1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libavfilter/dnn_interface.h
Wenbin Chen f4e0664fd1 libavfi/dnn: add LibTorch as one of DNN backend
PyTorch is an open source machine learning framework that accelerates
the path from research prototyping to production deployment. Official
website: https://pytorch.org/. We call the C++ library of PyTorch as
LibTorch, the same below.

To build FFmpeg with LibTorch, please take following steps as
reference:
1. download LibTorch C++ library in
 https://pytorch.org/get-started/locally/,
please select C++/Java for language, and other options as your need.
Please download cxx11 ABI version:
 (libtorch-cxx11-abi-shared-with-deps-*.zip).
2. unzip the file to your own dir, with command
unzip libtorch-shared-with-deps-latest.zip -d your_dir
3. export libtorch_root/libtorch/include and
libtorch_root/libtorch/include/torch/csrc/api/include to $PATH
export libtorch_root/libtorch/lib/ to $LD_LIBRARY_PATH
4. config FFmpeg with ../configure --enable-libtorch \
 --extra-cflag=-I/libtorch_root/libtorch/include \
 --extra-cflag=-I/libtorch_root/libtorch/include/torch/csrc/api/include \
 --extra-ldflags=-L/libtorch_root/libtorch/lib/
5. make

To run FFmpeg DNN inference with LibTorch backend:
./ffmpeg -i input.jpg -vf \
dnn_processing=dnn_backend=torch:model=LibTorch_model.pt -y output.jpg

The LibTorch_model.pt can be generated by Python with torch.jit.script()
api. https://pytorch.org/tutorials/advanced/cpp_export.html. This is
pytorch official guide about how to convert and load torchscript model.
Please note, torch.jit.trace() is not recommanded, since it does
not support ambiguous input size.

Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Wenbin Chen <wenbin.chen@intel.com>
Reviewed-by: Guo Yejun <yejun.guo@intel.com>
2024-03-19 14:48:58 +08:00

153 lines
5.3 KiB
C

/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN inference engine interface.
*/
#ifndef AVFILTER_DNN_INTERFACE_H
#define AVFILTER_DNN_INTERFACE_H
#include <stdint.h>
#include "libavutil/frame.h"
#include "avfilter.h"
#define DNN_GENERIC_ERROR FFERRTAG('D','N','N','!')
typedef enum {DNN_TF = 1, DNN_OV, DNN_TH} DNNBackendType;
typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType;
typedef enum {
DCO_NONE,
DCO_BGR,
DCO_RGB,
} DNNColorOrder;
typedef enum {
DAST_FAIL, // something wrong
DAST_EMPTY_QUEUE, // no more inference result to get
DAST_NOT_READY, // all queued inferences are not finished
DAST_SUCCESS // got a result frame successfully
} DNNAsyncStatusType;
typedef enum {
DFT_NONE,
DFT_PROCESS_FRAME, // process the whole frame
DFT_ANALYTICS_DETECT, // detect from the whole frame
DFT_ANALYTICS_CLASSIFY, // classify for each bounding box
}DNNFunctionType;
typedef enum {
DL_NONE,
DL_NCHW,
DL_NHWC,
} DNNLayout;
typedef struct DNNData{
void *data;
int dims[4];
// dt and order together decide the color format
DNNDataType dt;
DNNColorOrder order;
DNNLayout layout;
float scale;
float mean;
} DNNData;
typedef struct DNNExecBaseParams {
const char *input_name;
const char **output_names;
uint32_t nb_output;
AVFrame *in_frame;
AVFrame *out_frame;
} DNNExecBaseParams;
typedef struct DNNExecClassificationParams {
DNNExecBaseParams base;
const char *target;
} DNNExecClassificationParams;
typedef int (*FramePrePostProc)(AVFrame *frame, DNNData *model, AVFilterContext *filter_ctx);
typedef int (*DetectPostProc)(AVFrame *frame, DNNData *output, uint32_t nb, AVFilterContext *filter_ctx);
typedef int (*ClassifyPostProc)(AVFrame *frame, DNNData *output, uint32_t bbox_index, AVFilterContext *filter_ctx);
typedef struct DNNModel{
// Stores model that can be different for different backends.
void *model;
// Stores options when the model is executed by the backend
const char *options;
// Stores FilterContext used for the interaction between AVFrame and DNNData
AVFilterContext *filter_ctx;
// Stores function type of the model
DNNFunctionType func_type;
// Gets model input information
// Just reuse struct DNNData here, actually the DNNData.data field is not needed.
int (*get_input)(void *model, DNNData *input, const char *input_name);
// Gets model output width/height with given input w/h
int (*get_output)(void *model, const char *input_name, int input_width, int input_height,
const char *output_name, int *output_width, int *output_height);
// set the pre process to transfer data from AVFrame to DNNData
// the default implementation within DNN is used if it is not provided by the filter
FramePrePostProc frame_pre_proc;
// set the post process to transfer data from DNNData to AVFrame
// the default implementation within DNN is used if it is not provided by the filter
FramePrePostProc frame_post_proc;
// set the post process to interpret detect result from DNNData
DetectPostProc detect_post_proc;
// set the post process to interpret classify result from DNNData
ClassifyPostProc classify_post_proc;
} DNNModel;
// Stores pointers to functions for loading, executing, freeing DNN models for one of the backends.
typedef struct DNNModule{
// Loads model and parameters from given file. Returns NULL if it is not possible.
DNNModel *(*load_model)(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx);
// Executes model with specified input and output. Returns the error code otherwise.
int (*execute_model)(const DNNModel *model, DNNExecBaseParams *exec_params);
// Retrieve inference result.
DNNAsyncStatusType (*get_result)(const DNNModel *model, AVFrame **in, AVFrame **out);
// Flush all the pending tasks.
int (*flush)(const DNNModel *model);
// Frees memory allocated for model.
void (*free_model)(DNNModel **model);
} DNNModule;
// Initializes DNNModule depending on chosen backend.
const DNNModule *ff_get_dnn_module(DNNBackendType backend_type, void *log_ctx);
static inline int dnn_get_width_idx_by_layout(DNNLayout layout)
{
return layout == DL_NHWC ? 2 : 3;
}
static inline int dnn_get_height_idx_by_layout(DNNLayout layout)
{
return layout == DL_NHWC ? 1 : 2;
}
static inline int dnn_get_channel_idx_by_layout(DNNLayout layout)
{
return layout == DL_NHWC ? 3 : 1;
}
#endif