1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavfilter/vf_fftdnoiz.c
Andreas Rheinhardt b4f5201967 avfilter: Replace query_formats callback with union of list and callback
If one looks at the many query_formats callbacks in existence,
one will immediately recognize that there is one type of default
callback for video and a slightly different default callback for
audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);"
for video with a filter-specific pix_fmts list. For audio, it is
the same with a filter-specific sample_fmts list together with
ff_set_common_all_samplerates() and ff_set_common_all_channel_counts().

This commit allows to remove the boilerplate query_formats callbacks
by replacing said callback with a union consisting the old callback
and pointers for pixel and sample format arrays. For the not uncommon
case in which these lists only contain a single entry (besides the
sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also
added to the union to store them directly in the AVFilter,
thereby avoiding a relocation.

The state of said union will be contained in a new, dedicated AVFilter
field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t
in order to create a hole for this new field; this is no problem, as
the maximum of all the nb_inputs is four; for nb_outputs it is only
two).

The state's default value coincides with the earlier default of
query_formats being unset, namely that the filter accepts all formats
(and also sample rates and channel counts/layouts for audio)
provided that these properties agree coincide for all inputs and
outputs.

By using different union members for audio and video filters
the type-unsafety of using the same functions for audio and video
lists will furthermore be more confined to formats.c than before.

When the new fields are used, they will also avoid allocations:
Currently something nearly equivalent to ff_default_query_formats()
is called after every successful call to a query_formats callback;
yet in the common case that the newly allocated AVFilterFormats
are not used at all (namely if there are no free links) these newly
allocated AVFilterFormats are freed again without ever being used.
Filters no longer using the callback will not exhibit this any more.

Reviewed-by: Paul B Mahol <onemda@gmail.com>
Reviewed-by: Nicolas George <george@nsup.org>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-10-05 17:48:25 +02:00

694 lines
22 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include "libavutil/common.h"
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "internal.h"
#include "libavcodec/avfft.h"
enum BufferTypes {
CURRENT,
PREV,
NEXT,
BSIZE
};
typedef struct PlaneContext {
int planewidth, planeheight;
int nox, noy;
int b;
int o;
float n;
float *buffer[BSIZE];
FFTComplex *hdata, *vdata;
int data_linesize;
int buffer_linesize;
FFTContext *fft, *ifft;
} PlaneContext;
typedef struct FFTdnoizContext {
const AVClass *class;
float sigma;
float amount;
int block_bits;
float overlap;
int nb_prev;
int nb_next;
int planesf;
AVFrame *prev, *cur, *next;
int depth;
int nb_planes;
PlaneContext planes[4];
void (*import_row)(FFTComplex *dst, uint8_t *src, int rw);
void (*export_row)(FFTComplex *src, uint8_t *dst, int rw, float scale, int depth);
} FFTdnoizContext;
#define OFFSET(x) offsetof(FFTdnoizContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption fftdnoiz_options[] = {
{ "sigma", "set denoise strength",
OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 30, .flags = FLAGS },
{ "amount", "set amount of denoising",
OFFSET(amount), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0.01, 1, .flags = FLAGS },
{ "block", "set block log2(size)",
OFFSET(block_bits), AV_OPT_TYPE_INT, {.i64=4}, 3, 6, .flags = FLAGS },
{ "overlap", "set block overlap",
OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=0.5}, 0.2, 0.8, .flags = FLAGS },
{ "prev", "set number of previous frames for temporal denoising",
OFFSET(nb_prev), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = FLAGS },
{ "next", "set number of next frames for temporal denoising",
OFFSET(nb_next), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = FLAGS },
{ "planes", "set planes to filter",
OFFSET(planesf), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, .flags = FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(fftdnoiz);
static av_cold int init(AVFilterContext *ctx)
{
FFTdnoizContext *s = ctx->priv;
int i;
for (i = 0; i < 4; i++) {
PlaneContext *p = &s->planes[i];
p->fft = av_fft_init(s->block_bits, 0);
p->ifft = av_fft_init(s->block_bits, 1);
if (!p->fft || !p->ifft)
return AVERROR(ENOMEM);
}
return 0;
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV440P10,
AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_NONE
};
return ff_set_common_formats_from_list(ctx, pix_fmts);
}
typedef struct ThreadData {
float *src, *dst;
} ThreadData;
static void import_row8(FFTComplex *dst, uint8_t *src, int rw)
{
int j;
for (j = 0; j < rw; j++) {
dst[j].re = src[j];
dst[j].im = 0;
}
}
static void export_row8(FFTComplex *src, uint8_t *dst, int rw, float scale, int depth)
{
int j;
for (j = 0; j < rw; j++)
dst[j] = av_clip_uint8(lrintf(src[j].re * scale));
}
static void import_row16(FFTComplex *dst, uint8_t *srcp, int rw)
{
uint16_t *src = (uint16_t *)srcp;
int j;
for (j = 0; j < rw; j++) {
dst[j].re = src[j];
dst[j].im = 0;
}
}
static void export_row16(FFTComplex *src, uint8_t *dstp, int rw, float scale, int depth)
{
uint16_t *dst = (uint16_t *)dstp;
int j;
for (j = 0; j < rw; j++)
dst[j] = av_clip_uintp2_c(src[j].re * scale + 0.5f, depth);
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
const AVPixFmtDescriptor *desc;
FFTdnoizContext *s = ctx->priv;
int i;
desc = av_pix_fmt_desc_get(inlink->format);
s->depth = desc->comp[0].depth;
if (s->depth <= 8) {
s->import_row = import_row8;
s->export_row = export_row8;
} else {
s->import_row = import_row16;
s->export_row = export_row16;
s->sigma *= 1 << (s->depth - 8) * (1 + s->nb_prev + s->nb_next);
}
s->planes[1].planewidth = s->planes[2].planewidth = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->planes[0].planewidth = s->planes[3].planewidth = inlink->w;
s->planes[1].planeheight = s->planes[2].planeheight = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planes[0].planeheight = s->planes[3].planeheight = inlink->h;
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
for (i = 0; i < s->nb_planes; i++) {
PlaneContext *p = &s->planes[i];
int size;
p->b = 1 << s->block_bits;
p->n = 1.f / (p->b * p->b);
p->o = p->b * s->overlap;
size = p->b - p->o;
p->nox = (p->planewidth + (size - 1)) / size;
p->noy = (p->planeheight + (size - 1)) / size;
av_log(ctx, AV_LOG_DEBUG, "nox:%d noy:%d size:%d\n", p->nox, p->noy, size);
p->buffer_linesize = p->b * p->nox * sizeof(FFTComplex);
p->buffer[CURRENT] = av_calloc(p->b * p->noy, p->buffer_linesize);
if (!p->buffer[CURRENT])
return AVERROR(ENOMEM);
if (s->nb_prev > 0) {
p->buffer[PREV] = av_calloc(p->b * p->noy, p->buffer_linesize);
if (!p->buffer[PREV])
return AVERROR(ENOMEM);
}
if (s->nb_next > 0) {
p->buffer[NEXT] = av_calloc(p->b * p->noy, p->buffer_linesize);
if (!p->buffer[NEXT])
return AVERROR(ENOMEM);
}
p->data_linesize = 2 * p->b * sizeof(float);
p->hdata = av_calloc(p->b, p->data_linesize);
p->vdata = av_calloc(p->b, p->data_linesize);
if (!p->hdata || !p->vdata)
return AVERROR(ENOMEM);
}
return 0;
}
static void import_plane(FFTdnoizContext *s,
uint8_t *srcp, int src_linesize,
float *buffer, int buffer_linesize, int plane)
{
PlaneContext *p = &s->planes[plane];
const int width = p->planewidth;
const int height = p->planeheight;
const int block = p->b;
const int overlap = p->o;
const int size = block - overlap;
const int nox = p->nox;
const int noy = p->noy;
const int bpp = (s->depth + 7) / 8;
const int data_linesize = p->data_linesize / sizeof(FFTComplex);
FFTComplex *hdata = p->hdata;
FFTComplex *vdata = p->vdata;
int x, y, i, j;
buffer_linesize /= sizeof(float);
for (y = 0; y < noy; y++) {
for (x = 0; x < nox; x++) {
const int rh = FFMIN(block, height - y * size);
const int rw = FFMIN(block, width - x * size);
uint8_t *src = srcp + src_linesize * y * size + x * size * bpp;
float *bdst = buffer + buffer_linesize * y * block + x * block * 2;
FFTComplex *ssrc, *dst = hdata;
for (i = 0; i < rh; i++) {
s->import_row(dst, src, rw);
for (j = rw; j < block; j++) {
dst[j].re = dst[block - j - 1].re;
dst[j].im = 0;
}
av_fft_permute(p->fft, dst);
av_fft_calc(p->fft, dst);
src += src_linesize;
dst += data_linesize;
}
dst = hdata;
for (; i < block; i++) {
for (j = 0; j < block; j++) {
dst[j].re = dst[(block - i - 1) * data_linesize + j].re;
dst[j].im = dst[(block - i - 1) * data_linesize + j].im;
}
}
ssrc = hdata;
dst = vdata;
for (i = 0; i < block; i++) {
for (j = 0; j < block; j++)
dst[j] = ssrc[j * data_linesize + i];
av_fft_permute(p->fft, dst);
av_fft_calc(p->fft, dst);
memcpy(bdst, dst, block * sizeof(FFTComplex));
dst += data_linesize;
bdst += buffer_linesize;
}
}
}
}
static void export_plane(FFTdnoizContext *s,
uint8_t *dstp, int dst_linesize,
float *buffer, int buffer_linesize, int plane)
{
PlaneContext *p = &s->planes[plane];
const int depth = s->depth;
const int bpp = (depth + 7) / 8;
const int width = p->planewidth;
const int height = p->planeheight;
const int block = p->b;
const int overlap = p->o;
const int hoverlap = overlap / 2;
const int size = block - overlap;
const int nox = p->nox;
const int noy = p->noy;
const int data_linesize = p->data_linesize / sizeof(FFTComplex);
const float scale = 1.f / (block * block);
FFTComplex *hdata = p->hdata;
FFTComplex *vdata = p->vdata;
int x, y, i, j;
buffer_linesize /= sizeof(float);
for (y = 0; y < noy; y++) {
for (x = 0; x < nox; x++) {
const int woff = x == 0 ? 0 : hoverlap;
const int hoff = y == 0 ? 0 : hoverlap;
const int rw = x == 0 ? block : FFMIN(size, width - x * size - woff);
const int rh = y == 0 ? block : FFMIN(size, height - y * size - hoff);
float *bsrc = buffer + buffer_linesize * y * block + x * block * 2;
uint8_t *dst = dstp + dst_linesize * (y * size + hoff) + (x * size + woff) * bpp;
FFTComplex *hdst, *ddst = vdata;
hdst = hdata;
for (i = 0; i < block; i++) {
memcpy(ddst, bsrc, block * sizeof(FFTComplex));
av_fft_permute(p->ifft, ddst);
av_fft_calc(p->ifft, ddst);
for (j = 0; j < block; j++) {
hdst[j * data_linesize + i] = ddst[j];
}
ddst += data_linesize;
bsrc += buffer_linesize;
}
hdst = hdata + hoff * data_linesize;
for (i = 0; i < rh; i++) {
av_fft_permute(p->ifft, hdst);
av_fft_calc(p->ifft, hdst);
s->export_row(hdst + woff, dst, rw, scale, depth);
hdst += data_linesize;
dst += dst_linesize;
}
}
}
}
static void filter_plane3d2(FFTdnoizContext *s, int plane, float *pbuffer, float *nbuffer)
{
PlaneContext *p = &s->planes[plane];
const int block = p->b;
const int nox = p->nox;
const int noy = p->noy;
const int buffer_linesize = p->buffer_linesize / sizeof(float);
const float sigma = s->sigma * s->sigma * block * block;
const float limit = 1.f - s->amount;
float *cbuffer = p->buffer[CURRENT];
const float cfactor = sqrtf(3.f) * 0.5f;
const float scale = 1.f / 3.f;
int y, x, i, j;
for (y = 0; y < noy; y++) {
for (x = 0; x < nox; x++) {
float *cbuff = cbuffer + buffer_linesize * y * block + x * block * 2;
float *pbuff = pbuffer + buffer_linesize * y * block + x * block * 2;
float *nbuff = nbuffer + buffer_linesize * y * block + x * block * 2;
for (i = 0; i < block; i++) {
for (j = 0; j < block; j++) {
float sumr, sumi, difr, difi, mpr, mpi, mnr, mni;
float factor, power, sumpnr, sumpni;
sumpnr = pbuff[2 * j ] + nbuff[2 * j ];
sumpni = pbuff[2 * j + 1] + nbuff[2 * j + 1];
sumr = cbuff[2 * j ] + sumpnr;
sumi = cbuff[2 * j + 1] + sumpni;
difr = cfactor * (nbuff[2 * j ] - pbuff[2 * j ]);
difi = cfactor * (pbuff[2 * j + 1] - nbuff[2 * j + 1]);
mpr = cbuff[2 * j ] - 0.5f * sumpnr + difi;
mnr = mpr - difi - difi;
mpi = cbuff[2 * j + 1] - 0.5f * sumpni + difr;
mni = mpi - difr - difr;
power = sumr * sumr + sumi * sumi + 1e-15f;
factor = FFMAX((power - sigma) / power, limit);
sumr *= factor;
sumi *= factor;
power = mpr * mpr + mpi * mpi + 1e-15f;
factor = FFMAX((power - sigma) / power, limit);
mpr *= factor;
mpi *= factor;
power = mnr * mnr + mni * mni + 1e-15f;
factor = FFMAX((power - sigma) / power, limit);
mnr *= factor;
mni *= factor;
cbuff[2 * j ] = (sumr + mpr + mnr) * scale;
cbuff[2 * j + 1] = (sumi + mpi + mni) * scale;
}
cbuff += buffer_linesize;
pbuff += buffer_linesize;
nbuff += buffer_linesize;
}
}
}
}
static void filter_plane3d1(FFTdnoizContext *s, int plane, float *pbuffer)
{
PlaneContext *p = &s->planes[plane];
const int block = p->b;
const int nox = p->nox;
const int noy = p->noy;
const int buffer_linesize = p->buffer_linesize / sizeof(float);
const float sigma = s->sigma * s->sigma * block * block;
const float limit = 1.f - s->amount;
float *cbuffer = p->buffer[CURRENT];
int y, x, i, j;
for (y = 0; y < noy; y++) {
for (x = 0; x < nox; x++) {
float *cbuff = cbuffer + buffer_linesize * y * block + x * block * 2;
float *pbuff = pbuffer + buffer_linesize * y * block + x * block * 2;
for (i = 0; i < block; i++) {
for (j = 0; j < block; j++) {
float factor, power, re, im, pre, pim;
float sumr, sumi, difr, difi;
re = cbuff[j * 2 ];
pre = pbuff[j * 2 ];
im = cbuff[j * 2 + 1];
pim = pbuff[j * 2 + 1];
sumr = re + pre;
sumi = im + pim;
difr = re - pre;
difi = im - pim;
power = sumr * sumr + sumi * sumi + 1e-15f;
factor = FFMAX(limit, (power - sigma) / power);
sumr *= factor;
sumi *= factor;
power = difr * difr + difi * difi + 1e-15f;
factor = FFMAX(limit, (power - sigma) / power);
difr *= factor;
difi *= factor;
cbuff[j * 2 ] = (sumr + difr) * 0.5f;
cbuff[j * 2 + 1] = (sumi + difi) * 0.5f;
}
cbuff += buffer_linesize;
pbuff += buffer_linesize;
}
}
}
}
static void filter_plane2d(FFTdnoizContext *s, int plane)
{
PlaneContext *p = &s->planes[plane];
const int block = p->b;
const int nox = p->nox;
const int noy = p->noy;
const int buffer_linesize = p->buffer_linesize / 4;
const float sigma = s->sigma * s->sigma * block * block;
const float limit = 1.f - s->amount;
float *buffer = p->buffer[CURRENT];
int y, x, i, j;
for (y = 0; y < noy; y++) {
for (x = 0; x < nox; x++) {
float *buff = buffer + buffer_linesize * y * block + x * block * 2;
for (i = 0; i < block; i++) {
for (j = 0; j < block; j++) {
float factor, power, re, im;
re = buff[j * 2 ];
im = buff[j * 2 + 1];
power = re * re + im * im + 1e-15f;
factor = FFMAX(limit, (power - sigma) / power);
buff[j * 2 ] *= factor;
buff[j * 2 + 1] *= factor;
}
buff += buffer_linesize;
}
}
}
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
FFTdnoizContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
int direct, plane;
AVFrame *out;
if (s->nb_next > 0 && s->nb_prev > 0) {
av_frame_free(&s->prev);
s->prev = s->cur;
s->cur = s->next;
s->next = in;
if (!s->prev && s->cur) {
s->prev = av_frame_clone(s->cur);
if (!s->prev)
return AVERROR(ENOMEM);
}
if (!s->cur)
return 0;
} else if (s->nb_next > 0) {
av_frame_free(&s->cur);
s->cur = s->next;
s->next = in;
if (!s->cur)
return 0;
} else if (s->nb_prev > 0) {
av_frame_free(&s->prev);
s->prev = s->cur;
s->cur = in;
if (!s->prev)
s->prev = av_frame_clone(s->cur);
if (!s->prev)
return AVERROR(ENOMEM);
} else {
s->cur = in;
}
if (av_frame_is_writable(in) && s->nb_next == 0 && s->nb_prev == 0) {
direct = 1;
out = in;
} else {
direct = 0;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out)
return AVERROR(ENOMEM);
av_frame_copy_props(out, s->cur);
}
for (plane = 0; plane < s->nb_planes; plane++) {
PlaneContext *p = &s->planes[plane];
if (!((1 << plane) & s->planesf) || ctx->is_disabled) {
if (!direct)
av_image_copy_plane(out->data[plane], out->linesize[plane],
s->cur->data[plane], s->cur->linesize[plane],
p->planewidth, p->planeheight);
continue;
}
if (s->next) {
import_plane(s, s->next->data[plane], s->next->linesize[plane],
p->buffer[NEXT], p->buffer_linesize, plane);
}
if (s->prev) {
import_plane(s, s->prev->data[plane], s->prev->linesize[plane],
p->buffer[PREV], p->buffer_linesize, plane);
}
import_plane(s, s->cur->data[plane], s->cur->linesize[plane],
p->buffer[CURRENT], p->buffer_linesize, plane);
if (s->next && s->prev) {
filter_plane3d2(s, plane, p->buffer[PREV], p->buffer[NEXT]);
} else if (s->next) {
filter_plane3d1(s, plane, p->buffer[NEXT]);
} else if (s->prev) {
filter_plane3d1(s, plane, p->buffer[PREV]);
} else {
filter_plane2d(s, plane);
}
export_plane(s, out->data[plane], out->linesize[plane],
p->buffer[CURRENT], p->buffer_linesize, plane);
}
if (s->nb_next == 0 && s->nb_prev == 0) {
if (direct) {
s->cur = NULL;
} else {
av_frame_free(&s->cur);
}
}
return ff_filter_frame(outlink, out);
}
static int request_frame(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
FFTdnoizContext *s = ctx->priv;
int ret = 0;
ret = ff_request_frame(ctx->inputs[0]);
if (ret == AVERROR_EOF && (s->nb_next > 0)) {
AVFrame *buf;
if (s->next && s->nb_next > 0)
buf = av_frame_clone(s->next);
else if (s->cur)
buf = av_frame_clone(s->cur);
else
buf = av_frame_clone(s->prev);
if (!buf)
return AVERROR(ENOMEM);
ret = filter_frame(ctx->inputs[0], buf);
if (ret < 0)
return ret;
ret = AVERROR_EOF;
}
return ret;
}
static av_cold void uninit(AVFilterContext *ctx)
{
FFTdnoizContext *s = ctx->priv;
int i;
for (i = 0; i < 4; i++) {
PlaneContext *p = &s->planes[i];
av_freep(&p->hdata);
av_freep(&p->vdata);
av_freep(&p->buffer[PREV]);
av_freep(&p->buffer[CURRENT]);
av_freep(&p->buffer[NEXT]);
av_fft_end(p->fft);
av_fft_end(p->ifft);
}
av_frame_free(&s->prev);
av_frame_free(&s->cur);
av_frame_free(&s->next);
}
static const AVFilterPad fftdnoiz_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
static const AVFilterPad fftdnoiz_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.request_frame = request_frame,
},
};
const AVFilter ff_vf_fftdnoiz = {
.name = "fftdnoiz",
.description = NULL_IF_CONFIG_SMALL("Denoise frames using 3D FFT."),
.priv_size = sizeof(FFTdnoizContext),
.init = init,
.uninit = uninit,
FILTER_INPUTS(fftdnoiz_inputs),
FILTER_OUTPUTS(fftdnoiz_outputs),
FILTER_QUERY_FUNC(query_formats),
.priv_class = &fftdnoiz_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
};