time_base;
in[1].time_base = ref->time_base;
in[0].sync = 1;
in[0].before = EXT_STOP;
in[0].after = EXT_STOP;
in[1].sync = 1;
in[1].before = EXT_STOP;
in[1].after = EXT_STOP;
s->fs.opaque = s;
s->fs.on_event = process_frame;
return ff_framesync_configure(&s->fs);
}
static av_cold void uninit(AVFilterContext *ctx)
{
BM3DContext *s = ctx->priv;
int i;
if (s->ref)
ff_framesync_uninit(&s->fs);
for (i = 0; i < s->nb_threads; i++) {
SliceContext *sc = &s->slices[i];
av_freep(&sc->num);
av_freep(&sc->den);
av_dct_end(sc->gdctf);
av_dct_end(sc->gdcti);
av_dct_end(sc->dctf);
av_dct_end(sc->dcti);
av_freep(&sc->buffer);
av_freep(&sc->bufferh);
av_freep(&sc->bufferv);
av_freep(&sc->bufferz);
av_freep(&sc->rbuffer);
av_freep(&sc->rbufferh);
av_freep(&sc->rbufferv);
av_freep(&sc->rbufferz);
av_freep(&sc->search_positions);
}
}
static const AVFilterPad bm3d_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
};
const AVFilter ff_vf_bm3d = {
.name = "bm3d",
.description = NULL_IF_CONFIG_SMALL("Block-Matching 3D denoiser."),
.priv_size = sizeof(BM3DContext),
.init = init,
.uninit = uninit,
.activate = activate,
.inputs = NULL,
FILTER_OUTPUTS(bm3d_outputs),
FILTER_QUERY_FUNC(query_formats),
.priv_class = &bm3d_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
AVFILTER_FLAG_DYNAMIC_INPUTS |
AVFILTER_FLAG_SLICE_THREADS,
};