1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/libavcodec/ffv1dec.c
Reimar Döffinger 8437cc7206 ffv1dec: Avoid unnecessarily large stack usage and copies.
Ideally the compiler could figure this out on its own,
but it seems it can't.
An alternative that would avoid the messy explicit memcpy
would be to use a sub-struct for the parts that should
be preserved, which can then simply be assigned.

Signed-off-by: Reimar Döffinger <Reimar.Doeffinger@gmx.de>
2014-11-22 19:06:12 +01:00

1102 lines
39 KiB
C

/*
* FFV1 decoder
*
* Copyright (c) 2003-2013 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* FF Video Codec 1 (a lossless codec) decoder
*/
#include "libavutil/avassert.h"
#include "libavutil/crc.h"
#include "libavutil/opt.h"
#include "libavutil/imgutils.h"
#include "libavutil/pixdesc.h"
#include "libavutil/timer.h"
#include "avcodec.h"
#include "internal.h"
#include "get_bits.h"
#include "rangecoder.h"
#include "golomb.h"
#include "mathops.h"
#include "ffv1.h"
static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state,
int is_signed)
{
if (get_rac(c, state + 0))
return 0;
else {
int i, e, a;
e = 0;
while (get_rac(c, state + 1 + FFMIN(e, 9))) // 1..10
e++;
a = 1;
for (i = e - 1; i >= 0; i--)
a += a + get_rac(c, state + 22 + FFMIN(i, 9)); // 22..31
e = -(is_signed && get_rac(c, state + 11 + FFMIN(e, 10))); // 11..21
return (a ^ e) - e;
}
}
static av_noinline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed)
{
return get_symbol_inline(c, state, is_signed);
}
static inline int get_vlc_symbol(GetBitContext *gb, VlcState *const state,
int bits)
{
int k, i, v, ret;
i = state->count;
k = 0;
while (i < state->error_sum) { // FIXME: optimize
k++;
i += i;
}
v = get_sr_golomb(gb, k, 12, bits);
av_dlog(NULL, "v:%d bias:%d error:%d drift:%d count:%d k:%d",
v, state->bias, state->error_sum, state->drift, state->count, k);
#if 0 // JPEG LS
if (k == 0 && 2 * state->drift <= -state->count)
v ^= (-1);
#else
v ^= ((2 * state->drift + state->count) >> 31);
#endif
ret = fold(v + state->bias, bits);
update_vlc_state(state, v);
return ret;
}
static av_always_inline void decode_line(FFV1Context *s, int w,
int16_t *sample[2],
int plane_index, int bits)
{
PlaneContext *const p = &s->plane[plane_index];
RangeCoder *const c = &s->c;
int x;
int run_count = 0;
int run_mode = 0;
int run_index = s->run_index;
if (s->slice_coding_mode == 1) {
int i;
for (x = 0; x < w; x++) {
int v = 0;
for (i=0; i<bits; i++) {
uint8_t state = 128;
v += v + get_rac(c, &state);
}
sample[1][x] = v;
}
return;
}
for (x = 0; x < w; x++) {
int diff, context, sign;
context = get_context(p, sample[1] + x, sample[0] + x, sample[1] + x);
if (context < 0) {
context = -context;
sign = 1;
} else
sign = 0;
av_assert2(context < p->context_count);
if (s->ac) {
diff = get_symbol_inline(c, p->state[context], 1);
} else {
if (context == 0 && run_mode == 0)
run_mode = 1;
if (run_mode) {
if (run_count == 0 && run_mode == 1) {
if (get_bits1(&s->gb)) {
run_count = 1 << ff_log2_run[run_index];
if (x + run_count <= w)
run_index++;
} else {
if (ff_log2_run[run_index])
run_count = get_bits(&s->gb, ff_log2_run[run_index]);
else
run_count = 0;
if (run_index)
run_index--;
run_mode = 2;
}
}
run_count--;
if (run_count < 0) {
run_mode = 0;
run_count = 0;
diff = get_vlc_symbol(&s->gb, &p->vlc_state[context],
bits);
if (diff >= 0)
diff++;
} else
diff = 0;
} else
diff = get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
av_dlog(s->avctx, "count:%d index:%d, mode:%d, x:%d pos:%d\n",
run_count, run_index, run_mode, x, get_bits_count(&s->gb));
}
if (sign)
diff = -diff;
sample[1][x] = (predict(sample[1] + x, sample[0] + x) + diff) &
((1 << bits) - 1);
}
s->run_index = run_index;
}
static void decode_plane(FFV1Context *s, uint8_t *src,
int w, int h, int stride, int plane_index)
{
int x, y;
int16_t *sample[2];
sample[0] = s->sample_buffer + 3;
sample[1] = s->sample_buffer + w + 6 + 3;
s->run_index = 0;
memset(s->sample_buffer, 0, 2 * (w + 6) * sizeof(*s->sample_buffer));
for (y = 0; y < h; y++) {
int16_t *temp = sample[0]; // FIXME: try a normal buffer
sample[0] = sample[1];
sample[1] = temp;
sample[1][-1] = sample[0][0];
sample[0][w] = sample[0][w - 1];
// { START_TIMER
if (s->avctx->bits_per_raw_sample <= 8) {
decode_line(s, w, sample, plane_index, 8);
for (x = 0; x < w; x++)
src[x + stride * y] = sample[1][x];
} else {
decode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
if (s->packed_at_lsb) {
for (x = 0; x < w; x++) {
((uint16_t*)(src + stride*y))[x] = sample[1][x];
}
} else {
for (x = 0; x < w; x++) {
((uint16_t*)(src + stride*y))[x] = sample[1][x] << (16 - s->avctx->bits_per_raw_sample);
}
}
}
// STOP_TIMER("decode-line") }
}
}
static void decode_rgb_frame(FFV1Context *s, uint8_t *src[3], int w, int h, int stride[3])
{
int x, y, p;
int16_t *sample[4][2];
int lbd = s->avctx->bits_per_raw_sample <= 8;
int bits = s->avctx->bits_per_raw_sample > 0 ? s->avctx->bits_per_raw_sample : 8;
int offset = 1 << bits;
for (x = 0; x < 4; x++) {
sample[x][0] = s->sample_buffer + x * 2 * (w + 6) + 3;
sample[x][1] = s->sample_buffer + (x * 2 + 1) * (w + 6) + 3;
}
s->run_index = 0;
memset(s->sample_buffer, 0, 8 * (w + 6) * sizeof(*s->sample_buffer));
for (y = 0; y < h; y++) {
for (p = 0; p < 3 + s->transparency; p++) {
int16_t *temp = sample[p][0]; // FIXME: try a normal buffer
sample[p][0] = sample[p][1];
sample[p][1] = temp;
sample[p][1][-1]= sample[p][0][0 ];
sample[p][0][ w]= sample[p][0][w-1];
if (lbd && s->slice_coding_mode == 0)
decode_line(s, w, sample[p], (p + 1)/2, 9);
else
decode_line(s, w, sample[p], (p + 1)/2, bits + (s->slice_coding_mode != 1));
}
for (x = 0; x < w; x++) {
int g = sample[0][1][x];
int b = sample[1][1][x];
int r = sample[2][1][x];
int a = sample[3][1][x];
if (s->slice_coding_mode != 1) {
b -= offset;
r -= offset;
g -= (b * s->slice_rct_by_coef + r * s->slice_rct_ry_coef) >> 2;
b += g;
r += g;
}
if (lbd)
*((uint32_t*)(src[0] + x*4 + stride[0]*y)) = b + (g<<8) + (r<<16) + (a<<24);
else {
*((uint16_t*)(src[0] + x*2 + stride[0]*y)) = b;
*((uint16_t*)(src[1] + x*2 + stride[1]*y)) = g;
*((uint16_t*)(src[2] + x*2 + stride[2]*y)) = r;
}
}
}
}
static int decode_slice_header(FFV1Context *f, FFV1Context *fs)
{
RangeCoder *c = &fs->c;
uint8_t state[CONTEXT_SIZE];
unsigned ps, i, context_count;
memset(state, 128, sizeof(state));
av_assert0(f->version > 2);
fs->slice_x = get_symbol(c, state, 0) * f->width ;
fs->slice_y = get_symbol(c, state, 0) * f->height;
fs->slice_width = (get_symbol(c, state, 0) + 1) * f->width + fs->slice_x;
fs->slice_height = (get_symbol(c, state, 0) + 1) * f->height + fs->slice_y;
fs->slice_x /= f->num_h_slices;
fs->slice_y /= f->num_v_slices;
fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x;
fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y;
if ((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height)
return -1;
if ( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
|| (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
return -1;
for (i = 0; i < f->plane_count; i++) {
PlaneContext * const p = &fs->plane[i];
int idx = get_symbol(c, state, 0);
if (idx > (unsigned)f->quant_table_count) {
av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n");
return -1;
}
p->quant_table_index = idx;
memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table));
context_count = f->context_count[idx];
if (p->context_count < context_count) {
av_freep(&p->state);
av_freep(&p->vlc_state);
}
p->context_count = context_count;
}
ps = get_symbol(c, state, 0);
if (ps == 1) {
f->cur->interlaced_frame = 1;
f->cur->top_field_first = 1;
} else if (ps == 2) {
f->cur->interlaced_frame = 1;
f->cur->top_field_first = 0;
} else if (ps == 3) {
f->cur->interlaced_frame = 0;
}
f->cur->sample_aspect_ratio.num = get_symbol(c, state, 0);
f->cur->sample_aspect_ratio.den = get_symbol(c, state, 0);
if (av_image_check_sar(f->width, f->height,
f->cur->sample_aspect_ratio) < 0) {
av_log(f->avctx, AV_LOG_WARNING, "ignoring invalid SAR: %u/%u\n",
f->cur->sample_aspect_ratio.num,
f->cur->sample_aspect_ratio.den);
f->cur->sample_aspect_ratio = (AVRational){ 0, 1 };
}
if (fs->version > 3) {
fs->slice_reset_contexts = get_rac(c, state);
fs->slice_coding_mode = get_symbol(c, state, 0);
if (fs->slice_coding_mode != 1) {
fs->slice_rct_by_coef = get_symbol(c, state, 0);
fs->slice_rct_ry_coef = get_symbol(c, state, 0);
if ((uint64_t)fs->slice_rct_by_coef + (uint64_t)fs->slice_rct_ry_coef > 4) {
av_log(f->avctx, AV_LOG_ERROR, "slice_rct_y_coef out of range\n");
return AVERROR_INVALIDDATA;
}
}
}
return 0;
}
static int decode_slice(AVCodecContext *c, void *arg)
{
FFV1Context *fs = *(void **)arg;
FFV1Context *f = fs->avctx->priv_data;
int width, height, x, y, ret;
const int ps = av_pix_fmt_desc_get(c->pix_fmt)->comp[0].step_minus1 + 1;
AVFrame * const p = f->cur;
int i, si;
for( si=0; fs != f->slice_context[si]; si ++)
;
if(f->fsrc && !p->key_frame)
ff_thread_await_progress(&f->last_picture, si, 0);
if(f->fsrc && !p->key_frame) {
FFV1Context *fssrc = f->fsrc->slice_context[si];
FFV1Context *fsdst = f->slice_context[si];
av_assert1(fsdst->plane_count == fssrc->plane_count);
av_assert1(fsdst == fs);
if (!p->key_frame)
fsdst->slice_damaged |= fssrc->slice_damaged;
for (i = 0; i < f->plane_count; i++) {
PlaneContext *psrc = &fssrc->plane[i];
PlaneContext *pdst = &fsdst->plane[i];
av_free(pdst->state);
av_free(pdst->vlc_state);
memcpy(pdst, psrc, sizeof(*pdst));
pdst->state = NULL;
pdst->vlc_state = NULL;
if (fssrc->ac) {
pdst->state = av_malloc_array(CONTEXT_SIZE, psrc->context_count);
memcpy(pdst->state, psrc->state, CONTEXT_SIZE * psrc->context_count);
} else {
pdst->vlc_state = av_malloc_array(sizeof(*pdst->vlc_state), psrc->context_count);
memcpy(pdst->vlc_state, psrc->vlc_state, sizeof(*pdst->vlc_state) * psrc->context_count);
}
}
}
fs->slice_rct_by_coef = 1;
fs->slice_rct_ry_coef = 1;
if (f->version > 2) {
if (ffv1_init_slice_state(f, fs) < 0)
return AVERROR(ENOMEM);
if (decode_slice_header(f, fs) < 0) {
fs->slice_damaged = 1;
return AVERROR_INVALIDDATA;
}
}
if ((ret = ffv1_init_slice_state(f, fs)) < 0)
return ret;
if (f->cur->key_frame || fs->slice_reset_contexts)
ffv1_clear_slice_state(f, fs);
width = fs->slice_width;
height = fs->slice_height;
x = fs->slice_x;
y = fs->slice_y;
if (!fs->ac) {
if (f->version == 3 && f->micro_version > 1 || f->version > 3)
get_rac(&fs->c, (uint8_t[]) { 129 });
fs->ac_byte_count = f->version > 2 || (!x && !y) ? fs->c.bytestream - fs->c.bytestream_start - 1 : 0;
init_get_bits(&fs->gb,
fs->c.bytestream_start + fs->ac_byte_count,
(fs->c.bytestream_end - fs->c.bytestream_start - fs->ac_byte_count) * 8);
}
av_assert1(width && height);
if (f->colorspace == 0) {
const int chroma_width = FF_CEIL_RSHIFT(width, f->chroma_h_shift);
const int chroma_height = FF_CEIL_RSHIFT(height, f->chroma_v_shift);
const int cx = x >> f->chroma_h_shift;
const int cy = y >> f->chroma_v_shift;
decode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0);
if (f->chroma_planes) {
decode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
decode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
}
if (fs->transparency)
decode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2);
} else {
uint8_t *planes[3] = { p->data[0] + ps * x + y * p->linesize[0],
p->data[1] + ps * x + y * p->linesize[1],
p->data[2] + ps * x + y * p->linesize[2] };
decode_rgb_frame(fs, planes, width, height, p->linesize);
}
if (fs->ac && f->version > 2) {
int v;
get_rac(&fs->c, (uint8_t[]) { 129 });
v = fs->c.bytestream_end - fs->c.bytestream - 2 - 5*f->ec;
if (v) {
av_log(f->avctx, AV_LOG_ERROR, "bytestream end mismatching by %d\n", v);
fs->slice_damaged = 1;
}
}
emms_c();
ff_thread_report_progress(&f->picture, si, 0);
return 0;
}
static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale)
{
int v;
int i = 0;
uint8_t state[CONTEXT_SIZE];
memset(state, 128, sizeof(state));
for (v = 0; i < 128; v++) {
unsigned len = get_symbol(c, state, 0) + 1;
if (len > 128 - i)
return AVERROR_INVALIDDATA;
while (len--) {
quant_table[i] = scale * v;
i++;
}
}
for (i = 1; i < 128; i++)
quant_table[256 - i] = -quant_table[i];
quant_table[128] = -quant_table[127];
return 2 * v - 1;
}
static int read_quant_tables(RangeCoder *c,
int16_t quant_table[MAX_CONTEXT_INPUTS][256])
{
int i;
int context_count = 1;
for (i = 0; i < 5; i++) {
context_count *= read_quant_table(c, quant_table[i], context_count);
if (context_count > 32768U) {
return AVERROR_INVALIDDATA;
}
}
return (context_count + 1) / 2;
}
static int read_extra_header(FFV1Context *f)
{
RangeCoder *const c = &f->c;
uint8_t state[CONTEXT_SIZE];
int i, j, k, ret;
uint8_t state2[32][CONTEXT_SIZE];
memset(state2, 128, sizeof(state2));
memset(state, 128, sizeof(state));
ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size);
ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
f->version = get_symbol(c, state, 0);
if (f->version < 2) {
av_log(f->avctx, AV_LOG_ERROR, "Invalid version in global header\n");
return AVERROR_INVALIDDATA;
}
if (f->version > 2) {
c->bytestream_end -= 4;
f->micro_version = get_symbol(c, state, 0);
}
f->ac = f->avctx->coder_type = get_symbol(c, state, 0);
if (f->ac > 1) {
for (i = 1; i < 256; i++)
f->state_transition[i] = get_symbol(c, state, 1) + c->one_state[i];
}
f->colorspace = get_symbol(c, state, 0); //YUV cs type
f->avctx->bits_per_raw_sample = get_symbol(c, state, 0);
f->chroma_planes = get_rac(c, state);
f->chroma_h_shift = get_symbol(c, state, 0);
f->chroma_v_shift = get_symbol(c, state, 0);
f->transparency = get_rac(c, state);
f->plane_count = 1 + (f->chroma_planes || f->version<4) + f->transparency;
f->num_h_slices = 1 + get_symbol(c, state, 0);
f->num_v_slices = 1 + get_symbol(c, state, 0);
if (f->num_h_slices > (unsigned)f->width || !f->num_h_slices ||
f->num_v_slices > (unsigned)f->height || !f->num_v_slices
) {
av_log(f->avctx, AV_LOG_ERROR, "slice count invalid\n");
return AVERROR_INVALIDDATA;
}
f->quant_table_count = get_symbol(c, state, 0);
if (f->quant_table_count > (unsigned)MAX_QUANT_TABLES)
return AVERROR_INVALIDDATA;
for (i = 0; i < f->quant_table_count; i++) {
f->context_count[i] = read_quant_tables(c, f->quant_tables[i]);
if (f->context_count[i] < 0) {
av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
return AVERROR_INVALIDDATA;
}
}
if ((ret = ffv1_allocate_initial_states(f)) < 0)
return ret;
for (i = 0; i < f->quant_table_count; i++)
if (get_rac(c, state)) {
for (j = 0; j < f->context_count[i]; j++)
for (k = 0; k < CONTEXT_SIZE; k++) {
int pred = j ? f->initial_states[i][j - 1][k] : 128;
f->initial_states[i][j][k] =
(pred + get_symbol(c, state2[k], 1)) & 0xFF;
}
}
if (f->version > 2) {
f->ec = get_symbol(c, state, 0);
if (f->micro_version > 2)
f->intra = get_symbol(c, state, 0);
}
if (f->version > 2) {
unsigned v;
v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0,
f->avctx->extradata, f->avctx->extradata_size);
if (v) {
av_log(f->avctx, AV_LOG_ERROR, "CRC mismatch %X!\n", v);
return AVERROR_INVALIDDATA;
}
}
if (f->avctx->debug & FF_DEBUG_PICT_INFO)
av_log(f->avctx, AV_LOG_DEBUG,
"global: ver:%d.%d, coder:%d, colorspace: %d bpr:%d chroma:%d(%d:%d), alpha:%d slices:%dx%d qtabs:%d ec:%d intra:%d\n",
f->version, f->micro_version,
f->ac,
f->colorspace,
f->avctx->bits_per_raw_sample,
f->chroma_planes, f->chroma_h_shift, f->chroma_v_shift,
f->transparency,
f->num_h_slices, f->num_v_slices,
f->quant_table_count,
f->ec,
f->intra
);
return 0;
}
static int read_header(FFV1Context *f)
{
uint8_t state[CONTEXT_SIZE];
int i, j, context_count = -1; //-1 to avoid warning
RangeCoder *const c = &f->slice_context[0]->c;
memset(state, 128, sizeof(state));
if (f->version < 2) {
int chroma_planes, chroma_h_shift, chroma_v_shift, transparency, colorspace, bits_per_raw_sample;
unsigned v= get_symbol(c, state, 0);
if (v >= 2) {
av_log(f->avctx, AV_LOG_ERROR, "invalid version %d in ver01 header\n", v);
return AVERROR_INVALIDDATA;
}
f->version = v;
f->ac = f->avctx->coder_type = get_symbol(c, state, 0);
if (f->ac > 1) {
for (i = 1; i < 256; i++)
f->state_transition[i] = get_symbol(c, state, 1) + c->one_state[i];
}
colorspace = get_symbol(c, state, 0); //YUV cs type
bits_per_raw_sample = f->version > 0 ? get_symbol(c, state, 0) : f->avctx->bits_per_raw_sample;
chroma_planes = get_rac(c, state);
chroma_h_shift = get_symbol(c, state, 0);
chroma_v_shift = get_symbol(c, state, 0);
transparency = get_rac(c, state);
if (f->plane_count) {
if (colorspace != f->colorspace ||
bits_per_raw_sample != f->avctx->bits_per_raw_sample ||
chroma_planes != f->chroma_planes ||
chroma_h_shift != f->chroma_h_shift ||
chroma_v_shift != f->chroma_v_shift ||
transparency != f->transparency) {
av_log(f->avctx, AV_LOG_ERROR, "Invalid change of global parameters\n");
return AVERROR_INVALIDDATA;
}
}
f->colorspace = colorspace;
f->avctx->bits_per_raw_sample = bits_per_raw_sample;
f->chroma_planes = chroma_planes;
f->chroma_h_shift = chroma_h_shift;
f->chroma_v_shift = chroma_v_shift;
f->transparency = transparency;
f->plane_count = 2 + f->transparency;
}
if (f->colorspace == 0) {
if (f->avctx->skip_alpha) f->transparency = 0;
if (!f->transparency && !f->chroma_planes) {
if (f->avctx->bits_per_raw_sample <= 8)
f->avctx->pix_fmt = AV_PIX_FMT_GRAY8;
else
f->avctx->pix_fmt = AV_PIX_FMT_GRAY16;
} else if (f->avctx->bits_per_raw_sample<=8 && !f->transparency) {
switch(16 * f->chroma_h_shift + f->chroma_v_shift) {
case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUV444P; break;
case 0x01: f->avctx->pix_fmt = AV_PIX_FMT_YUV440P; break;
case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUV422P; break;
case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUV420P; break;
case 0x20: f->avctx->pix_fmt = AV_PIX_FMT_YUV411P; break;
case 0x22: f->avctx->pix_fmt = AV_PIX_FMT_YUV410P; break;
}
} else if (f->avctx->bits_per_raw_sample <= 8 && f->transparency) {
switch(16*f->chroma_h_shift + f->chroma_v_shift) {
case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUVA444P; break;
case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUVA422P; break;
case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUVA420P; break;
}
} else if (f->avctx->bits_per_raw_sample == 9 && !f->transparency) {
f->packed_at_lsb = 1;
switch(16 * f->chroma_h_shift + f->chroma_v_shift) {
case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUV444P9; break;
case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUV422P9; break;
case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUV420P9; break;
}
} else if (f->avctx->bits_per_raw_sample == 9 && f->transparency) {
f->packed_at_lsb = 1;
switch(16 * f->chroma_h_shift + f->chroma_v_shift) {
case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUVA444P9; break;
case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUVA422P9; break;
case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUVA420P9; break;
}
} else if (f->avctx->bits_per_raw_sample == 10 && !f->transparency) {
f->packed_at_lsb = 1;
switch(16 * f->chroma_h_shift + f->chroma_v_shift) {
case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUV444P10; break;
case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUV422P10; break;
case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUV420P10; break;
}
} else if (f->avctx->bits_per_raw_sample == 10 && f->transparency) {
f->packed_at_lsb = 1;
switch(16 * f->chroma_h_shift + f->chroma_v_shift) {
case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUVA444P10; break;
case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUVA422P10; break;
case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUVA420P10; break;
}
} else if (f->avctx->bits_per_raw_sample == 16 && !f->transparency){
switch(16 * f->chroma_h_shift + f->chroma_v_shift) {
case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUV444P16; break;
case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUV422P16; break;
case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUV420P16; break;
}
} else if (f->avctx->bits_per_raw_sample == 16 && f->transparency){
switch(16 * f->chroma_h_shift + f->chroma_v_shift) {
case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUVA444P16; break;
case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUVA422P16; break;
case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUVA420P16; break;
}
}
} else if (f->colorspace == 1) {
if (f->chroma_h_shift || f->chroma_v_shift) {
av_log(f->avctx, AV_LOG_ERROR,
"chroma subsampling not supported in this colorspace\n");
return AVERROR(ENOSYS);
}
if ( f->avctx->bits_per_raw_sample == 9)
f->avctx->pix_fmt = AV_PIX_FMT_GBRP9;
else if (f->avctx->bits_per_raw_sample == 10)
f->avctx->pix_fmt = AV_PIX_FMT_GBRP10;
else if (f->avctx->bits_per_raw_sample == 12)
f->avctx->pix_fmt = AV_PIX_FMT_GBRP12;
else if (f->avctx->bits_per_raw_sample == 14)
f->avctx->pix_fmt = AV_PIX_FMT_GBRP14;
else
if (f->transparency) f->avctx->pix_fmt = AV_PIX_FMT_RGB32;
else f->avctx->pix_fmt = AV_PIX_FMT_0RGB32;
} else {
av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n");
return AVERROR(ENOSYS);
}
if (f->avctx->pix_fmt == AV_PIX_FMT_NONE) {
av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
return AVERROR(ENOSYS);
}
av_dlog(f->avctx, "%d %d %d\n",
f->chroma_h_shift, f->chroma_v_shift, f->avctx->pix_fmt);
if (f->version < 2) {
context_count = read_quant_tables(c, f->quant_table);
if (context_count < 0) {
av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
return AVERROR_INVALIDDATA;
}
} else if (f->version < 3) {
f->slice_count = get_symbol(c, state, 0);
} else {
const uint8_t *p = c->bytestream_end;
for (f->slice_count = 0;
f->slice_count < MAX_SLICES && 3 < p - c->bytestream_start;
f->slice_count++) {
int trailer = 3 + 5*!!f->ec;
int size = AV_RB24(p-trailer);
if (size + trailer > p - c->bytestream_start)
break;
p -= size + trailer;
}
}
if (f->slice_count > (unsigned)MAX_SLICES || f->slice_count <= 0) {
av_log(f->avctx, AV_LOG_ERROR, "slice count %d is invalid\n", f->slice_count);
return AVERROR_INVALIDDATA;
}
for (j = 0; j < f->slice_count; j++) {
FFV1Context *fs = f->slice_context[j];
fs->ac = f->ac;
fs->packed_at_lsb = f->packed_at_lsb;
fs->slice_damaged = 0;
if (f->version == 2) {
fs->slice_x = get_symbol(c, state, 0) * f->width ;
fs->slice_y = get_symbol(c, state, 0) * f->height;
fs->slice_width = (get_symbol(c, state, 0) + 1) * f->width + fs->slice_x;
fs->slice_height = (get_symbol(c, state, 0) + 1) * f->height + fs->slice_y;
fs->slice_x /= f->num_h_slices;
fs->slice_y /= f->num_v_slices;
fs->slice_width = fs->slice_width / f->num_h_slices - fs->slice_x;
fs->slice_height = fs->slice_height / f->num_v_slices - fs->slice_y;
if ((unsigned)fs->slice_width > f->width ||
(unsigned)fs->slice_height > f->height)
return AVERROR_INVALIDDATA;
if ( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
|| (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
return AVERROR_INVALIDDATA;
}
for (i = 0; i < f->plane_count; i++) {
PlaneContext *const p = &fs->plane[i];
if (f->version == 2) {
int idx = get_symbol(c, state, 0);
if (idx > (unsigned)f->quant_table_count) {
av_log(f->avctx, AV_LOG_ERROR,
"quant_table_index out of range\n");
return AVERROR_INVALIDDATA;
}
p->quant_table_index = idx;
memcpy(p->quant_table, f->quant_tables[idx],
sizeof(p->quant_table));
context_count = f->context_count[idx];
} else {
memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table));
}
if (f->version <= 2) {
av_assert0(context_count >= 0);
if (p->context_count < context_count) {
av_freep(&p->state);
av_freep(&p->vlc_state);
}
p->context_count = context_count;
}
}
}
return 0;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
FFV1Context *f = avctx->priv_data;
int ret;
if ((ret = ffv1_common_init(avctx)) < 0)
return ret;
if (avctx->extradata && (ret = read_extra_header(f)) < 0)
return ret;
if ((ret = ffv1_init_slice_contexts(f)) < 0)
return ret;
avctx->internal->allocate_progress = 1;
return 0;
}
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
FFV1Context *f = avctx->priv_data;
RangeCoder *const c = &f->slice_context[0]->c;
int i, ret;
uint8_t keystate = 128;
const uint8_t *buf_p;
AVFrame *p;
if (f->last_picture.f)
ff_thread_release_buffer(avctx, &f->last_picture);
FFSWAP(ThreadFrame, f->picture, f->last_picture);
f->cur = p = f->picture.f;
if (f->version < 3 && avctx->field_order > AV_FIELD_PROGRESSIVE) {
/* we have interlaced material flagged in container */
p->interlaced_frame = 1;
if (avctx->field_order == AV_FIELD_TT || avctx->field_order == AV_FIELD_TB)
p->top_field_first = 1;
}
f->avctx = avctx;
ff_init_range_decoder(c, buf, buf_size);
ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
p->pict_type = AV_PICTURE_TYPE_I; //FIXME I vs. P
if (get_rac(c, &keystate)) {
p->key_frame = 1;
f->key_frame_ok = 0;
if ((ret = read_header(f)) < 0)
return ret;
f->key_frame_ok = 1;
} else {
if (!f->key_frame_ok) {
av_log(avctx, AV_LOG_ERROR,
"Cannot decode non-keyframe without valid keyframe\n");
return AVERROR_INVALIDDATA;
}
p->key_frame = 0;
}
if ((ret = ff_thread_get_buffer(avctx, &f->picture, AV_GET_BUFFER_FLAG_REF)) < 0)
return ret;
if (avctx->debug & FF_DEBUG_PICT_INFO)
av_log(avctx, AV_LOG_DEBUG, "ver:%d keyframe:%d coder:%d ec:%d slices:%d bps:%d\n",
f->version, p->key_frame, f->ac, f->ec, f->slice_count, f->avctx->bits_per_raw_sample);
ff_thread_finish_setup(avctx);
buf_p = buf + buf_size;
for (i = f->slice_count - 1; i >= 0; i--) {
FFV1Context *fs = f->slice_context[i];
int trailer = 3 + 5*!!f->ec;
int v;
if (i || f->version > 2) v = AV_RB24(buf_p-trailer) + trailer;
else v = buf_p - c->bytestream_start;
if (buf_p - c->bytestream_start < v) {
av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n");
return AVERROR_INVALIDDATA;
}
buf_p -= v;
if (f->ec) {
unsigned crc = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, buf_p, v);
if (crc) {
int64_t ts = avpkt->pts != AV_NOPTS_VALUE ? avpkt->pts : avpkt->dts;
av_log(f->avctx, AV_LOG_ERROR, "CRC mismatch %X!", crc);
if (ts != AV_NOPTS_VALUE && avctx->pkt_timebase.num) {
av_log(f->avctx, AV_LOG_ERROR, "at %f seconds\n", ts*av_q2d(avctx->pkt_timebase));
} else if (ts != AV_NOPTS_VALUE) {
av_log(f->avctx, AV_LOG_ERROR, "at %"PRId64"\n", ts);
} else {
av_log(f->avctx, AV_LOG_ERROR, "\n");
}
fs->slice_damaged = 1;
}
}
if (i) {
ff_init_range_decoder(&fs->c, buf_p, v);
} else
fs->c.bytestream_end = (uint8_t *)(buf_p + v);
fs->avctx = avctx;
fs->cur = p;
}
avctx->execute(avctx,
decode_slice,
&f->slice_context[0],
NULL,
f->slice_count,
sizeof(void*));
for (i = f->slice_count - 1; i >= 0; i--) {
FFV1Context *fs = f->slice_context[i];
int j;
if (fs->slice_damaged && f->last_picture.f->data[0]) {
const uint8_t *src[4];
uint8_t *dst[4];
ff_thread_await_progress(&f->last_picture, INT_MAX, 0);
for (j = 0; j < 4; j++) {
int sh = (j == 1 || j == 2) ? f->chroma_h_shift : 0;
int sv = (j == 1 || j == 2) ? f->chroma_v_shift : 0;
dst[j] = p->data[j] + p->linesize[j] *
(fs->slice_y >> sv) + (fs->slice_x >> sh);
src[j] = f->last_picture.f->data[j] + f->last_picture.f->linesize[j] *
(fs->slice_y >> sv) + (fs->slice_x >> sh);
}
av_image_copy(dst, p->linesize, (const uint8_t **)src,
f->last_picture.f->linesize,
avctx->pix_fmt,
fs->slice_width,
fs->slice_height);
}
}
ff_thread_report_progress(&f->picture, INT_MAX, 0);
f->picture_number++;
if (f->last_picture.f)
ff_thread_release_buffer(avctx, &f->last_picture);
f->cur = NULL;
if ((ret = av_frame_ref(data, f->picture.f)) < 0)
return ret;
*got_frame = 1;
return buf_size;
}
static int init_thread_copy(AVCodecContext *avctx)
{
FFV1Context *f = avctx->priv_data;
int i, ret;
f->picture.f = NULL;
f->last_picture.f = NULL;
f->sample_buffer = NULL;
f->slice_count = 0;
for (i = 0; i < f->quant_table_count; i++) {
av_assert0(f->version > 1);
f->initial_states[i] = av_memdup(f->initial_states[i],
f->context_count[i] * sizeof(*f->initial_states[i]));
}
f->picture.f = av_frame_alloc();
f->last_picture.f = av_frame_alloc();
if ((ret = ffv1_init_slice_contexts(f)) < 0)
return ret;
return 0;
}
static void copy_fields(FFV1Context *fsdst, FFV1Context *fssrc, FFV1Context *fsrc)
{
fsdst->version = fsrc->version;
fsdst->micro_version = fsrc->micro_version;
fsdst->chroma_planes = fsrc->chroma_planes;
fsdst->chroma_h_shift = fsrc->chroma_h_shift;
fsdst->chroma_v_shift = fsrc->chroma_v_shift;
fsdst->transparency = fsrc->transparency;
fsdst->plane_count = fsrc->plane_count;
fsdst->ac = fsrc->ac;
fsdst->colorspace = fsrc->colorspace;
fsdst->ec = fsrc->ec;
fsdst->intra = fsrc->intra;
fsdst->slice_damaged = fssrc->slice_damaged;
fsdst->key_frame_ok = fsrc->key_frame_ok;
fsdst->bits_per_raw_sample = fsrc->bits_per_raw_sample;
fsdst->packed_at_lsb = fsrc->packed_at_lsb;
fsdst->slice_count = fsrc->slice_count;
if (fsrc->version<3){
fsdst->slice_x = fssrc->slice_x;
fsdst->slice_y = fssrc->slice_y;
fsdst->slice_width = fssrc->slice_width;
fsdst->slice_height = fssrc->slice_height;
}
}
static int update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
{
FFV1Context *fsrc = src->priv_data;
FFV1Context *fdst = dst->priv_data;
int i, ret;
if (dst == src)
return 0;
{
ThreadFrame picture = fdst->picture, last_picture = fdst->last_picture;
uint8_t (*initial_states[MAX_QUANT_TABLES])[32];
struct FFV1Context *slice_context[MAX_SLICES];
memcpy(initial_states, fdst->initial_states, sizeof(fdst->initial_states));
memcpy(slice_context, fdst->slice_context , sizeof(fdst->slice_context));
memcpy(fdst, fsrc, sizeof(*fdst));
memcpy(fdst->initial_states, initial_states, sizeof(fdst->initial_states));
memcpy(fdst->slice_context, slice_context , sizeof(fdst->slice_context));
fdst->picture = picture;
fdst->last_picture = last_picture;
for (i = 0; i<fdst->num_h_slices * fdst->num_v_slices; i++) {
FFV1Context *fssrc = fsrc->slice_context[i];
FFV1Context *fsdst = fdst->slice_context[i];
copy_fields(fsdst, fssrc, fsrc);
}
av_assert0(!fdst->plane[0].state);
av_assert0(!fdst->sample_buffer);
}
av_assert1(fdst->slice_count == fsrc->slice_count);
ff_thread_release_buffer(dst, &fdst->picture);
if (fsrc->picture.f->data[0]) {
if ((ret = ff_thread_ref_frame(&fdst->picture, &fsrc->picture)) < 0)
return ret;
}
fdst->fsrc = fsrc;
return 0;
}
AVCodec ff_ffv1_decoder = {
.name = "ffv1",
.long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_FFV1,
.priv_data_size = sizeof(FFV1Context),
.init = decode_init,
.close = ffv1_close,
.decode = decode_frame,
.init_thread_copy = ONLY_IF_THREADS_ENABLED(init_thread_copy),
.update_thread_context = ONLY_IF_THREADS_ENABLED(update_thread_context),
.capabilities = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/ |
CODEC_CAP_FRAME_THREADS | CODEC_CAP_SLICE_THREADS,
};