mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-24 13:56:33 +02:00
1e7d2007c3
Makes it robust against adding fields before it, which will be useful in following commits. Majority of the patch generated by the following Coccinelle script: @@ typedef AVOption; identifier arr_name; initializer list il; initializer list[8] il1; expression tail; @@ AVOption arr_name[] = { il, { il1, - tail + .unit = tail }, ... }; with some manual changes, as the script: * has trouble with options defined inside macros * sometimes does not handle options under an #else branch * sometimes swallows whitespace
694 lines
22 KiB
C
694 lines
22 KiB
C
/*
|
|
* MagicYUV encoder
|
|
* Copyright (c) 2017 Paul B Mahol
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "libavutil/cpu.h"
|
|
#include "libavutil/opt.h"
|
|
#include "libavutil/pixdesc.h"
|
|
#include "libavutil/qsort.h"
|
|
|
|
#include "avcodec.h"
|
|
#include "bytestream.h"
|
|
#include "codec_internal.h"
|
|
#include "encode.h"
|
|
#include "put_bits.h"
|
|
#include "thread.h"
|
|
#include "lossless_videoencdsp.h"
|
|
|
|
#define MAGICYUV_EXTRADATA_SIZE 32
|
|
|
|
typedef enum Prediction {
|
|
LEFT = 1,
|
|
GRADIENT,
|
|
MEDIAN,
|
|
} Prediction;
|
|
|
|
typedef struct HuffEntry {
|
|
uint8_t len;
|
|
uint32_t code;
|
|
} HuffEntry;
|
|
|
|
typedef struct PTable {
|
|
int value; ///< input value
|
|
int64_t prob; ///< number of occurences of this value in input
|
|
} PTable;
|
|
|
|
typedef struct Slice {
|
|
unsigned pos;
|
|
unsigned size;
|
|
uint8_t *slice;
|
|
uint8_t *bitslice;
|
|
PTable counts[256];
|
|
} Slice;
|
|
|
|
typedef struct MagicYUVContext {
|
|
const AVClass *class;
|
|
int frame_pred;
|
|
int planes;
|
|
uint8_t format;
|
|
int slice_height;
|
|
int nb_slices;
|
|
int correlate;
|
|
int hshift[4];
|
|
int vshift[4];
|
|
unsigned bitslice_size;
|
|
uint8_t *decorrelate_buf[2];
|
|
Slice *slices;
|
|
HuffEntry he[4][256];
|
|
LLVidEncDSPContext llvidencdsp;
|
|
void (*predict)(struct MagicYUVContext *s, const uint8_t *src, uint8_t *dst,
|
|
ptrdiff_t stride, int width, int height);
|
|
} MagicYUVContext;
|
|
|
|
static void left_predict(MagicYUVContext *s,
|
|
const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
|
|
int width, int height)
|
|
{
|
|
uint8_t prev = 0;
|
|
int i, j;
|
|
|
|
for (i = 0; i < width; i++) {
|
|
dst[i] = src[i] - prev;
|
|
prev = src[i];
|
|
}
|
|
dst += width;
|
|
src += stride;
|
|
for (j = 1; j < height; j++) {
|
|
prev = src[-stride];
|
|
for (i = 0; i < width; i++) {
|
|
dst[i] = src[i] - prev;
|
|
prev = src[i];
|
|
}
|
|
dst += width;
|
|
src += stride;
|
|
}
|
|
}
|
|
|
|
static void gradient_predict(MagicYUVContext *s,
|
|
const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
|
|
int width, int height)
|
|
{
|
|
int left = 0, top, lefttop;
|
|
int i, j;
|
|
|
|
for (i = 0; i < width; i++) {
|
|
dst[i] = src[i] - left;
|
|
left = src[i];
|
|
}
|
|
dst += width;
|
|
src += stride;
|
|
for (j = 1; j < height; j++) {
|
|
top = src[-stride];
|
|
left = src[0] - top;
|
|
dst[0] = left;
|
|
for (i = 1; i < width; i++) {
|
|
top = src[i - stride];
|
|
lefttop = src[i - (stride + 1)];
|
|
left = src[i-1];
|
|
dst[i] = (src[i] - top) - left + lefttop;
|
|
}
|
|
dst += width;
|
|
src += stride;
|
|
}
|
|
}
|
|
|
|
static void median_predict(MagicYUVContext *s,
|
|
const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
|
|
int width, int height)
|
|
{
|
|
int left = 0, lefttop;
|
|
int i, j;
|
|
|
|
for (i = 0; i < width; i++) {
|
|
dst[i] = src[i] - left;
|
|
left = src[i];
|
|
}
|
|
dst += width;
|
|
src += stride;
|
|
for (j = 1; j < height; j++) {
|
|
left = lefttop = src[-stride];
|
|
s->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &left, &lefttop);
|
|
dst += width;
|
|
src += stride;
|
|
}
|
|
}
|
|
|
|
static av_cold int magy_encode_init(AVCodecContext *avctx)
|
|
{
|
|
MagicYUVContext *s = avctx->priv_data;
|
|
PutByteContext pb;
|
|
|
|
switch (avctx->pix_fmt) {
|
|
case AV_PIX_FMT_GBRP:
|
|
avctx->codec_tag = MKTAG('M', '8', 'R', 'G');
|
|
s->correlate = 1;
|
|
s->format = 0x65;
|
|
break;
|
|
case AV_PIX_FMT_GBRAP:
|
|
avctx->codec_tag = MKTAG('M', '8', 'R', 'A');
|
|
s->correlate = 1;
|
|
s->format = 0x66;
|
|
break;
|
|
case AV_PIX_FMT_YUV420P:
|
|
avctx->codec_tag = MKTAG('M', '8', 'Y', '0');
|
|
s->hshift[1] =
|
|
s->vshift[1] =
|
|
s->hshift[2] =
|
|
s->vshift[2] = 1;
|
|
s->format = 0x69;
|
|
break;
|
|
case AV_PIX_FMT_YUV422P:
|
|
avctx->codec_tag = MKTAG('M', '8', 'Y', '2');
|
|
s->hshift[1] =
|
|
s->hshift[2] = 1;
|
|
s->format = 0x68;
|
|
break;
|
|
case AV_PIX_FMT_YUV444P:
|
|
avctx->codec_tag = MKTAG('M', '8', 'Y', '4');
|
|
s->format = 0x67;
|
|
break;
|
|
case AV_PIX_FMT_YUVA444P:
|
|
avctx->codec_tag = MKTAG('M', '8', 'Y', 'A');
|
|
s->format = 0x6a;
|
|
break;
|
|
case AV_PIX_FMT_GRAY8:
|
|
avctx->codec_tag = MKTAG('M', '8', 'G', '0');
|
|
s->format = 0x6b;
|
|
break;
|
|
}
|
|
|
|
ff_llvidencdsp_init(&s->llvidencdsp);
|
|
|
|
s->planes = av_pix_fmt_count_planes(avctx->pix_fmt);
|
|
|
|
s->nb_slices = (avctx->slices <= 0) ? av_cpu_count() : avctx->slices;
|
|
s->nb_slices = FFMIN(s->nb_slices, avctx->height >> s->vshift[1]);
|
|
s->nb_slices = FFMAX(1, s->nb_slices);
|
|
s->slice_height = FFALIGN((avctx->height + s->nb_slices - 1) / s->nb_slices, 1 << s->vshift[1]);
|
|
s->nb_slices = (avctx->height + s->slice_height - 1) / s->slice_height;
|
|
s->slices = av_calloc(s->nb_slices * s->planes, sizeof(*s->slices));
|
|
if (!s->slices)
|
|
return AVERROR(ENOMEM);
|
|
|
|
if (s->correlate) {
|
|
s->decorrelate_buf[0] = av_calloc(2U * (s->nb_slices * s->slice_height), FFALIGN(avctx->width, av_cpu_max_align()));
|
|
if (!s->decorrelate_buf[0])
|
|
return AVERROR(ENOMEM);
|
|
s->decorrelate_buf[1] = s->decorrelate_buf[0] + (s->nb_slices * s->slice_height) * FFALIGN(avctx->width, av_cpu_max_align());
|
|
}
|
|
|
|
s->bitslice_size = avctx->width * s->slice_height + 2;
|
|
for (int n = 0; n < s->nb_slices; n++) {
|
|
for (int i = 0; i < s->planes; i++) {
|
|
Slice *sl = &s->slices[n * s->planes + i];
|
|
|
|
sl->bitslice = av_malloc(s->bitslice_size + AV_INPUT_BUFFER_PADDING_SIZE);
|
|
sl->slice = av_malloc(avctx->width * (s->slice_height + 2) +
|
|
AV_INPUT_BUFFER_PADDING_SIZE);
|
|
if (!sl->slice || !sl->bitslice) {
|
|
av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer.\n");
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (s->frame_pred) {
|
|
case LEFT: s->predict = left_predict; break;
|
|
case GRADIENT: s->predict = gradient_predict; break;
|
|
case MEDIAN: s->predict = median_predict; break;
|
|
}
|
|
|
|
avctx->extradata_size = MAGICYUV_EXTRADATA_SIZE;
|
|
|
|
avctx->extradata = av_mallocz(avctx->extradata_size +
|
|
AV_INPUT_BUFFER_PADDING_SIZE);
|
|
|
|
if (!avctx->extradata) {
|
|
av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
bytestream2_init_writer(&pb, avctx->extradata, MAGICYUV_EXTRADATA_SIZE);
|
|
bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y'));
|
|
bytestream2_put_le32(&pb, 32);
|
|
bytestream2_put_byte(&pb, 7);
|
|
bytestream2_put_byte(&pb, s->format);
|
|
bytestream2_put_byte(&pb, 12);
|
|
bytestream2_put_byte(&pb, 0);
|
|
|
|
bytestream2_put_byte(&pb, 0);
|
|
bytestream2_put_byte(&pb, 0);
|
|
bytestream2_put_byte(&pb, 32);
|
|
bytestream2_put_byte(&pb, 0);
|
|
|
|
bytestream2_put_le32(&pb, avctx->width);
|
|
bytestream2_put_le32(&pb, avctx->height);
|
|
bytestream2_put_le32(&pb, avctx->width);
|
|
bytestream2_put_le32(&pb, avctx->height);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void calculate_codes(HuffEntry *he, uint16_t codes_count[33])
|
|
{
|
|
for (unsigned i = 32, nb_codes = 0; i > 0; i--) {
|
|
uint16_t curr = codes_count[i]; // # of leafs of length i
|
|
codes_count[i] = nb_codes / 2; // # of non-leaf nodes on level i
|
|
nb_codes = codes_count[i] + curr; // # of nodes on level i
|
|
}
|
|
|
|
for (unsigned i = 0; i < 256; i++) {
|
|
he[i].code = codes_count[he[i].len];
|
|
codes_count[he[i].len]++;
|
|
}
|
|
}
|
|
|
|
static void count_usage(const uint8_t *src, int width,
|
|
int height, PTable *counts)
|
|
{
|
|
for (int j = 0; j < height; j++) {
|
|
for (int i = 0; i < width; i++)
|
|
counts[src[i]].prob++;
|
|
src += width;
|
|
}
|
|
}
|
|
|
|
typedef struct PackageMergerList {
|
|
int nitems; ///< number of items in the list and probability ex. 4
|
|
int item_idx[515]; ///< index range for each item in items 0, 2, 5, 9, 13
|
|
int probability[514]; ///< probability of each item 3, 8, 18, 46
|
|
int items[257 * 16]; ///< chain of all individual values that make up items A, B, A, B, C, A, B, C, D, C, D, D, E
|
|
} PackageMergerList;
|
|
|
|
static int compare_by_prob(const void *a, const void *b)
|
|
{
|
|
const PTable *a2 = a;
|
|
const PTable *b2 = b;
|
|
return a2->prob - b2->prob;
|
|
}
|
|
|
|
static void magy_huffman_compute_bits(PTable *prob_table, HuffEntry *distincts,
|
|
uint16_t codes_counts[33],
|
|
int size, int max_length)
|
|
{
|
|
PackageMergerList list_a, list_b, *to = &list_a, *from = &list_b, *temp;
|
|
int times, i, j, k;
|
|
int nbits[257] = {0};
|
|
int min;
|
|
|
|
av_assert0(max_length > 0);
|
|
|
|
to->nitems = 0;
|
|
from->nitems = 0;
|
|
to->item_idx[0] = 0;
|
|
from->item_idx[0] = 0;
|
|
AV_QSORT(prob_table, size, PTable, compare_by_prob);
|
|
|
|
for (times = 0; times <= max_length; times++) {
|
|
to->nitems = 0;
|
|
to->item_idx[0] = 0;
|
|
|
|
j = 0;
|
|
k = 0;
|
|
|
|
if (times < max_length) {
|
|
i = 0;
|
|
}
|
|
while (i < size || j + 1 < from->nitems) {
|
|
to->nitems++;
|
|
to->item_idx[to->nitems] = to->item_idx[to->nitems - 1];
|
|
if (i < size &&
|
|
(j + 1 >= from->nitems ||
|
|
prob_table[i].prob <
|
|
from->probability[j] + from->probability[j + 1])) {
|
|
to->items[to->item_idx[to->nitems]++] = prob_table[i].value;
|
|
to->probability[to->nitems - 1] = prob_table[i].prob;
|
|
i++;
|
|
} else {
|
|
for (k = from->item_idx[j]; k < from->item_idx[j + 2]; k++) {
|
|
to->items[to->item_idx[to->nitems]++] = from->items[k];
|
|
}
|
|
to->probability[to->nitems - 1] =
|
|
from->probability[j] + from->probability[j + 1];
|
|
j += 2;
|
|
}
|
|
}
|
|
temp = to;
|
|
to = from;
|
|
from = temp;
|
|
}
|
|
|
|
min = (size - 1 < from->nitems) ? size - 1 : from->nitems;
|
|
for (i = 0; i < from->item_idx[min]; i++) {
|
|
nbits[from->items[i]]++;
|
|
}
|
|
|
|
for (i = 0; i < size; i++) {
|
|
distincts[i].len = nbits[i];
|
|
codes_counts[nbits[i]]++;
|
|
}
|
|
}
|
|
|
|
static int count_plane_slice(AVCodecContext *avctx, int n, int plane)
|
|
{
|
|
MagicYUVContext *s = avctx->priv_data;
|
|
Slice *sl = &s->slices[n * s->planes + plane];
|
|
const uint8_t *dst = sl->slice;
|
|
PTable *counts = sl->counts;
|
|
|
|
memset(counts, 0, sizeof(sl->counts));
|
|
|
|
count_usage(dst, AV_CEIL_RSHIFT(avctx->width, s->hshift[plane]),
|
|
AV_CEIL_RSHIFT(s->slice_height, s->vshift[plane]), counts);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int encode_table(AVCodecContext *avctx,
|
|
PutBitContext *pb, HuffEntry *he, int plane)
|
|
{
|
|
MagicYUVContext *s = avctx->priv_data;
|
|
PTable counts[256] = { {0} };
|
|
uint16_t codes_counts[33] = { 0 };
|
|
|
|
for (int n = 0; n < s->nb_slices; n++) {
|
|
Slice *sl = &s->slices[n * s->planes + plane];
|
|
PTable *slice_counts = sl->counts;
|
|
|
|
for (int i = 0; i < 256; i++)
|
|
counts[i].prob = slice_counts[i].prob;
|
|
}
|
|
|
|
for (int i = 0; i < 256; i++) {
|
|
counts[i].prob++;
|
|
counts[i].value = i;
|
|
}
|
|
|
|
magy_huffman_compute_bits(counts, he, codes_counts, 256, 12);
|
|
|
|
calculate_codes(he, codes_counts);
|
|
|
|
for (int i = 0; i < 256; i++) {
|
|
put_bits(pb, 1, 0);
|
|
put_bits(pb, 7, he[i].len);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int encode_plane_slice_raw(const uint8_t *src, uint8_t *dst, unsigned dst_size,
|
|
int width, int height, int prediction)
|
|
{
|
|
unsigned count = width * height;
|
|
|
|
dst[0] = 1;
|
|
dst[1] = prediction;
|
|
|
|
memcpy(dst + 2, src, count);
|
|
count += 2;
|
|
AV_WN32(dst + count, 0);
|
|
if (count & 3)
|
|
count += 4 - (count & 3);
|
|
|
|
return count;
|
|
}
|
|
|
|
static int encode_plane_slice(const uint8_t *src, uint8_t *dst, unsigned dst_size,
|
|
int width, int height, HuffEntry *he, int prediction)
|
|
{
|
|
const uint8_t *osrc = src;
|
|
PutBitContext pb;
|
|
int count;
|
|
|
|
init_put_bits(&pb, dst, dst_size);
|
|
|
|
put_bits(&pb, 8, 0);
|
|
put_bits(&pb, 8, prediction);
|
|
|
|
for (int j = 0; j < height; j++) {
|
|
for (int i = 0; i < width; i++) {
|
|
const int idx = src[i];
|
|
const int len = he[idx].len;
|
|
if (put_bits_left(&pb) < len + 32)
|
|
return encode_plane_slice_raw(osrc, dst, dst_size, width, height, prediction);
|
|
put_bits(&pb, len, he[idx].code);
|
|
}
|
|
|
|
src += width;
|
|
}
|
|
|
|
count = put_bits_count(&pb) & 0x1F;
|
|
|
|
if (count)
|
|
put_bits(&pb, 32 - count, 0);
|
|
|
|
flush_put_bits(&pb);
|
|
|
|
return put_bytes_output(&pb);
|
|
}
|
|
|
|
static int encode_slice(AVCodecContext *avctx, void *tdata,
|
|
int n, int threadnr)
|
|
{
|
|
MagicYUVContext *s = avctx->priv_data;
|
|
const int slice_height = s->slice_height;
|
|
const int last_height = FFMIN(slice_height, avctx->height - n * slice_height);
|
|
const int height = (n < (s->nb_slices - 1)) ? slice_height : last_height;
|
|
|
|
for (int i = 0; i < s->planes; i++) {
|
|
Slice *sl = &s->slices[n * s->planes + i];
|
|
|
|
sl->size =
|
|
encode_plane_slice(sl->slice,
|
|
sl->bitslice,
|
|
s->bitslice_size,
|
|
AV_CEIL_RSHIFT(avctx->width, s->hshift[i]),
|
|
AV_CEIL_RSHIFT(height, s->vshift[i]),
|
|
s->he[i], s->frame_pred);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int predict_slice(AVCodecContext *avctx, void *tdata,
|
|
int n, int threadnr)
|
|
{
|
|
const int aligned_width = FFALIGN(avctx->width, av_cpu_max_align());
|
|
MagicYUVContext *s = avctx->priv_data;
|
|
const int slice_height = s->slice_height;
|
|
const int last_height = FFMIN(slice_height, avctx->height - n * slice_height);
|
|
const int height = (n < (s->nb_slices - 1)) ? slice_height : last_height;
|
|
const int width = avctx->width;
|
|
AVFrame *frame = tdata;
|
|
|
|
if (s->correlate) {
|
|
uint8_t *decorrelated[2] = { s->decorrelate_buf[0] + n * slice_height * aligned_width,
|
|
s->decorrelate_buf[1] + n * slice_height * aligned_width };
|
|
const int decorrelate_linesize = aligned_width;
|
|
const uint8_t *const data[4] = { decorrelated[0], frame->data[0] + n * slice_height * frame->linesize[0],
|
|
decorrelated[1], s->planes == 4 ? frame->data[3] + n * slice_height * frame->linesize[3] : NULL };
|
|
const uint8_t *r, *g, *b;
|
|
const int linesize[4] = { decorrelate_linesize, frame->linesize[0],
|
|
decorrelate_linesize, frame->linesize[3] };
|
|
|
|
g = frame->data[0] + n * slice_height * frame->linesize[0];
|
|
b = frame->data[1] + n * slice_height * frame->linesize[1];
|
|
r = frame->data[2] + n * slice_height * frame->linesize[2];
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
s->llvidencdsp.diff_bytes(decorrelated[0], b, g, width);
|
|
s->llvidencdsp.diff_bytes(decorrelated[1], r, g, width);
|
|
g += frame->linesize[0];
|
|
b += frame->linesize[1];
|
|
r += frame->linesize[2];
|
|
decorrelated[0] += decorrelate_linesize;
|
|
decorrelated[1] += decorrelate_linesize;
|
|
}
|
|
|
|
for (int i = 0; i < s->planes; i++) {
|
|
Slice *sl = &s->slices[n * s->planes + i];
|
|
|
|
s->predict(s, data[i], sl->slice, linesize[i],
|
|
frame->width, height);
|
|
}
|
|
} else {
|
|
for (int i = 0; i < s->planes; i++) {
|
|
Slice *sl = &s->slices[n * s->planes + i];
|
|
|
|
s->predict(s, frame->data[i] + n * (slice_height >> s->vshift[i]) * frame->linesize[i],
|
|
sl->slice,
|
|
frame->linesize[i],
|
|
AV_CEIL_RSHIFT(frame->width, s->hshift[i]),
|
|
AV_CEIL_RSHIFT(height, s->vshift[i]));
|
|
}
|
|
}
|
|
|
|
for (int p = 0; p < s->planes; p++)
|
|
count_plane_slice(avctx, n, p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int magy_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
|
|
const AVFrame *frame, int *got_packet)
|
|
{
|
|
MagicYUVContext *s = avctx->priv_data;
|
|
const int width = avctx->width, height = avctx->height;
|
|
const int slice_height = s->slice_height;
|
|
unsigned tables_size;
|
|
PutBitContext pbit;
|
|
PutByteContext pb;
|
|
int pos, ret = 0;
|
|
|
|
ret = ff_alloc_packet(avctx, pkt, (256 + 4 * s->nb_slices + width * height) *
|
|
s->planes + 256);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
bytestream2_init_writer(&pb, pkt->data, pkt->size);
|
|
bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y'));
|
|
bytestream2_put_le32(&pb, 32); // header size
|
|
bytestream2_put_byte(&pb, 7); // version
|
|
bytestream2_put_byte(&pb, s->format);
|
|
bytestream2_put_byte(&pb, 12); // max huffman length
|
|
bytestream2_put_byte(&pb, 0);
|
|
|
|
bytestream2_put_byte(&pb, 0);
|
|
bytestream2_put_byte(&pb, 0);
|
|
bytestream2_put_byte(&pb, 32); // coder type
|
|
bytestream2_put_byte(&pb, 0);
|
|
|
|
bytestream2_put_le32(&pb, avctx->width);
|
|
bytestream2_put_le32(&pb, avctx->height);
|
|
bytestream2_put_le32(&pb, avctx->width);
|
|
bytestream2_put_le32(&pb, slice_height);
|
|
bytestream2_put_le32(&pb, 0);
|
|
|
|
for (int i = 0; i < s->planes; i++) {
|
|
bytestream2_put_le32(&pb, 0);
|
|
for (int j = 1; j < s->nb_slices; j++)
|
|
bytestream2_put_le32(&pb, 0);
|
|
}
|
|
|
|
bytestream2_put_byte(&pb, s->planes);
|
|
|
|
for (int i = 0; i < s->planes; i++) {
|
|
for (int n = 0; n < s->nb_slices; n++)
|
|
bytestream2_put_byte(&pb, n * s->planes + i);
|
|
}
|
|
|
|
avctx->execute2(avctx, predict_slice, (void *)frame, NULL, s->nb_slices);
|
|
|
|
init_put_bits(&pbit, pkt->data + bytestream2_tell_p(&pb), bytestream2_get_bytes_left_p(&pb));
|
|
|
|
for (int i = 0; i < s->planes; i++)
|
|
encode_table(avctx, &pbit, s->he[i], i);
|
|
|
|
tables_size = put_bytes_count(&pbit, 1);
|
|
bytestream2_skip_p(&pb, tables_size);
|
|
|
|
avctx->execute2(avctx, encode_slice, NULL, NULL, s->nb_slices);
|
|
|
|
for (int n = 0; n < s->nb_slices; n++) {
|
|
for (int i = 0; i < s->planes; i++) {
|
|
Slice *sl = &s->slices[n * s->planes + i];
|
|
|
|
sl->pos = bytestream2_tell_p(&pb);
|
|
|
|
bytestream2_put_buffer(&pb, sl->bitslice, sl->size);
|
|
}
|
|
}
|
|
|
|
pos = bytestream2_tell_p(&pb);
|
|
bytestream2_seek_p(&pb, 32, SEEK_SET);
|
|
bytestream2_put_le32(&pb, s->slices[0].pos - 32);
|
|
for (int i = 0; i < s->planes; i++) {
|
|
for (int n = 0; n < s->nb_slices; n++) {
|
|
Slice *sl = &s->slices[n * s->planes + i];
|
|
|
|
bytestream2_put_le32(&pb, sl->pos - 32);
|
|
}
|
|
}
|
|
bytestream2_seek_p(&pb, pos, SEEK_SET);
|
|
|
|
pkt->size = bytestream2_tell_p(&pb);
|
|
|
|
*got_packet = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_cold int magy_encode_close(AVCodecContext *avctx)
|
|
{
|
|
MagicYUVContext *s = avctx->priv_data;
|
|
|
|
for (int i = 0; i < s->planes * s->nb_slices && s->slices; i++) {
|
|
Slice *sl = &s->slices[i];
|
|
|
|
av_freep(&sl->slice);
|
|
av_freep(&sl->bitslice);
|
|
}
|
|
av_freep(&s->slices);
|
|
av_freep(&s->decorrelate_buf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define OFFSET(x) offsetof(MagicYUVContext, x)
|
|
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
|
|
static const AVOption options[] = {
|
|
{ "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, {.i64=LEFT}, LEFT, MEDIAN, VE, .unit = "pred" },
|
|
{ "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT }, 0, 0, VE, .unit = "pred" },
|
|
{ "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = GRADIENT }, 0, 0, VE, .unit = "pred" },
|
|
{ "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, 0, 0, VE, .unit = "pred" },
|
|
{ NULL},
|
|
};
|
|
|
|
static const AVClass magicyuv_class = {
|
|
.class_name = "magicyuv",
|
|
.item_name = av_default_item_name,
|
|
.option = options,
|
|
.version = LIBAVUTIL_VERSION_INT,
|
|
};
|
|
|
|
const FFCodec ff_magicyuv_encoder = {
|
|
.p.name = "magicyuv",
|
|
CODEC_LONG_NAME("MagicYUV video"),
|
|
.p.type = AVMEDIA_TYPE_VIDEO,
|
|
.p.id = AV_CODEC_ID_MAGICYUV,
|
|
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
|
|
AV_CODEC_CAP_SLICE_THREADS |
|
|
AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
|
|
.priv_data_size = sizeof(MagicYUVContext),
|
|
.p.priv_class = &magicyuv_class,
|
|
.init = magy_encode_init,
|
|
.close = magy_encode_close,
|
|
FF_CODEC_ENCODE_CB(magy_encode_frame),
|
|
.p.pix_fmts = (const enum AVPixelFormat[]) {
|
|
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV422P,
|
|
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_GRAY8,
|
|
AV_PIX_FMT_NONE
|
|
},
|
|
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
|
|
};
|