1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavfilter/vf_curves.c
Andreas Rheinhardt b4f5201967 avfilter: Replace query_formats callback with union of list and callback
If one looks at the many query_formats callbacks in existence,
one will immediately recognize that there is one type of default
callback for video and a slightly different default callback for
audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);"
for video with a filter-specific pix_fmts list. For audio, it is
the same with a filter-specific sample_fmts list together with
ff_set_common_all_samplerates() and ff_set_common_all_channel_counts().

This commit allows to remove the boilerplate query_formats callbacks
by replacing said callback with a union consisting the old callback
and pointers for pixel and sample format arrays. For the not uncommon
case in which these lists only contain a single entry (besides the
sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also
added to the union to store them directly in the AVFilter,
thereby avoiding a relocation.

The state of said union will be contained in a new, dedicated AVFilter
field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t
in order to create a hole for this new field; this is no problem, as
the maximum of all the nb_inputs is four; for nb_outputs it is only
two).

The state's default value coincides with the earlier default of
query_formats being unset, namely that the filter accepts all formats
(and also sample rates and channel counts/layouts for audio)
provided that these properties agree coincide for all inputs and
outputs.

By using different union members for audio and video filters
the type-unsafety of using the same functions for audio and video
lists will furthermore be more confined to formats.c than before.

When the new fields are used, they will also avoid allocations:
Currently something nearly equivalent to ff_default_query_formats()
is called after every successful call to a query_formats callback;
yet in the common case that the newly allocated AVFilterFormats
are not used at all (namely if there are no free links) these newly
allocated AVFilterFormats are freed again without ever being used.
Filters no longer using the callback will not exhibit this any more.

Reviewed-by: Paul B Mahol <onemda@gmail.com>
Reviewed-by: Nicolas George <george@nsup.org>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-10-05 17:48:25 +02:00

825 lines
29 KiB
C

/*
* Copyright (c) 2013 Clément Bœsch
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/opt.h"
#include "libavutil/bprint.h"
#include "libavutil/eval.h"
#include "libavutil/file.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/avassert.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "drawutils.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#define R 0
#define G 1
#define B 2
#define A 3
struct keypoint {
double x, y;
struct keypoint *next;
};
#define NB_COMP 3
enum preset {
PRESET_NONE,
PRESET_COLOR_NEGATIVE,
PRESET_CROSS_PROCESS,
PRESET_DARKER,
PRESET_INCREASE_CONTRAST,
PRESET_LIGHTER,
PRESET_LINEAR_CONTRAST,
PRESET_MEDIUM_CONTRAST,
PRESET_NEGATIVE,
PRESET_STRONG_CONTRAST,
PRESET_VINTAGE,
NB_PRESETS,
};
typedef struct CurvesContext {
const AVClass *class;
int preset;
char *comp_points_str[NB_COMP + 1];
char *comp_points_str_all;
uint16_t *graph[NB_COMP + 1];
int lut_size;
char *psfile;
uint8_t rgba_map[4];
int step;
char *plot_filename;
int saved_plot;
int is_16bit;
int depth;
int parsed_psfile;
int (*filter_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
} CurvesContext;
typedef struct ThreadData {
AVFrame *in, *out;
} ThreadData;
#define OFFSET(x) offsetof(CurvesContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption curves_options[] = {
{ "preset", "select a color curves preset", OFFSET(preset), AV_OPT_TYPE_INT, {.i64=PRESET_NONE}, PRESET_NONE, NB_PRESETS-1, FLAGS, "preset_name" },
{ "none", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_NONE}, 0, 0, FLAGS, "preset_name" },
{ "color_negative", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_COLOR_NEGATIVE}, 0, 0, FLAGS, "preset_name" },
{ "cross_process", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_CROSS_PROCESS}, 0, 0, FLAGS, "preset_name" },
{ "darker", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_DARKER}, 0, 0, FLAGS, "preset_name" },
{ "increase_contrast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_INCREASE_CONTRAST}, 0, 0, FLAGS, "preset_name" },
{ "lighter", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_LIGHTER}, 0, 0, FLAGS, "preset_name" },
{ "linear_contrast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_LINEAR_CONTRAST}, 0, 0, FLAGS, "preset_name" },
{ "medium_contrast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_MEDIUM_CONTRAST}, 0, 0, FLAGS, "preset_name" },
{ "negative", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_NEGATIVE}, 0, 0, FLAGS, "preset_name" },
{ "strong_contrast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_STRONG_CONTRAST}, 0, 0, FLAGS, "preset_name" },
{ "vintage", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_VINTAGE}, 0, 0, FLAGS, "preset_name" },
{ "master","set master points coordinates",OFFSET(comp_points_str[NB_COMP]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "m", "set master points coordinates",OFFSET(comp_points_str[NB_COMP]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "red", "set red points coordinates", OFFSET(comp_points_str[0]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "r", "set red points coordinates", OFFSET(comp_points_str[0]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "green", "set green points coordinates", OFFSET(comp_points_str[1]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "g", "set green points coordinates", OFFSET(comp_points_str[1]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "blue", "set blue points coordinates", OFFSET(comp_points_str[2]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "b", "set blue points coordinates", OFFSET(comp_points_str[2]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "all", "set points coordinates for all components", OFFSET(comp_points_str_all), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "psfile", "set Photoshop curves file name", OFFSET(psfile), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "plot", "save Gnuplot script of the curves in specified file", OFFSET(plot_filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(curves);
static const struct {
const char *r;
const char *g;
const char *b;
const char *master;
} curves_presets[] = {
[PRESET_COLOR_NEGATIVE] = {
"0.129/1 0.466/0.498 0.725/0",
"0.109/1 0.301/0.498 0.517/0",
"0.098/1 0.235/0.498 0.423/0",
},
[PRESET_CROSS_PROCESS] = {
"0/0 0.25/0.156 0.501/0.501 0.686/0.745 1/1",
"0/0 0.25/0.188 0.38/0.501 0.745/0.815 1/0.815",
"0/0 0.231/0.094 0.709/0.874 1/1",
},
[PRESET_DARKER] = { .master = "0/0 0.5/0.4 1/1" },
[PRESET_INCREASE_CONTRAST] = { .master = "0/0 0.149/0.066 0.831/0.905 0.905/0.98 1/1" },
[PRESET_LIGHTER] = { .master = "0/0 0.4/0.5 1/1" },
[PRESET_LINEAR_CONTRAST] = { .master = "0/0 0.305/0.286 0.694/0.713 1/1" },
[PRESET_MEDIUM_CONTRAST] = { .master = "0/0 0.286/0.219 0.639/0.643 1/1" },
[PRESET_NEGATIVE] = { .master = "0/1 1/0" },
[PRESET_STRONG_CONTRAST] = { .master = "0/0 0.301/0.196 0.592/0.6 0.686/0.737 1/1" },
[PRESET_VINTAGE] = {
"0/0.11 0.42/0.51 1/0.95",
"0/0 0.50/0.48 1/1",
"0/0.22 0.49/0.44 1/0.8",
}
};
static struct keypoint *make_point(double x, double y, struct keypoint *next)
{
struct keypoint *point = av_mallocz(sizeof(*point));
if (!point)
return NULL;
point->x = x;
point->y = y;
point->next = next;
return point;
}
static int parse_points_str(AVFilterContext *ctx, struct keypoint **points, const char *s,
int lut_size)
{
char *p = (char *)s; // strtod won't alter the string
struct keypoint *last = NULL;
const int scale = lut_size - 1;
/* construct a linked list based on the key points string */
while (p && *p) {
struct keypoint *point = make_point(0, 0, NULL);
if (!point)
return AVERROR(ENOMEM);
point->x = av_strtod(p, &p); if (p && *p) p++;
point->y = av_strtod(p, &p); if (p && *p) p++;
if (point->x < 0 || point->x > 1 || point->y < 0 || point->y > 1) {
av_log(ctx, AV_LOG_ERROR, "Invalid key point coordinates (%f;%f), "
"x and y must be in the [0;1] range.\n", point->x, point->y);
return AVERROR(EINVAL);
}
if (!*points)
*points = point;
if (last) {
if ((int)(last->x * scale) >= (int)(point->x * scale)) {
av_log(ctx, AV_LOG_ERROR, "Key point coordinates (%f;%f) "
"and (%f;%f) are too close from each other or not "
"strictly increasing on the x-axis\n",
last->x, last->y, point->x, point->y);
return AVERROR(EINVAL);
}
last->next = point;
}
last = point;
}
if (*points && !(*points)->next) {
av_log(ctx, AV_LOG_WARNING, "Only one point (at (%f;%f)) is defined, "
"this is unlikely to behave as you expect. You probably want"
"at least 2 points.",
(*points)->x, (*points)->y);
}
return 0;
}
static int get_nb_points(const struct keypoint *d)
{
int n = 0;
while (d) {
n++;
d = d->next;
}
return n;
}
/**
* Natural cubic spline interpolation
* Finding curves using Cubic Splines notes by Steven Rauch and John Stockie.
* @see http://people.math.sfu.ca/~stockie/teaching/macm316/notes/splines.pdf
*/
#define CLIP(v) (nbits == 8 ? av_clip_uint8(v) : av_clip_uintp2_c(v, nbits))
static inline int interpolate(void *log_ctx, uint16_t *y,
const struct keypoint *points, int nbits)
{
int i, ret = 0;
const struct keypoint *point = points;
double xprev = 0;
const int lut_size = 1<<nbits;
const int scale = lut_size - 1;
double (*matrix)[3];
double *h, *r;
const int n = get_nb_points(points); // number of splines
if (n == 0) {
for (i = 0; i < lut_size; i++)
y[i] = i;
return 0;
}
if (n == 1) {
for (i = 0; i < lut_size; i++)
y[i] = CLIP(point->y * scale);
return 0;
}
matrix = av_calloc(n, sizeof(*matrix));
h = av_malloc((n - 1) * sizeof(*h));
r = av_calloc(n, sizeof(*r));
if (!matrix || !h || !r) {
ret = AVERROR(ENOMEM);
goto end;
}
/* h(i) = x(i+1) - x(i) */
i = -1;
for (point = points; point; point = point->next) {
if (i != -1)
h[i] = point->x - xprev;
xprev = point->x;
i++;
}
/* right-side of the polynomials, will be modified to contains the solution */
point = points;
for (i = 1; i < n - 1; i++) {
const double yp = point->y;
const double yc = point->next->y;
const double yn = point->next->next->y;
r[i] = 6 * ((yn-yc)/h[i] - (yc-yp)/h[i-1]);
point = point->next;
}
#define BD 0 /* sub diagonal (below main) */
#define MD 1 /* main diagonal (center) */
#define AD 2 /* sup diagonal (above main) */
/* left side of the polynomials into a tridiagonal matrix. */
matrix[0][MD] = matrix[n - 1][MD] = 1;
for (i = 1; i < n - 1; i++) {
matrix[i][BD] = h[i-1];
matrix[i][MD] = 2 * (h[i-1] + h[i]);
matrix[i][AD] = h[i];
}
/* tridiagonal solving of the linear system */
for (i = 1; i < n; i++) {
const double den = matrix[i][MD] - matrix[i][BD] * matrix[i-1][AD];
const double k = den ? 1./den : 1.;
matrix[i][AD] *= k;
r[i] = (r[i] - matrix[i][BD] * r[i - 1]) * k;
}
for (i = n - 2; i >= 0; i--)
r[i] = r[i] - matrix[i][AD] * r[i + 1];
point = points;
/* left padding */
for (i = 0; i < (int)(point->x * scale); i++)
y[i] = CLIP(point->y * scale);
/* compute the graph with x=[x0..xN] */
i = 0;
av_assert0(point->next); // always at least 2 key points
while (point->next) {
const double yc = point->y;
const double yn = point->next->y;
const double a = yc;
const double b = (yn-yc)/h[i] - h[i]*r[i]/2. - h[i]*(r[i+1]-r[i])/6.;
const double c = r[i] / 2.;
const double d = (r[i+1] - r[i]) / (6.*h[i]);
int x;
const int x_start = point->x * scale;
const int x_end = point->next->x * scale;
av_assert0(x_start >= 0 && x_start < lut_size &&
x_end >= 0 && x_end < lut_size);
for (x = x_start; x <= x_end; x++) {
const double xx = (x - x_start) * 1./scale;
const double yy = a + b*xx + c*xx*xx + d*xx*xx*xx;
y[x] = CLIP(yy * scale);
av_log(log_ctx, AV_LOG_DEBUG, "f(%f)=%f -> y[%d]=%d\n", xx, yy, x, y[x]);
}
point = point->next;
i++;
}
/* right padding */
for (i = (int)(point->x * scale); i < lut_size; i++)
y[i] = CLIP(point->y * scale);
end:
av_free(matrix);
av_free(h);
av_free(r);
return ret;
}
#define DECLARE_INTERPOLATE_FUNC(nbits) \
static int interpolate##nbits(void *log_ctx, uint16_t *y, \
const struct keypoint *points) \
{ \
return interpolate(log_ctx, y, points, nbits); \
}
DECLARE_INTERPOLATE_FUNC(8)
DECLARE_INTERPOLATE_FUNC(9)
DECLARE_INTERPOLATE_FUNC(10)
DECLARE_INTERPOLATE_FUNC(12)
DECLARE_INTERPOLATE_FUNC(14)
DECLARE_INTERPOLATE_FUNC(16)
static int parse_psfile(AVFilterContext *ctx, const char *fname)
{
CurvesContext *curves = ctx->priv;
uint8_t *buf;
size_t size;
int i, ret, av_unused(version), nb_curves;
AVBPrint ptstr;
static const int comp_ids[] = {3, 0, 1, 2};
av_bprint_init(&ptstr, 0, AV_BPRINT_SIZE_AUTOMATIC);
ret = av_file_map(fname, &buf, &size, 0, NULL);
if (ret < 0)
return ret;
#define READ16(dst) do { \
if (size < 2) { \
ret = AVERROR_INVALIDDATA; \
goto end; \
} \
dst = AV_RB16(buf); \
buf += 2; \
size -= 2; \
} while (0)
READ16(version);
READ16(nb_curves);
for (i = 0; i < FFMIN(nb_curves, FF_ARRAY_ELEMS(comp_ids)); i++) {
int nb_points, n;
av_bprint_clear(&ptstr);
READ16(nb_points);
for (n = 0; n < nb_points; n++) {
int y, x;
READ16(y);
READ16(x);
av_bprintf(&ptstr, "%f/%f ", x / 255., y / 255.);
}
if (*ptstr.str) {
char **pts = &curves->comp_points_str[comp_ids[i]];
if (!*pts) {
*pts = av_strdup(ptstr.str);
av_log(ctx, AV_LOG_DEBUG, "curves %d (intid=%d) [%d points]: [%s]\n",
i, comp_ids[i], nb_points, *pts);
if (!*pts) {
ret = AVERROR(ENOMEM);
goto end;
}
}
}
}
end:
av_bprint_finalize(&ptstr, NULL);
av_file_unmap(buf, size);
return ret;
}
static int dump_curves(const char *fname, uint16_t *graph[NB_COMP + 1],
struct keypoint *comp_points[NB_COMP + 1],
int lut_size)
{
int i;
AVBPrint buf;
const double scale = 1. / (lut_size - 1);
static const char * const colors[] = { "red", "green", "blue", "#404040", };
FILE *f = av_fopen_utf8(fname, "w");
av_assert0(FF_ARRAY_ELEMS(colors) == NB_COMP + 1);
if (!f) {
int ret = AVERROR(errno);
av_log(NULL, AV_LOG_ERROR, "Cannot open file '%s' for writing: %s\n",
fname, av_err2str(ret));
return ret;
}
av_bprint_init(&buf, 0, AV_BPRINT_SIZE_UNLIMITED);
av_bprintf(&buf, "set xtics 0.1\n");
av_bprintf(&buf, "set ytics 0.1\n");
av_bprintf(&buf, "set size square\n");
av_bprintf(&buf, "set grid\n");
for (i = 0; i < FF_ARRAY_ELEMS(colors); i++) {
av_bprintf(&buf, "%s'-' using 1:2 with lines lc '%s' title ''",
i ? ", " : "plot ", colors[i]);
if (comp_points[i])
av_bprintf(&buf, ", '-' using 1:2 with points pointtype 3 lc '%s' title ''",
colors[i]);
}
av_bprintf(&buf, "\n");
for (i = 0; i < FF_ARRAY_ELEMS(colors); i++) {
int x;
/* plot generated values */
for (x = 0; x < lut_size; x++)
av_bprintf(&buf, "%f %f\n", x * scale, graph[i][x] * scale);
av_bprintf(&buf, "e\n");
/* plot user knots */
if (comp_points[i]) {
const struct keypoint *point = comp_points[i];
while (point) {
av_bprintf(&buf, "%f %f\n", point->x, point->y);
point = point->next;
}
av_bprintf(&buf, "e\n");
}
}
fwrite(buf.str, 1, buf.len, f);
fclose(f);
av_bprint_finalize(&buf, NULL);
return 0;
}
static av_cold int curves_init(AVFilterContext *ctx)
{
int i, ret;
CurvesContext *curves = ctx->priv;
char **pts = curves->comp_points_str;
const char *allp = curves->comp_points_str_all;
//if (!allp && curves->preset != PRESET_NONE && curves_presets[curves->preset].all)
// allp = curves_presets[curves->preset].all;
if (allp) {
for (i = 0; i < NB_COMP; i++) {
if (!pts[i])
pts[i] = av_strdup(allp);
if (!pts[i])
return AVERROR(ENOMEM);
}
}
if (curves->psfile && !curves->parsed_psfile) {
ret = parse_psfile(ctx, curves->psfile);
if (ret < 0)
return ret;
curves->parsed_psfile = 1;
}
if (curves->preset != PRESET_NONE) {
#define SET_COMP_IF_NOT_SET(n, name) do { \
if (!pts[n] && curves_presets[curves->preset].name) { \
pts[n] = av_strdup(curves_presets[curves->preset].name); \
if (!pts[n]) \
return AVERROR(ENOMEM); \
} \
} while (0)
SET_COMP_IF_NOT_SET(0, r);
SET_COMP_IF_NOT_SET(1, g);
SET_COMP_IF_NOT_SET(2, b);
SET_COMP_IF_NOT_SET(3, master);
curves->preset = PRESET_NONE;
}
return 0;
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA,
AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR,
AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR,
AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0,
AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48,
AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
AV_PIX_FMT_GBRP9,
AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRAP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRAP12,
AV_PIX_FMT_GBRP14,
AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_NONE
};
return ff_set_common_formats_from_list(ctx, pix_fmts);
}
static int filter_slice_packed(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
int x, y;
const CurvesContext *curves = ctx->priv;
const ThreadData *td = arg;
const AVFrame *in = td->in;
const AVFrame *out = td->out;
const int direct = out == in;
const int step = curves->step;
const uint8_t r = curves->rgba_map[R];
const uint8_t g = curves->rgba_map[G];
const uint8_t b = curves->rgba_map[B];
const uint8_t a = curves->rgba_map[A];
const int slice_start = (in->height * jobnr ) / nb_jobs;
const int slice_end = (in->height * (jobnr+1)) / nb_jobs;
if (curves->is_16bit) {
for (y = slice_start; y < slice_end; y++) {
uint16_t *dstp = ( uint16_t *)(out->data[0] + y * out->linesize[0]);
const uint16_t *srcp = (const uint16_t *)(in ->data[0] + y * in->linesize[0]);
for (x = 0; x < in->width * step; x += step) {
dstp[x + r] = curves->graph[R][srcp[x + r]];
dstp[x + g] = curves->graph[G][srcp[x + g]];
dstp[x + b] = curves->graph[B][srcp[x + b]];
if (!direct && step == 4)
dstp[x + a] = srcp[x + a];
}
}
} else {
uint8_t *dst = out->data[0] + slice_start * out->linesize[0];
const uint8_t *src = in->data[0] + slice_start * in->linesize[0];
for (y = slice_start; y < slice_end; y++) {
for (x = 0; x < in->width * step; x += step) {
dst[x + r] = curves->graph[R][src[x + r]];
dst[x + g] = curves->graph[G][src[x + g]];
dst[x + b] = curves->graph[B][src[x + b]];
if (!direct && step == 4)
dst[x + a] = src[x + a];
}
dst += out->linesize[0];
src += in ->linesize[0];
}
}
return 0;
}
static int filter_slice_planar(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
int x, y;
const CurvesContext *curves = ctx->priv;
const ThreadData *td = arg;
const AVFrame *in = td->in;
const AVFrame *out = td->out;
const int direct = out == in;
const int step = curves->step;
const uint8_t r = curves->rgba_map[R];
const uint8_t g = curves->rgba_map[G];
const uint8_t b = curves->rgba_map[B];
const uint8_t a = curves->rgba_map[A];
const int slice_start = (in->height * jobnr ) / nb_jobs;
const int slice_end = (in->height * (jobnr+1)) / nb_jobs;
if (curves->is_16bit) {
for (y = slice_start; y < slice_end; y++) {
uint16_t *dstrp = ( uint16_t *)(out->data[r] + y * out->linesize[r]);
uint16_t *dstgp = ( uint16_t *)(out->data[g] + y * out->linesize[g]);
uint16_t *dstbp = ( uint16_t *)(out->data[b] + y * out->linesize[b]);
uint16_t *dstap = ( uint16_t *)(out->data[a] + y * out->linesize[a]);
const uint16_t *srcrp = (const uint16_t *)(in ->data[r] + y * in->linesize[r]);
const uint16_t *srcgp = (const uint16_t *)(in ->data[g] + y * in->linesize[g]);
const uint16_t *srcbp = (const uint16_t *)(in ->data[b] + y * in->linesize[b]);
const uint16_t *srcap = (const uint16_t *)(in ->data[a] + y * in->linesize[a]);
for (x = 0; x < in->width; x++) {
dstrp[x] = curves->graph[R][srcrp[x]];
dstgp[x] = curves->graph[G][srcgp[x]];
dstbp[x] = curves->graph[B][srcbp[x]];
if (!direct && step == 4)
dstap[x] = srcap[x];
}
}
} else {
uint8_t *dstr = out->data[r] + slice_start * out->linesize[r];
uint8_t *dstg = out->data[g] + slice_start * out->linesize[g];
uint8_t *dstb = out->data[b] + slice_start * out->linesize[b];
uint8_t *dsta = out->data[a] + slice_start * out->linesize[a];
const uint8_t *srcr = in->data[r] + slice_start * in->linesize[r];
const uint8_t *srcg = in->data[g] + slice_start * in->linesize[g];
const uint8_t *srcb = in->data[b] + slice_start * in->linesize[b];
const uint8_t *srca = in->data[a] + slice_start * in->linesize[a];
for (y = slice_start; y < slice_end; y++) {
for (x = 0; x < in->width; x++) {
dstr[x] = curves->graph[R][srcr[x]];
dstg[x] = curves->graph[G][srcg[x]];
dstb[x] = curves->graph[B][srcb[x]];
if (!direct && step == 4)
dsta[x] = srca[x];
}
dstr += out->linesize[r];
dstg += out->linesize[g];
dstb += out->linesize[b];
dsta += out->linesize[a];
srcr += in ->linesize[r];
srcg += in ->linesize[g];
srcb += in ->linesize[b];
srca += in ->linesize[a];
}
}
return 0;
}
static int config_input(AVFilterLink *inlink)
{
int i, j, ret;
AVFilterContext *ctx = inlink->dst;
CurvesContext *curves = ctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
char **pts = curves->comp_points_str;
struct keypoint *comp_points[NB_COMP + 1] = {0};
ff_fill_rgba_map(curves->rgba_map, inlink->format);
curves->is_16bit = desc->comp[0].depth > 8;
curves->depth = desc->comp[0].depth;
curves->lut_size = 1 << curves->depth;
curves->step = av_get_padded_bits_per_pixel(desc) >> (3 + curves->is_16bit);
curves->filter_slice = desc->flags & AV_PIX_FMT_FLAG_PLANAR ? filter_slice_planar : filter_slice_packed;
for (i = 0; i < NB_COMP + 1; i++) {
if (!curves->graph[i])
curves->graph[i] = av_calloc(curves->lut_size, sizeof(*curves->graph[0]));
if (!curves->graph[i])
return AVERROR(ENOMEM);
ret = parse_points_str(ctx, comp_points + i, curves->comp_points_str[i], curves->lut_size);
if (ret < 0)
return ret;
switch (curves->depth) {
case 8: ret = interpolate8 (ctx, curves->graph[i], comp_points[i]); break;
case 9: ret = interpolate9 (ctx, curves->graph[i], comp_points[i]); break;
case 10: ret = interpolate10(ctx, curves->graph[i], comp_points[i]); break;
case 12: ret = interpolate12(ctx, curves->graph[i], comp_points[i]); break;
case 14: ret = interpolate14(ctx, curves->graph[i], comp_points[i]); break;
case 16: ret = interpolate16(ctx, curves->graph[i], comp_points[i]); break;
}
if (ret < 0)
return ret;
}
if (pts[NB_COMP]) {
for (i = 0; i < NB_COMP; i++)
for (j = 0; j < curves->lut_size; j++)
curves->graph[i][j] = curves->graph[NB_COMP][curves->graph[i][j]];
}
if (av_log_get_level() >= AV_LOG_VERBOSE) {
for (i = 0; i < NB_COMP; i++) {
const struct keypoint *point = comp_points[i];
av_log(ctx, AV_LOG_VERBOSE, "#%d points:", i);
while (point) {
av_log(ctx, AV_LOG_VERBOSE, " (%f;%f)", point->x, point->y);
point = point->next;
}
}
}
if (curves->plot_filename && !curves->saved_plot) {
dump_curves(curves->plot_filename, curves->graph, comp_points, curves->lut_size);
curves->saved_plot = 1;
}
for (i = 0; i < NB_COMP + 1; i++) {
struct keypoint *point = comp_points[i];
while (point) {
struct keypoint *next = point->next;
av_free(point);
point = next;
}
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
CurvesContext *curves = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out;
ThreadData td;
if (av_frame_is_writable(in)) {
out = in;
} else {
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
}
td.in = in;
td.out = out;
ff_filter_execute(ctx, curves->filter_slice, &td, NULL,
FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
if (out != in)
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
char *res, int res_len, int flags)
{
CurvesContext *curves = ctx->priv;
int ret;
if (!strcmp(cmd, "plot")) {
curves->saved_plot = 0;
} else if (!strcmp(cmd, "all") || !strcmp(cmd, "preset") || !strcmp(cmd, "psfile")) {
if (!strcmp(cmd, "psfile"))
curves->parsed_psfile = 0;
av_freep(&curves->comp_points_str_all);
av_freep(&curves->comp_points_str[0]);
av_freep(&curves->comp_points_str[1]);
av_freep(&curves->comp_points_str[2]);
av_freep(&curves->comp_points_str[NB_COMP]);
} else if (!strcmp(cmd, "red") || !strcmp(cmd, "r")) {
av_freep(&curves->comp_points_str[0]);
} else if (!strcmp(cmd, "green") || !strcmp(cmd, "g")) {
av_freep(&curves->comp_points_str[1]);
} else if (!strcmp(cmd, "blue") || !strcmp(cmd, "b")) {
av_freep(&curves->comp_points_str[2]);
} else if (!strcmp(cmd, "master") || !strcmp(cmd, "m")) {
av_freep(&curves->comp_points_str[NB_COMP]);
}
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
if (ret < 0)
return ret;
ret = curves_init(ctx);
if (ret < 0)
return ret;
return config_input(ctx->inputs[0]);
}
static av_cold void curves_uninit(AVFilterContext *ctx)
{
int i;
CurvesContext *curves = ctx->priv;
for (i = 0; i < NB_COMP + 1; i++)
av_freep(&curves->graph[i]);
}
static const AVFilterPad curves_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
static const AVFilterPad curves_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
};
const AVFilter ff_vf_curves = {
.name = "curves",
.description = NULL_IF_CONFIG_SMALL("Adjust components curves."),
.priv_size = sizeof(CurvesContext),
.init = curves_init,
.uninit = curves_uninit,
FILTER_INPUTS(curves_inputs),
FILTER_OUTPUTS(curves_outputs),
FILTER_QUERY_FUNC(query_formats),
.priv_class = &curves_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
.process_command = process_command,
};