1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/tests/checkasm/sw_scale.c
Martin Storsjö f921c58335 checkasm: sw_scale: Produce more realistic test filter coefficients for yuv2yuvX
This avoids triggering overflows in the filters, and avoids stray
test failures in the approximate functions on x86; due to rounding
differences, one implementation might overflow while another one
doesn't.

Signed-off-by: Martin Storsjö <martin@martin.st>
2022-08-19 22:54:51 +03:00

372 lines
14 KiB
C

/*
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with FFmpeg; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <string.h>
#include "libavutil/common.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mem_internal.h"
#include "libswscale/swscale.h"
#include "libswscale/swscale_internal.h"
#include "checkasm.h"
#define randomize_buffers(buf, size) \
do { \
int j; \
for (j = 0; j < size; j+=4) \
AV_WN32(buf + j, rnd()); \
} while (0)
static void yuv2planeX_8_ref(const int16_t *filter, int filterSize,
const int16_t **src, uint8_t *dest, int dstW,
const uint8_t *dither, int offset)
{
// This corresponds to the yuv2planeX_8_c function
int i;
for (i = 0; i < dstW; i++) {
int val = dither[(i + offset) & 7] << 12;
int j;
for (j = 0; j < filterSize; j++)
val += src[j][i] * filter[j];
dest[i]= av_clip_uint8(val >> 19);
}
}
static int cmp_off_by_n(const uint8_t *ref, const uint8_t *test, size_t n, int accuracy)
{
for (size_t i = 0; i < n; i++) {
if (abs(ref[i] - test[i]) > accuracy)
return 1;
}
return 0;
}
static void print_data(uint8_t *p, size_t len, size_t offset)
{
size_t i = 0;
for (; i < len; i++) {
if (i % 8 == 0) {
printf("0x%04zx: ", i+offset);
}
printf("0x%02x ", (uint32_t) p[i]);
if (i % 8 == 7) {
printf("\n");
}
}
if (i % 8 != 0) {
printf("\n");
}
}
static size_t show_differences(uint8_t *a, uint8_t *b, size_t len)
{
for (size_t i = 0; i < len; i++) {
if (a[i] != b[i]) {
size_t offset_of_mismatch = i;
size_t offset;
if (i >= 8) i-=8;
offset = i & (~7);
printf("test a:\n");
print_data(&a[offset], 32, offset);
printf("\ntest b:\n");
print_data(&b[offset], 32, offset);
printf("\n");
return offset_of_mismatch;
}
}
return len;
}
static void check_yuv2yuv1(int accurate)
{
struct SwsContext *ctx;
int osi, isi;
int dstW, offset;
size_t fail_offset;
const int input_sizes[] = {8, 24, 128, 144, 256, 512};
const int INPUT_SIZES = sizeof(input_sizes)/sizeof(input_sizes[0]);
#define LARGEST_INPUT_SIZE 512
const int offsets[] = {0, 3, 8, 11, 16, 19};
const int OFFSET_SIZES = sizeof(offsets)/sizeof(offsets[0]);
const char *accurate_str = (accurate) ? "accurate" : "approximate";
declare_func_emms(AV_CPU_FLAG_MMX, void,
const int16_t *src, uint8_t *dest,
int dstW, const uint8_t *dither, int offset);
LOCAL_ALIGNED_16(int16_t, src_pixels, [LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_16(uint8_t, dst0, [LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_16(uint8_t, dst1, [LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_8(uint8_t, dither, [8]);
randomize_buffers((uint8_t*)dither, 8);
randomize_buffers((uint8_t*)src_pixels, LARGEST_INPUT_SIZE * sizeof(int16_t));
ctx = sws_alloc_context();
if (accurate)
ctx->flags |= SWS_ACCURATE_RND;
if (sws_init_context(ctx, NULL, NULL) < 0)
fail();
ff_sws_init_scale(ctx);
for (isi = 0; isi < INPUT_SIZES; ++isi) {
dstW = input_sizes[isi];
for (osi = 0; osi < OFFSET_SIZES; osi++) {
offset = offsets[osi];
if (check_func(ctx->yuv2plane1, "yuv2yuv1_%d_%d_%s", offset, dstW, accurate_str)){
memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0]));
call_ref(src_pixels, dst0, dstW, dither, offset);
call_new(src_pixels, dst1, dstW, dither, offset);
if (cmp_off_by_n(dst0, dst1, dstW * sizeof(dst0[0]), accurate ? 0 : 2)) {
fail();
printf("failed: yuv2yuv1_%d_%di_%s\n", offset, dstW, accurate_str);
fail_offset = show_differences(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
printf("failing values: src: 0x%04x dither: 0x%02x dst-c: %02x dst-asm: %02x\n",
(int) src_pixels[fail_offset],
(int) dither[(fail_offset + fail_offset) & 7],
(int) dst0[fail_offset],
(int) dst1[fail_offset]);
}
if(dstW == LARGEST_INPUT_SIZE)
bench_new(src_pixels, dst1, dstW, dither, offset);
}
}
}
sws_freeContext(ctx);
}
static void check_yuv2yuvX(int accurate)
{
struct SwsContext *ctx;
int fsi, osi, isi, i, j;
int dstW;
#define LARGEST_FILTER 16
// ff_yuv2planeX_8_sse2 can't handle odd filter sizes
const int filter_sizes[] = {2, 4, 8, 16};
const int FILTER_SIZES = sizeof(filter_sizes)/sizeof(filter_sizes[0]);
#define LARGEST_INPUT_SIZE 512
static const int input_sizes[] = {8, 24, 128, 144, 256, 512};
const int INPUT_SIZES = sizeof(input_sizes)/sizeof(input_sizes[0]);
const char *accurate_str = (accurate) ? "accurate" : "approximate";
declare_func_emms(AV_CPU_FLAG_MMX, void, const int16_t *filter,
int filterSize, const int16_t **src, uint8_t *dest,
int dstW, const uint8_t *dither, int offset);
const int16_t **src;
LOCAL_ALIGNED_16(int16_t, src_pixels, [LARGEST_FILTER * LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_16(int16_t, filter_coeff, [LARGEST_FILTER]);
LOCAL_ALIGNED_16(uint8_t, dst0, [LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_16(uint8_t, dst1, [LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_16(uint8_t, dither, [LARGEST_INPUT_SIZE]);
union VFilterData{
const int16_t *src;
uint16_t coeff[8];
} *vFilterData;
uint8_t d_val = rnd();
memset(dither, d_val, LARGEST_INPUT_SIZE);
randomize_buffers((uint8_t*)src_pixels, LARGEST_FILTER * LARGEST_INPUT_SIZE * sizeof(int16_t));
ctx = sws_alloc_context();
if (accurate)
ctx->flags |= SWS_ACCURATE_RND;
if (sws_init_context(ctx, NULL, NULL) < 0)
fail();
ff_sws_init_scale(ctx);
for(isi = 0; isi < INPUT_SIZES; ++isi){
dstW = input_sizes[isi];
for(osi = 0; osi < 64; osi += 16){
if (dstW <= osi)
continue;
for (fsi = 0; fsi < FILTER_SIZES; ++fsi) {
// Generate filter coefficients for the given filter size,
// with some properties:
// - The coefficients add up to the intended sum (4096, 1<<12)
// - The coefficients contain negative values
// - The filter intermediates don't overflow for worst case
// inputs (all positive coefficients are coupled with
// input_max and all negative coefficients with input_min,
// or vice versa).
// Produce a filter with all coefficients set to
// -((1<<12)/(filter_size-1)) except for one (randomly chosen)
// which is set to ((1<<13)-1).
for (i = 0; i < filter_sizes[fsi]; ++i)
filter_coeff[i] = -((1 << 12) / (filter_sizes[fsi] - 1));
filter_coeff[rnd() % filter_sizes[fsi]] = (1 << 13) - 1;
src = av_malloc(sizeof(int16_t*) * filter_sizes[fsi]);
vFilterData = av_malloc((filter_sizes[fsi] + 2) * sizeof(union VFilterData));
memset(vFilterData, 0, (filter_sizes[fsi] + 2) * sizeof(union VFilterData));
for (i = 0; i < filter_sizes[fsi]; ++i) {
src[i] = &src_pixels[i * LARGEST_INPUT_SIZE];
vFilterData[i].src = src[i] - osi;
for(j = 0; j < 4; ++j)
vFilterData[i].coeff[j + 4] = filter_coeff[i];
}
if (check_func(ctx->yuv2planeX, "yuv2yuvX_%d_%d_%d_%s", filter_sizes[fsi], osi, dstW, accurate_str)){
// use vFilterData for the mmx function
const int16_t *filter = ctx->use_mmx_vfilter ? (const int16_t*)vFilterData : &filter_coeff[0];
memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0]));
// We can't use call_ref here, because we don't know if use_mmx_vfilter was set for that
// function or not, so we can't pass it the parameters correctly.
yuv2planeX_8_ref(&filter_coeff[0], filter_sizes[fsi], src, dst0, dstW - osi, dither, osi);
call_new(filter, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
if (cmp_off_by_n(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0]), accurate ? 0 : 2)) {
fail();
printf("failed: yuv2yuvX_%d_%d_%d_%s\n", filter_sizes[fsi], osi, dstW, accurate_str);
show_differences(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
}
if(dstW == LARGEST_INPUT_SIZE)
bench_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
}
av_freep(&src);
av_freep(&vFilterData);
}
}
}
sws_freeContext(ctx);
#undef FILTER_SIZES
}
#undef SRC_PIXELS
#define SRC_PIXELS 512
static void check_hscale(void)
{
#define MAX_FILTER_WIDTH 40
#define FILTER_SIZES 6
static const int filter_sizes[FILTER_SIZES] = { 4, 8, 12, 16, 32, 40 };
#define HSCALE_PAIRS 2
static const int hscale_pairs[HSCALE_PAIRS][2] = {
{ 8, 14 },
{ 8, 18 },
};
#define LARGEST_INPUT_SIZE 512
#define INPUT_SIZES 6
static const int input_sizes[INPUT_SIZES] = {8, 24, 128, 144, 256, 512};
int i, j, fsi, hpi, width, dstWi;
struct SwsContext *ctx;
// padded
LOCAL_ALIGNED_32(uint8_t, src, [FFALIGN(SRC_PIXELS + MAX_FILTER_WIDTH - 1, 4)]);
LOCAL_ALIGNED_32(uint32_t, dst0, [SRC_PIXELS]);
LOCAL_ALIGNED_32(uint32_t, dst1, [SRC_PIXELS]);
// padded
LOCAL_ALIGNED_32(int16_t, filter, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]);
LOCAL_ALIGNED_32(int32_t, filterPos, [SRC_PIXELS]);
LOCAL_ALIGNED_32(int16_t, filterAvx2, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]);
LOCAL_ALIGNED_32(int32_t, filterPosAvx, [SRC_PIXELS]);
// The dst parameter here is either int16_t or int32_t but we use void* to
// just cover both cases.
declare_func_emms(AV_CPU_FLAG_MMX, void, void *c, void *dst, int dstW,
const uint8_t *src, const int16_t *filter,
const int32_t *filterPos, int filterSize);
ctx = sws_alloc_context();
if (sws_init_context(ctx, NULL, NULL) < 0)
fail();
randomize_buffers(src, SRC_PIXELS + MAX_FILTER_WIDTH - 1);
for (hpi = 0; hpi < HSCALE_PAIRS; hpi++) {
for (fsi = 0; fsi < FILTER_SIZES; fsi++) {
for (dstWi = 0; dstWi < INPUT_SIZES; dstWi++) {
width = filter_sizes[fsi];
ctx->srcBpc = hscale_pairs[hpi][0];
ctx->dstBpc = hscale_pairs[hpi][1];
ctx->hLumFilterSize = ctx->hChrFilterSize = width;
for (i = 0; i < SRC_PIXELS; i++) {
filterPos[i] = i;
filterPosAvx[i] = i;
// These filter cofficients are chosen to try break two corner
// cases, namely:
//
// - Negative filter coefficients. The filters output signed
// values, and it should be possible to end up with negative
// output values.
//
// - Positive clipping. The hscale filter function has clipping
// at (1<<15) - 1
//
// The coefficients sum to the 1.0 point for the hscale
// functions (1 << 14).
for (j = 0; j < width; j++) {
filter[i * width + j] = -((1 << 14) / (width - 1));
}
filter[i * width + (rnd() % width)] = ((1 << 15) - 1);
}
for (i = 0; i < MAX_FILTER_WIDTH; i++) {
// These values should be unused in SIMD implementations but
// may still be read, random coefficients here should help show
// issues where they are used in error.
filter[SRC_PIXELS * width + i] = rnd();
}
ctx->dstW = ctx->chrDstW = input_sizes[dstWi];
ff_sws_init_scale(ctx);
memcpy(filterAvx2, filter, sizeof(uint16_t) * (SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH));
ff_shuffle_filter_coefficients(ctx, filterPosAvx, width, filterAvx2, ctx->dstW);
if (check_func(ctx->hcScale, "hscale_%d_to_%d__fs_%d_dstW_%d", ctx->srcBpc, ctx->dstBpc + 1, width, ctx->dstW)) {
memset(dst0, 0, SRC_PIXELS * sizeof(dst0[0]));
memset(dst1, 0, SRC_PIXELS * sizeof(dst1[0]));
call_ref(NULL, dst0, ctx->dstW, src, filter, filterPos, width);
call_new(NULL, dst1, ctx->dstW, src, filterAvx2, filterPosAvx, width);
if (memcmp(dst0, dst1, ctx->dstW * sizeof(dst0[0])))
fail();
bench_new(NULL, dst0, ctx->dstW, src, filter, filterPosAvx, width);
}
}
}
}
sws_freeContext(ctx);
}
void checkasm_check_sw_scale(void)
{
check_hscale();
report("hscale");
check_yuv2yuv1(0);
check_yuv2yuv1(1);
report("yuv2yuv1");
check_yuv2yuvX(0);
check_yuv2yuvX(1);
report("yuv2yuvX");
}