1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-18 03:19:31 +02:00
FFmpeg/libavcodec/aacpsy.c
Andreas Rheinhardt 790f793844 avutil/common: Don't auto-include mem.h
There are lots of files that don't need it: The number of object
files that actually need it went down from 2011 to 884 here.

Keep it for external users in order to not cause breakages.

Also improve the other headers a bit while just at it.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-03-31 00:08:43 +01:00

1031 lines
39 KiB
C

/*
* AAC encoder psychoacoustic model
* Copyright (C) 2008 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC encoder psychoacoustic model
*/
#include "libavutil/attributes.h"
#include "libavutil/ffmath.h"
#include "libavutil/mem.h"
#include "avcodec.h"
#include "aac.h"
#include "psymodel.h"
/***********************************
* TODOs:
* try other bitrate controlling mechanism (maybe use ratecontrol.c?)
* control quality for quality-based output
**********************************/
/**
* constants for 3GPP AAC psychoacoustic model
* @{
*/
#define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark)
#define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark)
/* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */
#define PSY_3GPP_EN_SPREAD_HI_L1 2.0f
/* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */
#define PSY_3GPP_EN_SPREAD_HI_L2 1.5f
/* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */
#define PSY_3GPP_EN_SPREAD_HI_S 1.5f
/* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */
#define PSY_3GPP_EN_SPREAD_LOW_L 3.0f
/* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */
#define PSY_3GPP_EN_SPREAD_LOW_S 2.0f
#define PSY_3GPP_RPEMIN 0.01f
#define PSY_3GPP_RPELEV 2.0f
#define PSY_3GPP_C1 3.0f /* log2(8) */
#define PSY_3GPP_C2 1.3219281f /* log2(2.5) */
#define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */
#define PSY_SNR_1DB 7.9432821e-1f /* -1dB */
#define PSY_SNR_25DB 3.1622776e-3f /* -25dB */
#define PSY_3GPP_SAVE_SLOPE_L -0.46666667f
#define PSY_3GPP_SAVE_SLOPE_S -0.36363637f
#define PSY_3GPP_SAVE_ADD_L -0.84285712f
#define PSY_3GPP_SAVE_ADD_S -0.75f
#define PSY_3GPP_SPEND_SLOPE_L 0.66666669f
#define PSY_3GPP_SPEND_SLOPE_S 0.81818181f
#define PSY_3GPP_SPEND_ADD_L -0.35f
#define PSY_3GPP_SPEND_ADD_S -0.26111111f
#define PSY_3GPP_CLIP_LO_L 0.2f
#define PSY_3GPP_CLIP_LO_S 0.2f
#define PSY_3GPP_CLIP_HI_L 0.95f
#define PSY_3GPP_CLIP_HI_S 0.75f
#define PSY_3GPP_AH_THR_LONG 0.5f
#define PSY_3GPP_AH_THR_SHORT 0.63f
#define PSY_PE_FORGET_SLOPE 511
enum {
PSY_3GPP_AH_NONE,
PSY_3GPP_AH_INACTIVE,
PSY_3GPP_AH_ACTIVE
};
#define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f)
#define PSY_3GPP_PE_TO_BITS(bits) ((bits) / 1.18f)
/* LAME psy model constants */
#define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order
#define AAC_BLOCK_SIZE_LONG 1024 ///< long block size
#define AAC_BLOCK_SIZE_SHORT 128 ///< short block size
#define AAC_NUM_BLOCKS_SHORT 8 ///< number of blocks in a short sequence
#define PSY_LAME_NUM_SUBBLOCKS 3 ///< Number of sub-blocks in each short block
/**
* @}
*/
/**
* information for single band used by 3GPP TS26.403-inspired psychoacoustic model
*/
typedef struct AacPsyBand{
float energy; ///< band energy
float thr; ///< energy threshold
float thr_quiet; ///< threshold in quiet
float nz_lines; ///< number of non-zero spectral lines
float active_lines; ///< number of active spectral lines
float pe; ///< perceptual entropy
float pe_const; ///< constant part of the PE calculation
float norm_fac; ///< normalization factor for linearization
int avoid_holes; ///< hole avoidance flag
}AacPsyBand;
/**
* single/pair channel context for psychoacoustic model
*/
typedef struct AacPsyChannel{
AacPsyBand band[128]; ///< bands information
AacPsyBand prev_band[128]; ///< bands information from the previous frame
float win_energy; ///< sliding average of channel energy
float iir_state[2]; ///< hi-pass IIR filter state
uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
/* LAME psy model specific members */
float attack_threshold; ///< attack threshold for this channel
float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS];
int prev_attack; ///< attack value for the last short block in the previous sequence
}AacPsyChannel;
/**
* psychoacoustic model frame type-dependent coefficients
*/
typedef struct AacPsyCoeffs{
float ath; ///< absolute threshold of hearing per bands
float barks; ///< Bark value for each spectral band in long frame
float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame
float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame
float min_snr; ///< minimal SNR
}AacPsyCoeffs;
/**
* 3GPP TS26.403-inspired psychoacoustic model specific data
*/
typedef struct AacPsyContext{
int chan_bitrate; ///< bitrate per channel
int frame_bits; ///< average bits per frame
int fill_level; ///< bit reservoir fill level
struct {
float min; ///< minimum allowed PE for bit factor calculation
float max; ///< maximum allowed PE for bit factor calculation
float previous; ///< allowed PE of the previous frame
float correction; ///< PE correction factor
} pe;
AacPsyCoeffs psy_coef[2][64];
AacPsyChannel *ch;
float global_quality; ///< normalized global quality taken from avctx
}AacPsyContext;
/**
* LAME psy model preset struct
*/
typedef struct PsyLamePreset {
int quality; ///< Quality to map the rest of the vaules to.
/* This is overloaded to be both kbps per channel in ABR mode, and
* requested quality in constant quality mode.
*/
float st_lrm; ///< short threshold for L, R, and M channels
} PsyLamePreset;
/**
* LAME psy model preset table for ABR
*/
static const PsyLamePreset psy_abr_map[] = {
/* TODO: Tuning. These were taken from LAME. */
/* kbps/ch st_lrm */
{ 8, 6.60},
{ 16, 6.60},
{ 24, 6.60},
{ 32, 6.60},
{ 40, 6.60},
{ 48, 6.60},
{ 56, 6.60},
{ 64, 6.40},
{ 80, 6.00},
{ 96, 5.60},
{112, 5.20},
{128, 5.20},
{160, 5.20}
};
/**
* LAME psy model preset table for constant quality
*/
static const PsyLamePreset psy_vbr_map[] = {
/* vbr_q st_lrm */
{ 0, 4.20},
{ 1, 4.20},
{ 2, 4.20},
{ 3, 4.20},
{ 4, 4.20},
{ 5, 4.20},
{ 6, 4.20},
{ 7, 4.20},
{ 8, 4.20},
{ 9, 4.20},
{10, 4.20}
};
/**
* LAME psy model FIR coefficient table
*/
static const float psy_fir_coeffs[] = {
-8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
-3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2,
-5.52212e-17 * 2, -0.313819 * 2
};
#if ARCH_MIPS
# include "mips/aacpsy_mips.h"
#endif /* ARCH_MIPS */
/**
* Calculate the ABR attack threshold from the above LAME psymodel table.
*/
static float lame_calc_attack_threshold(int bitrate)
{
/* Assume max bitrate to start with */
int lower_range = 12, upper_range = 12;
int lower_range_kbps = psy_abr_map[12].quality;
int upper_range_kbps = psy_abr_map[12].quality;
int i;
/* Determine which bitrates the value specified falls between.
* If the loop ends without breaking our above assumption of 320kbps was correct.
*/
for (i = 1; i < 13; i++) {
if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) {
upper_range = i;
upper_range_kbps = psy_abr_map[i ].quality;
lower_range = i - 1;
lower_range_kbps = psy_abr_map[i - 1].quality;
break; /* Upper range found */
}
}
/* Determine which range the value specified is closer to */
if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps))
return psy_abr_map[lower_range].st_lrm;
return psy_abr_map[upper_range].st_lrm;
}
/**
* LAME psy model specific initialization
*/
static av_cold void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx)
{
int i, j;
for (i = 0; i < avctx->ch_layout.nb_channels; i++) {
AacPsyChannel *pch = &ctx->ch[i];
if (avctx->flags & AV_CODEC_FLAG_QSCALE)
pch->attack_threshold = psy_vbr_map[av_clip(avctx->global_quality / FF_QP2LAMBDA, 0, 10)].st_lrm;
else
pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->ch_layout.nb_channels / 1000);
for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++)
pch->prev_energy_subshort[j] = 10.0f;
}
}
/**
* Calculate Bark value for given line.
*/
static av_cold float calc_bark(float f)
{
return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
}
#define ATH_ADD 4
/**
* Calculate ATH value for given frequency.
* Borrowed from Lame.
*/
static av_cold float ath(float f, float add)
{
f /= 1000.0f;
return 3.64 * pow(f, -0.8)
- 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4))
+ 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7))
+ (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
}
static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
AacPsyContext *pctx;
float bark;
int i, j, g, start;
float prev, minscale, minath, minsnr, pe_min;
int chan_bitrate = ctx->avctx->bit_rate / ((ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : ctx->avctx->ch_layout.nb_channels);
const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx);
const float num_bark = calc_bark((float)bandwidth);
if (bandwidth <= 0)
return AVERROR(EINVAL);
ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext));
if (!ctx->model_priv_data)
return AVERROR(ENOMEM);
pctx = ctx->model_priv_data;
pctx->global_quality = (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) * 0.01f;
if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) {
/* Use the target average bitrate to compute spread parameters */
chan_bitrate = (int)(chan_bitrate / 120.0 * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120));
}
pctx->chan_bitrate = chan_bitrate;
pctx->frame_bits = FFMIN(2560, chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate);
pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
ctx->bitres.size = 6144 - pctx->frame_bits;
ctx->bitres.size -= ctx->bitres.size % 8;
pctx->fill_level = ctx->bitres.size;
minath = ath(3410 - 0.733 * ATH_ADD, ATH_ADD);
for (j = 0; j < 2; j++) {
AacPsyCoeffs *coeffs = pctx->psy_coef[j];
const uint8_t *band_sizes = ctx->bands[j];
float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) / ctx->avctx->sample_rate;
/* reference encoder uses 2.4% here instead of 60% like the spec says */
float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark;
float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L;
/* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */
float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1;
i = 0;
prev = 0.0;
for (g = 0; g < ctx->num_bands[j]; g++) {
i += band_sizes[g];
bark = calc_bark((i-1) * line_to_frequency);
coeffs[g].barks = (bark + prev) / 2.0;
prev = bark;
}
for (g = 0; g < ctx->num_bands[j] - 1; g++) {
AacPsyCoeffs *coeff = &coeffs[g];
float bark_width = coeffs[g+1].barks - coeffs->barks;
coeff->spread_low[0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_LOW);
coeff->spread_hi [0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_HI);
coeff->spread_low[1] = ff_exp10(-bark_width * en_spread_low);
coeff->spread_hi [1] = ff_exp10(-bark_width * en_spread_hi);
pe_min = bark_pe * bark_width;
minsnr = exp2(pe_min / band_sizes[g]) - 1.5f;
coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB);
}
start = 0;
for (g = 0; g < ctx->num_bands[j]; g++) {
minscale = ath(start * line_to_frequency, ATH_ADD);
for (i = 1; i < band_sizes[g]; i++)
minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD));
coeffs[g].ath = minscale - minath;
start += band_sizes[g];
}
}
pctx->ch = av_calloc(ctx->avctx->ch_layout.nb_channels, sizeof(*pctx->ch));
if (!pctx->ch) {
av_freep(&ctx->model_priv_data);
return AVERROR(ENOMEM);
}
lame_window_init(pctx, ctx->avctx);
return 0;
}
/**
* IIR filter used in block switching decision
*/
static float iir_filter(int in, float state[2])
{
float ret;
ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
state[0] = in;
state[1] = ret;
return ret;
}
/**
* window grouping information stored as bits (0 - new group, 1 - group continues)
*/
static const uint8_t window_grouping[9] = {
0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
};
/**
* Tell encoder which window types to use.
* @see 3GPP TS26.403 5.4.1 "Blockswitching"
*/
static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
const int16_t *audio,
const int16_t *la,
int channel, int prev_type)
{
int i, j;
int br = ((AacPsyContext*)ctx->model_priv_data)->chan_bitrate;
int attack_ratio = br <= 16000 ? 18 : 10;
AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
AacPsyChannel *pch = &pctx->ch[channel];
uint8_t grouping = 0;
int next_type = pch->next_window_seq;
FFPsyWindowInfo wi = { { 0 } };
if (la) {
float s[8], v;
int switch_to_eight = 0;
float sum = 0.0, sum2 = 0.0;
int attack_n = 0;
int stay_short = 0;
for (i = 0; i < 8; i++) {
for (j = 0; j < 128; j++) {
v = iir_filter(la[i*128+j], pch->iir_state);
sum += v*v;
}
s[i] = sum;
sum2 += sum;
}
for (i = 0; i < 8; i++) {
if (s[i] > pch->win_energy * attack_ratio) {
attack_n = i + 1;
switch_to_eight = 1;
break;
}
}
pch->win_energy = pch->win_energy*7/8 + sum2/64;
wi.window_type[1] = prev_type;
switch (prev_type) {
case ONLY_LONG_SEQUENCE:
wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
break;
case LONG_START_SEQUENCE:
wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
grouping = pch->next_grouping;
next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
break;
case LONG_STOP_SEQUENCE:
wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
break;
case EIGHT_SHORT_SEQUENCE:
stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight;
wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0;
next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
break;
}
pch->next_grouping = window_grouping[attack_n];
pch->next_window_seq = next_type;
} else {
for (i = 0; i < 3; i++)
wi.window_type[i] = prev_type;
grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
}
wi.window_shape = 1;
if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
wi.num_windows = 1;
wi.grouping[0] = 1;
} else {
int lastgrp = 0;
wi.num_windows = 8;
for (i = 0; i < 8; i++) {
if (!((grouping >> i) & 1))
lastgrp = i;
wi.grouping[lastgrp]++;
}
}
return wi;
}
/* 5.6.1.2 "Calculation of Bit Demand" */
static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size,
int short_window)
{
const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L;
const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L;
const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L;
const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L;
const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L;
const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L;
float clipped_pe, bit_save, bit_spend, bit_factor, fill_level, forgetful_min_pe;
ctx->fill_level += ctx->frame_bits - bits;
ctx->fill_level = av_clip(ctx->fill_level, 0, size);
fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high);
clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max);
bit_save = (fill_level + bitsave_add) * bitsave_slope;
assert(bit_save <= 0.3f && bit_save >= -0.05000001f);
bit_spend = (fill_level + bitspend_add) * bitspend_slope;
assert(bit_spend <= 0.5f && bit_spend >= -0.1f);
/* The bit factor graph in the spec is obviously incorrect.
* bit_spend + ((bit_spend - bit_spend))...
* The reference encoder subtracts everything from 1, but also seems incorrect.
* 1 - bit_save + ((bit_spend + bit_save))...
* Hopefully below is correct.
*/
bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min);
/* NOTE: The reference encoder attempts to center pe max/min around the current pe.
* Here we do that by slowly forgetting pe.min when pe stays in a range that makes
* it unlikely (ie: above the mean)
*/
ctx->pe.max = FFMAX(pe, ctx->pe.max);
forgetful_min_pe = ((ctx->pe.min * PSY_PE_FORGET_SLOPE)
+ FFMAX(ctx->pe.min, pe * (pe / ctx->pe.max))) / (PSY_PE_FORGET_SLOPE + 1);
ctx->pe.min = FFMIN(pe, forgetful_min_pe);
/* NOTE: allocate a minimum of 1/8th average frame bits, to avoid
* reservoir starvation from producing zero-bit frames
*/
return FFMIN(
ctx->frame_bits * bit_factor,
FFMAX(ctx->frame_bits + size - bits, ctx->frame_bits / 8));
}
static float calc_pe_3gpp(AacPsyBand *band)
{
float pe, a;
band->pe = 0.0f;
band->pe_const = 0.0f;
band->active_lines = 0.0f;
if (band->energy > band->thr) {
a = log2f(band->energy);
pe = a - log2f(band->thr);
band->active_lines = band->nz_lines;
if (pe < PSY_3GPP_C1) {
pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2;
a = a * PSY_3GPP_C3 + PSY_3GPP_C2;
band->active_lines *= PSY_3GPP_C3;
}
band->pe = pe * band->nz_lines;
band->pe_const = a * band->nz_lines;
}
return band->pe;
}
static float calc_reduction_3gpp(float a, float desired_pe, float pe,
float active_lines)
{
float thr_avg, reduction;
if(active_lines == 0.0)
return 0;
thr_avg = exp2f((a - pe) / (4.0f * active_lines));
reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg;
return FFMAX(reduction, 0.0f);
}
static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr,
float reduction)
{
float thr = band->thr;
if (band->energy > thr) {
thr = sqrtf(thr);
thr = sqrtf(thr) + reduction;
thr *= thr;
thr *= thr;
/* This deviates from the 3GPP spec to match the reference encoder.
* It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands
* that have hole avoidance on (active or inactive). It always reduces the
* threshold of bands with hole avoidance off.
*/
if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) {
thr = FFMAX(band->thr, band->energy * min_snr);
band->avoid_holes = PSY_3GPP_AH_ACTIVE;
}
}
return thr;
}
#ifndef calc_thr_3gpp
static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch,
const uint8_t *band_sizes, const float *coefs, const int cutoff)
{
int i, w, g;
int start = 0, wstart = 0;
for (w = 0; w < wi->num_windows*16; w += 16) {
wstart = 0;
for (g = 0; g < num_bands; g++) {
AacPsyBand *band = &pch->band[w+g];
float form_factor = 0.0f;
float Temp;
band->energy = 0.0f;
if (wstart < cutoff) {
for (i = 0; i < band_sizes[g]; i++) {
band->energy += coefs[start+i] * coefs[start+i];
form_factor += sqrtf(fabs(coefs[start+i]));
}
}
Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0;
band->thr = band->energy * 0.001258925f;
band->nz_lines = form_factor * sqrtf(Temp);
start += band_sizes[g];
wstart += band_sizes[g];
}
}
}
#endif /* calc_thr_3gpp */
#ifndef psy_hp_filter
static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs)
{
int i, j;
for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) {
float sum1, sum2;
sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2];
sum2 = 0.0;
for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) {
sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]);
sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]);
}
/* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768.
* Tuning this for normalized floats would be difficult. */
hpfsmpl[i] = (sum1 + sum2) * 32768.0f;
}
}
#endif /* psy_hp_filter */
/**
* Calculate band thresholds as suggested in 3GPP TS26.403
*/
static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel,
const float *coefs, const FFPsyWindowInfo *wi)
{
AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
AacPsyChannel *pch = &pctx->ch[channel];
int i, w, g;
float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0};
float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f);
const int num_bands = ctx->num_bands[wi->num_windows == 8];
const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8];
AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8];
const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG;
const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx);
const int cutoff = bandwidth * 2048 / wi->num_windows / ctx->avctx->sample_rate;
//calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs, cutoff);
//modify thresholds and energies - spread, threshold in quiet, pre-echo control
for (w = 0; w < wi->num_windows*16; w += 16) {
AacPsyBand *bands = &pch->band[w];
/* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */
spread_en[0] = bands[0].energy;
for (g = 1; g < num_bands; g++) {
bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]);
spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]);
}
for (g = num_bands - 2; g >= 0; g--) {
bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]);
spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]);
}
//5.4.2.4 "Threshold in quiet"
for (g = 0; g < num_bands; g++) {
AacPsyBand *band = &bands[g];
band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath);
//5.4.2.5 "Pre-echo control"
if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (!w && wi->window_type[1] == LONG_START_SEQUENCE)))
band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr,
PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
/* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */
pe += calc_pe_3gpp(band);
a += band->pe_const;
active_lines += band->active_lines;
/* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */
if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f)
band->avoid_holes = PSY_3GPP_AH_NONE;
else
band->avoid_holes = PSY_3GPP_AH_INACTIVE;
}
}
/* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */
ctx->ch[channel].entropy = pe;
if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) {
/* (2.5 * 120) achieves almost transparent rate, and we want to give
* ample room downwards, so we make that equivalent to QSCALE=2.4
*/
desired_pe = pe * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) / (2 * 2.5f * 120.0f);
desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe));
desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping
/* PE slope smoothing */
if (ctx->bitres.bits > 0) {
desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe));
desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping
}
pctx->pe.max = FFMAX(pe, pctx->pe.max);
pctx->pe.min = FFMIN(pe, pctx->pe.min);
} else {
desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8);
desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits);
/* NOTE: PE correction is kept simple. During initial testing it had very
* little effect on the final bitrate. Probably a good idea to come
* back and do more testing later.
*/
if (ctx->bitres.bits > 0)
desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits),
0.85f, 1.15f);
}
pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits);
ctx->bitres.alloc = desired_bits;
if (desired_pe < pe) {
/* 5.6.1.3.4 "First Estimation of the reduction value" */
for (w = 0; w < wi->num_windows*16; w += 16) {
reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines);
pe = 0.0f;
a = 0.0f;
active_lines = 0.0f;
for (g = 0; g < num_bands; g++) {
AacPsyBand *band = &pch->band[w+g];
band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
/* recalculate PE */
pe += calc_pe_3gpp(band);
a += band->pe_const;
active_lines += band->active_lines;
}
}
/* 5.6.1.3.5 "Second Estimation of the reduction value" */
for (i = 0; i < 2; i++) {
float pe_no_ah = 0.0f, desired_pe_no_ah;
active_lines = a = 0.0f;
for (w = 0; w < wi->num_windows*16; w += 16) {
for (g = 0; g < num_bands; g++) {
AacPsyBand *band = &pch->band[w+g];
if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) {
pe_no_ah += band->pe;
a += band->pe_const;
active_lines += band->active_lines;
}
}
}
desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f);
if (active_lines > 0.0f)
reduction = calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines);
pe = 0.0f;
for (w = 0; w < wi->num_windows*16; w += 16) {
for (g = 0; g < num_bands; g++) {
AacPsyBand *band = &pch->band[w+g];
if (active_lines > 0.0f)
band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
pe += calc_pe_3gpp(band);
if (band->thr > 0.0f)
band->norm_fac = band->active_lines / band->thr;
else
band->norm_fac = 0.0f;
norm_fac += band->norm_fac;
}
}
delta_pe = desired_pe - pe;
if (fabs(delta_pe) > 0.05f * desired_pe)
break;
}
if (pe < 1.15f * desired_pe) {
/* 6.6.1.3.6 "Final threshold modification by linearization" */
norm_fac = norm_fac ? 1.0f / norm_fac : 0;
for (w = 0; w < wi->num_windows*16; w += 16) {
for (g = 0; g < num_bands; g++) {
AacPsyBand *band = &pch->band[w+g];
if (band->active_lines > 0.5f) {
float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe;
float thr = band->thr;
thr *= exp2f(delta_sfb_pe / band->active_lines);
if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE)
thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy);
band->thr = thr;
}
}
}
} else {
/* 5.6.1.3.7 "Further perceptual entropy reduction" */
g = num_bands;
while (pe > desired_pe && g--) {
for (w = 0; w < wi->num_windows*16; w+= 16) {
AacPsyBand *band = &pch->band[w+g];
if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) {
coeffs[g].min_snr = PSY_SNR_1DB;
band->thr = band->energy * PSY_SNR_1DB;
pe += band->active_lines * 1.5f - band->pe;
}
}
}
/* TODO: allow more holes (unused without mid/side) */
}
}
for (w = 0; w < wi->num_windows*16; w += 16) {
for (g = 0; g < num_bands; g++) {
AacPsyBand *band = &pch->band[w+g];
FFPsyBand *psy_band = &ctx->ch[channel].psy_bands[w+g];
psy_band->threshold = band->thr;
psy_band->energy = band->energy;
psy_band->spread = band->active_lines * 2.0f / band_sizes[g];
psy_band->bits = PSY_3GPP_PE_TO_BITS(band->pe);
}
}
memcpy(pch->prev_band, pch->band, sizeof(pch->band));
}
static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
const float **coeffs, const FFPsyWindowInfo *wi)
{
int ch;
FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel);
for (ch = 0; ch < group->num_ch; ch++)
psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]);
}
static av_cold void psy_3gpp_end(FFPsyContext *apc)
{
AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data;
if (pctx)
av_freep(&pctx->ch);
av_freep(&apc->model_priv_data);
}
static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock)
{
int blocktype = ONLY_LONG_SEQUENCE;
if (uselongblock) {
if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE)
blocktype = LONG_STOP_SEQUENCE;
} else {
blocktype = EIGHT_SHORT_SEQUENCE;
if (ctx->next_window_seq == ONLY_LONG_SEQUENCE)
ctx->next_window_seq = LONG_START_SEQUENCE;
if (ctx->next_window_seq == LONG_STOP_SEQUENCE)
ctx->next_window_seq = EIGHT_SHORT_SEQUENCE;
}
wi->window_type[0] = ctx->next_window_seq;
ctx->next_window_seq = blocktype;
}
static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio,
const float *la, int channel, int prev_type)
{
AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
AacPsyChannel *pch = &pctx->ch[channel];
int grouping = 0;
int uselongblock = 1;
int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
int i;
FFPsyWindowInfo wi = { { 0 } };
if (la) {
float hpfsmpl[AAC_BLOCK_SIZE_LONG];
const float *pf = hpfsmpl;
float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN);
int att_sum = 0;
/* LAME comment: apply high pass filter of fs/4 */
psy_hp_filter(firbuf, hpfsmpl, psy_fir_coeffs);
/* Calculate the energies of each sub-shortblock */
for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) {
energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)];
assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0);
attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)];
energy_short[0] += energy_subshort[i];
}
for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) {
const float *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS);
float p = 1.0f;
for (; pf < pfe; pf++)
p = FFMAX(p, fabsf(*pf));
pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p;
energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p;
/* NOTE: The indexes below are [i + 3 - 2] in the LAME source.
* Obviously the 3 and 2 have some significance, or this would be just [i + 1]
* (which is what we use here). What the 3 stands for is ambiguous, as it is both
* number of short blocks, and the number of sub-short blocks.
* It seems that LAME is comparing each sub-block to sub-block + 1 in the
* previous block.
*/
if (p > energy_subshort[i + 1])
p = p / energy_subshort[i + 1];
else if (energy_subshort[i + 1] > p * 10.0f)
p = energy_subshort[i + 1] / (p * 10.0f);
else
p = 0.0;
attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p;
}
/* compare energy between sub-short blocks */
for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++)
if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS])
if (attack_intensity[i] > pch->attack_threshold)
attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1;
/* should have energy change between short blocks, in order to avoid periodic signals */
/* Good samples to show the effect are Trumpet test songs */
/* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */
/* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */
for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) {
const float u = energy_short[i - 1];
const float v = energy_short[i];
const float m = FFMAX(u, v);
if (m < 40000) { /* (2) */
if (u < 1.7f * v && v < 1.7f * u) { /* (1) */
if (i == 1 && attacks[0] < attacks[i])
attacks[0] = 0;
attacks[i] = 0;
}
}
att_sum += attacks[i];
}
if (attacks[0] <= pch->prev_attack)
attacks[0] = 0;
att_sum += attacks[0];
/* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */
if (pch->prev_attack == 3 || att_sum) {
uselongblock = 0;
for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++)
if (attacks[i] && attacks[i-1])
attacks[i] = 0;
}
} else {
/* We have no lookahead info, so just use same type as the previous sequence. */
uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE);
}
lame_apply_block_type(pch, &wi, uselongblock);
wi.window_type[1] = prev_type;
if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
wi.num_windows = 1;
wi.grouping[0] = 1;
if (wi.window_type[0] == LONG_START_SEQUENCE)
wi.window_shape = 0;
else
wi.window_shape = 1;
} else {
int lastgrp = 0;
wi.num_windows = 8;
wi.window_shape = 0;
for (i = 0; i < 8; i++) {
if (!((pch->next_grouping >> i) & 1))
lastgrp = i;
wi.grouping[lastgrp]++;
}
}
/* Determine grouping, based on the location of the first attack, and save for
* the next frame.
* FIXME: Move this to analysis.
* TODO: Tune groupings depending on attack location
* TODO: Handle more than one attack in a group
*/
for (i = 0; i < 9; i++) {
if (attacks[i]) {
grouping = i;
break;
}
}
pch->next_grouping = window_grouping[grouping];
pch->prev_attack = attacks[8];
return wi;
}
const FFPsyModel ff_aac_psy_model =
{
.name = "3GPP TS 26.403-inspired model",
.init = psy_3gpp_init,
.window = psy_lame_window,
.analyze = psy_3gpp_analyze,
.end = psy_3gpp_end,
};