1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libavfilter/vf_minterpolate.c
Andreas Rheinhardt 790f793844 avutil/common: Don't auto-include mem.h
There are lots of files that don't need it: The number of object
files that actually need it went down from 2011 to 884 here.

Keep it for external users in order to not cause breakages.

Also improve the other headers a bit while just at it.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-03-31 00:08:43 +01:00

1264 lines
50 KiB
C

/**
* Copyright (c) 2014-2015 Michael Niedermayer <michaelni@gmx.at>
* Copyright (c) 2016 Davinder Singh (DSM_) <ds.mudhar<@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "motion_estimation.h"
#include "libavcodec/mathops.h"
#include "libavutil/common.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "internal.h"
#include "video.h"
#include "scene_sad.h"
#define ME_MODE_BIDIR 0
#define ME_MODE_BILAT 1
#define MC_MODE_OBMC 0
#define MC_MODE_AOBMC 1
#define SCD_METHOD_NONE 0
#define SCD_METHOD_FDIFF 1
#define NB_FRAMES 4
#define NB_PIXEL_MVS 32
#define NB_CLUSTERS 128
#define ALPHA_MAX 1024
#define CLUSTER_THRESHOLD 4
#define PX_WEIGHT_MAX 255
#define COST_PRED_SCALE 64
static const uint8_t obmc_linear32[1024] = {
0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0,
0, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 16, 20, 20, 20, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 8, 8, 8, 4, 4, 4, 0,
0, 4, 8, 8, 12, 12, 16, 20, 20, 24, 28, 28, 32, 32, 36, 40, 40, 36, 32, 32, 28, 28, 24, 20, 20, 16, 12, 12, 8, 8, 4, 0,
0, 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, 44, 48, 52, 56, 56, 52, 48, 44, 40, 36, 32, 28, 28, 24, 20, 16, 12, 8, 4, 0,
4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 68, 64, 60, 56, 52, 48, 44, 40, 32, 28, 24, 20, 16, 12, 8, 4,
4, 8, 12, 20, 24, 32, 36, 40, 48, 52, 56, 64, 68, 76, 80, 84, 84, 80, 76, 68, 64, 56, 52, 48, 40, 36, 32, 24, 20, 12, 8, 4,
4, 8, 16, 24, 28, 36, 44, 48, 56, 60, 68, 76, 80, 88, 96,100,100, 96, 88, 80, 76, 68, 60, 56, 48, 44, 36, 28, 24, 16, 8, 4,
4, 12, 20, 28, 32, 40, 48, 56, 64, 72, 80, 88, 92,100,108,116,116,108,100, 92, 88, 80, 72, 64, 56, 48, 40, 32, 28, 20, 12, 4,
4, 12, 20, 28, 40, 48, 56, 64, 72, 80, 88, 96,108,116,124,132,132,124,116,108, 96, 88, 80, 72, 64, 56, 48, 40, 28, 20, 12, 4,
4, 16, 24, 32, 44, 52, 60, 72, 80, 92,100,108,120,128,136,148,148,136,128,120,108,100, 92, 80, 72, 60, 52, 44, 32, 24, 16, 4,
4, 16, 28, 36, 48, 56, 68, 80, 88,100,112,120,132,140,152,164,164,152,140,132,120,112,100, 88, 80, 68, 56, 48, 36, 28, 16, 4,
4, 16, 28, 40, 52, 64, 76, 88, 96,108,120,132,144,156,168,180,180,168,156,144,132,120,108, 96, 88, 76, 64, 52, 40, 28, 16, 4,
8, 20, 32, 44, 56, 68, 80, 92,108,120,132,144,156,168,180,192,192,180,168,156,144,132,120,108, 92, 80, 68, 56, 44, 32, 20, 8,
8, 20, 32, 48, 60, 76, 88,100,116,128,140,156,168,184,196,208,208,196,184,168,156,140,128,116,100, 88, 76, 60, 48, 32, 20, 8,
8, 20, 36, 52, 64, 80, 96,108,124,136,152,168,180,196,212,224,224,212,196,180,168,152,136,124,108, 96, 80, 64, 52, 36, 20, 8,
8, 24, 40, 56, 68, 84,100,116,132,148,164,180,192,208,224,240,240,224,208,192,180,164,148,132,116,100, 84, 68, 56, 40, 24, 8,
8, 24, 40, 56, 68, 84,100,116,132,148,164,180,192,208,224,240,240,224,208,192,180,164,148,132,116,100, 84, 68, 56, 40, 24, 8,
8, 20, 36, 52, 64, 80, 96,108,124,136,152,168,180,196,212,224,224,212,196,180,168,152,136,124,108, 96, 80, 64, 52, 36, 20, 8,
8, 20, 32, 48, 60, 76, 88,100,116,128,140,156,168,184,196,208,208,196,184,168,156,140,128,116,100, 88, 76, 60, 48, 32, 20, 8,
8, 20, 32, 44, 56, 68, 80, 92,108,120,132,144,156,168,180,192,192,180,168,156,144,132,120,108, 92, 80, 68, 56, 44, 32, 20, 8,
4, 16, 28, 40, 52, 64, 76, 88, 96,108,120,132,144,156,168,180,180,168,156,144,132,120,108, 96, 88, 76, 64, 52, 40, 28, 16, 4,
4, 16, 28, 36, 48, 56, 68, 80, 88,100,112,120,132,140,152,164,164,152,140,132,120,112,100, 88, 80, 68, 56, 48, 36, 28, 16, 4,
4, 16, 24, 32, 44, 52, 60, 72, 80, 92,100,108,120,128,136,148,148,136,128,120,108,100, 92, 80, 72, 60, 52, 44, 32, 24, 16, 4,
4, 12, 20, 28, 40, 48, 56, 64, 72, 80, 88, 96,108,116,124,132,132,124,116,108, 96, 88, 80, 72, 64, 56, 48, 40, 28, 20, 12, 4,
4, 12, 20, 28, 32, 40, 48, 56, 64, 72, 80, 88, 92,100,108,116,116,108,100, 92, 88, 80, 72, 64, 56, 48, 40, 32, 28, 20, 12, 4,
4, 8, 16, 24, 28, 36, 44, 48, 56, 60, 68, 76, 80, 88, 96,100,100, 96, 88, 80, 76, 68, 60, 56, 48, 44, 36, 28, 24, 16, 8, 4,
4, 8, 12, 20, 24, 32, 36, 40, 48, 52, 56, 64, 68, 76, 80, 84, 84, 80, 76, 68, 64, 56, 52, 48, 40, 36, 32, 24, 20, 12, 8, 4,
4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 68, 64, 60, 56, 52, 48, 44, 40, 32, 28, 24, 20, 16, 12, 8, 4,
0, 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, 44, 48, 52, 56, 56, 52, 48, 44, 40, 36, 32, 28, 28, 24, 20, 16, 12, 8, 4, 0,
0, 4, 8, 8, 12, 12, 16, 20, 20, 24, 28, 28, 32, 32, 36, 40, 40, 36, 32, 32, 28, 28, 24, 20, 20, 16, 12, 12, 8, 8, 4, 0,
0, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 16, 20, 20, 20, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 8, 8, 8, 4, 4, 4, 0,
0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0,
};
static const uint8_t obmc_linear16[256] = {
0, 4, 4, 8, 8, 12, 12, 16, 16, 12, 12, 8, 8, 4, 4, 0,
4, 8, 16, 20, 28, 32, 40, 44, 44, 40, 32, 28, 20, 16, 8, 4,
4, 16, 24, 36, 44, 56, 64, 76, 76, 64, 56, 44, 36, 24, 16, 4,
8, 20, 36, 48, 64, 76, 92,104,104, 92, 76, 64, 48, 36, 20, 8,
8, 28, 44, 64, 80,100,116,136,136,116,100, 80, 64, 44, 28, 8,
12, 32, 56, 76,100,120,144,164,164,144,120,100, 76, 56, 32, 12,
12, 40, 64, 92,116,144,168,196,196,168,144,116, 92, 64, 40, 12,
16, 44, 76,104,136,164,196,224,224,196,164,136,104, 76, 44, 16,
16, 44, 76,104,136,164,196,224,224,196,164,136,104, 76, 44, 16,
12, 40, 64, 92,116,144,168,196,196,168,144,116, 92, 64, 40, 12,
12, 32, 56, 76,100,120,144,164,164,144,120,100, 76, 56, 32, 12,
8, 28, 44, 64, 80,100,116,136,136,116,100, 80, 64, 44, 28, 8,
8, 20, 36, 48, 64, 76, 92,104,104, 92, 76, 64, 48, 36, 20, 8,
4, 16, 24, 36, 44, 56, 64, 76, 76, 64, 56, 44, 36, 24, 16, 4,
4, 8, 16, 20, 28, 32, 40, 44, 44, 40, 32, 28, 20, 16, 8, 4,
0, 4, 4, 8, 8, 12, 12, 16, 16, 12, 12, 8, 8, 4, 4, 0,
};
static const uint8_t obmc_linear8[64] = {
4, 12, 20, 28, 28, 20, 12, 4,
12, 36, 60, 84, 84, 60, 36, 12,
20, 60,100,140,140,100, 60, 20,
28, 84,140,196,196,140, 84, 28,
28, 84,140,196,196,140, 84, 28,
20, 60,100,140,140,100, 60, 20,
12, 36, 60, 84, 84, 60, 36, 12,
4, 12, 20, 28, 28, 20, 12, 4,
};
static const uint8_t obmc_linear4[16] = {
16, 48, 48, 16,
48,144,144, 48,
48,144,144, 48,
16, 48, 48, 16,
};
static const uint8_t * const obmc_tab_linear[4]= {
obmc_linear32, obmc_linear16, obmc_linear8, obmc_linear4
};
enum MIMode {
MI_MODE_DUP = 0,
MI_MODE_BLEND = 1,
MI_MODE_MCI = 2,
};
typedef struct Cluster {
int64_t sum[2];
int nb;
} Cluster;
typedef struct Block {
int16_t mvs[2][2];
int cid;
uint64_t sbad;
int sb;
struct Block *subs;
} Block;
typedef struct PixelMVS {
int16_t mvs[NB_PIXEL_MVS][2];
} PixelMVS;
typedef struct PixelWeights {
uint32_t weights[NB_PIXEL_MVS];
} PixelWeights;
typedef struct PixelRefs {
int8_t refs[NB_PIXEL_MVS];
int nb;
} PixelRefs;
typedef struct Frame {
AVFrame *avf;
Block *blocks;
} Frame;
typedef struct MIContext {
const AVClass *class;
AVMotionEstContext me_ctx;
AVRational frame_rate;
enum MIMode mi_mode;
int mc_mode;
int me_mode;
int me_method;
int mb_size;
int search_param;
int vsbmc;
Frame frames[NB_FRAMES];
Cluster clusters[NB_CLUSTERS];
Block *int_blocks;
PixelMVS *pixel_mvs;
PixelWeights *pixel_weights;
PixelRefs *pixel_refs;
int (*mv_table[3])[2][2];
int64_t out_pts;
int b_width, b_height, b_count;
int log2_mb_size;
int bitdepth;
int scd_method;
int scene_changed;
ff_scene_sad_fn sad;
double prev_mafd;
double scd_threshold;
int log2_chroma_w;
int log2_chroma_h;
int nb_planes;
} MIContext;
#define OFFSET(x) offsetof(MIContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
#define CONST(name, help, val, u) { name, help, 0, AV_OPT_TYPE_CONST, {.i64=val}, 0, 0, FLAGS, .unit = u }
static const AVOption minterpolate_options[] = {
{ "fps", "output's frame rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "60"}, 0, INT_MAX, FLAGS },
{ "mi_mode", "motion interpolation mode", OFFSET(mi_mode), AV_OPT_TYPE_INT, {.i64 = MI_MODE_MCI}, MI_MODE_DUP, MI_MODE_MCI, FLAGS, .unit = "mi_mode" },
CONST("dup", "duplicate frames", MI_MODE_DUP, "mi_mode"),
CONST("blend", "blend frames", MI_MODE_BLEND, "mi_mode"),
CONST("mci", "motion compensated interpolation", MI_MODE_MCI, "mi_mode"),
{ "mc_mode", "motion compensation mode", OFFSET(mc_mode), AV_OPT_TYPE_INT, {.i64 = MC_MODE_OBMC}, MC_MODE_OBMC, MC_MODE_AOBMC, FLAGS, .unit = "mc_mode" },
CONST("obmc", "overlapped block motion compensation", MC_MODE_OBMC, "mc_mode"),
CONST("aobmc", "adaptive overlapped block motion compensation", MC_MODE_AOBMC, "mc_mode"),
{ "me_mode", "motion estimation mode", OFFSET(me_mode), AV_OPT_TYPE_INT, {.i64 = ME_MODE_BILAT}, ME_MODE_BIDIR, ME_MODE_BILAT, FLAGS, .unit = "me_mode" },
CONST("bidir", "bidirectional motion estimation", ME_MODE_BIDIR, "me_mode"),
CONST("bilat", "bilateral motion estimation", ME_MODE_BILAT, "me_mode"),
{ "me", "motion estimation method", OFFSET(me_method), AV_OPT_TYPE_INT, {.i64 = AV_ME_METHOD_EPZS}, AV_ME_METHOD_ESA, AV_ME_METHOD_UMH, FLAGS, .unit = "me" },
CONST("esa", "exhaustive search", AV_ME_METHOD_ESA, "me"),
CONST("tss", "three step search", AV_ME_METHOD_TSS, "me"),
CONST("tdls", "two dimensional logarithmic search", AV_ME_METHOD_TDLS, "me"),
CONST("ntss", "new three step search", AV_ME_METHOD_NTSS, "me"),
CONST("fss", "four step search", AV_ME_METHOD_FSS, "me"),
CONST("ds", "diamond search", AV_ME_METHOD_DS, "me"),
CONST("hexbs", "hexagon-based search", AV_ME_METHOD_HEXBS, "me"),
CONST("epzs", "enhanced predictive zonal search", AV_ME_METHOD_EPZS, "me"),
CONST("umh", "uneven multi-hexagon search", AV_ME_METHOD_UMH, "me"),
{ "mb_size", "macroblock size", OFFSET(mb_size), AV_OPT_TYPE_INT, {.i64 = 16}, 4, 16, FLAGS },
{ "search_param", "search parameter", OFFSET(search_param), AV_OPT_TYPE_INT, {.i64 = 32}, 4, INT_MAX, FLAGS },
{ "vsbmc", "variable-size block motion compensation", OFFSET(vsbmc), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, FLAGS },
{ "scd", "scene change detection method", OFFSET(scd_method), AV_OPT_TYPE_INT, {.i64 = SCD_METHOD_FDIFF}, SCD_METHOD_NONE, SCD_METHOD_FDIFF, FLAGS, .unit = "scene" },
CONST("none", "disable detection", SCD_METHOD_NONE, "scene"),
CONST("fdiff", "frame difference", SCD_METHOD_FDIFF, "scene"),
{ "scd_threshold", "scene change threshold", OFFSET(scd_threshold), AV_OPT_TYPE_DOUBLE, {.dbl = 10.}, 0, 100.0, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(minterpolate);
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_GRAY8,
AV_PIX_FMT_NONE
};
static uint64_t get_sbad(AVMotionEstContext *me_ctx, int x, int y, int x_mv, int y_mv)
{
uint8_t *data_cur = me_ctx->data_cur;
uint8_t *data_next = me_ctx->data_ref;
int linesize = me_ctx->linesize;
int mv_x1 = x_mv - x;
int mv_y1 = y_mv - y;
int mv_x, mv_y, i, j;
uint64_t sbad = 0;
x = av_clip(x, me_ctx->x_min, me_ctx->x_max);
y = av_clip(y, me_ctx->y_min, me_ctx->y_max);
mv_x = av_clip(x_mv - x, -FFMIN(x - me_ctx->x_min, me_ctx->x_max - x), FFMIN(x - me_ctx->x_min, me_ctx->x_max - x));
mv_y = av_clip(y_mv - y, -FFMIN(y - me_ctx->y_min, me_ctx->y_max - y), FFMIN(y - me_ctx->y_min, me_ctx->y_max - y));
data_cur += (y + mv_y) * linesize;
data_next += (y - mv_y) * linesize;
for (j = 0; j < me_ctx->mb_size; j++)
for (i = 0; i < me_ctx->mb_size; i++)
sbad += FFABS(data_cur[x + mv_x + i + j * linesize] - data_next[x - mv_x + i + j * linesize]);
return sbad + (FFABS(mv_x1 - me_ctx->pred_x) + FFABS(mv_y1 - me_ctx->pred_y)) * COST_PRED_SCALE;
}
static uint64_t get_sbad_ob(AVMotionEstContext *me_ctx, int x, int y, int x_mv, int y_mv)
{
uint8_t *data_cur = me_ctx->data_cur;
uint8_t *data_next = me_ctx->data_ref;
int linesize = me_ctx->linesize;
int x_min = me_ctx->x_min + me_ctx->mb_size / 2;
int x_max = me_ctx->x_max - me_ctx->mb_size / 2;
int y_min = me_ctx->y_min + me_ctx->mb_size / 2;
int y_max = me_ctx->y_max - me_ctx->mb_size / 2;
int mv_x1 = x_mv - x;
int mv_y1 = y_mv - y;
int mv_x, mv_y, i, j;
uint64_t sbad = 0;
x = av_clip(x, x_min, x_max);
y = av_clip(y, y_min, y_max);
mv_x = av_clip(x_mv - x, -FFMIN(x - x_min, x_max - x), FFMIN(x - x_min, x_max - x));
mv_y = av_clip(y_mv - y, -FFMIN(y - y_min, y_max - y), FFMIN(y - y_min, y_max - y));
for (j = -me_ctx->mb_size / 2; j < me_ctx->mb_size * 3 / 2; j++)
for (i = -me_ctx->mb_size / 2; i < me_ctx->mb_size * 3 / 2; i++)
sbad += FFABS(data_cur[x + mv_x + i + (y + mv_y + j) * linesize] - data_next[x - mv_x + i + (y - mv_y + j) * linesize]);
return sbad + (FFABS(mv_x1 - me_ctx->pred_x) + FFABS(mv_y1 - me_ctx->pred_y)) * COST_PRED_SCALE;
}
static uint64_t get_sad_ob(AVMotionEstContext *me_ctx, int x, int y, int x_mv, int y_mv)
{
uint8_t *data_ref = me_ctx->data_ref;
uint8_t *data_cur = me_ctx->data_cur;
int linesize = me_ctx->linesize;
int x_min = me_ctx->x_min + me_ctx->mb_size / 2;
int x_max = me_ctx->x_max - me_ctx->mb_size / 2;
int y_min = me_ctx->y_min + me_ctx->mb_size / 2;
int y_max = me_ctx->y_max - me_ctx->mb_size / 2;
int mv_x = x_mv - x;
int mv_y = y_mv - y;
int i, j;
uint64_t sad = 0;
x = av_clip(x, x_min, x_max);
y = av_clip(y, y_min, y_max);
x_mv = av_clip(x_mv, x_min, x_max);
y_mv = av_clip(y_mv, y_min, y_max);
for (j = -me_ctx->mb_size / 2; j < me_ctx->mb_size * 3 / 2; j++)
for (i = -me_ctx->mb_size / 2; i < me_ctx->mb_size * 3 / 2; i++)
sad += FFABS(data_ref[x_mv + i + (y_mv + j) * linesize] - data_cur[x + i + (y + j) * linesize]);
return sad + (FFABS(mv_x - me_ctx->pred_x) + FFABS(mv_y - me_ctx->pred_y)) * COST_PRED_SCALE;
}
static int config_input(AVFilterLink *inlink)
{
MIContext *mi_ctx = inlink->dst->priv;
AVMotionEstContext *me_ctx = &mi_ctx->me_ctx;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
const int height = inlink->h;
const int width = inlink->w;
int i;
mi_ctx->log2_chroma_h = desc->log2_chroma_h;
mi_ctx->log2_chroma_w = desc->log2_chroma_w;
mi_ctx->bitdepth = desc->comp[0].depth;
mi_ctx->nb_planes = av_pix_fmt_count_planes(inlink->format);
mi_ctx->log2_mb_size = av_ceil_log2_c(mi_ctx->mb_size);
mi_ctx->mb_size = 1 << mi_ctx->log2_mb_size;
mi_ctx->b_width = width >> mi_ctx->log2_mb_size;
mi_ctx->b_height = height >> mi_ctx->log2_mb_size;
mi_ctx->b_count = mi_ctx->b_width * mi_ctx->b_height;
for (i = 0; i < NB_FRAMES; i++) {
Frame *frame = &mi_ctx->frames[i];
frame->blocks = av_calloc(mi_ctx->b_count, sizeof(*frame->blocks));
if (!frame->blocks)
return AVERROR(ENOMEM);
}
if (mi_ctx->mi_mode == MI_MODE_MCI) {
if (mi_ctx->b_width < 2 || mi_ctx->b_height < 2) {
av_log(inlink->dst, AV_LOG_ERROR, "Height or width < %d\n",
2 * mi_ctx->mb_size);
return AVERROR(EINVAL);
}
ff_me_init_context(me_ctx, mi_ctx->mb_size, mi_ctx->search_param,
width, height, 0, (mi_ctx->b_width - 1) << mi_ctx->log2_mb_size,
0, (mi_ctx->b_height - 1) << mi_ctx->log2_mb_size);
if (mi_ctx->me_mode == ME_MODE_BIDIR)
me_ctx->get_cost = &get_sad_ob;
else if (mi_ctx->me_mode == ME_MODE_BILAT)
me_ctx->get_cost = &get_sbad_ob;
mi_ctx->pixel_mvs = av_calloc(width * height, sizeof(*mi_ctx->pixel_mvs));
mi_ctx->pixel_weights = av_calloc(width * height, sizeof(*mi_ctx->pixel_weights));
mi_ctx->pixel_refs = av_calloc(width * height, sizeof(*mi_ctx->pixel_refs));
if (!mi_ctx->pixel_mvs || !mi_ctx->pixel_weights || !mi_ctx->pixel_refs)
return AVERROR(ENOMEM);
if (mi_ctx->me_mode == ME_MODE_BILAT)
if (!FF_ALLOCZ_TYPED_ARRAY(mi_ctx->int_blocks, mi_ctx->b_count))
return AVERROR(ENOMEM);
if (mi_ctx->me_method == AV_ME_METHOD_EPZS) {
for (i = 0; i < 3; i++) {
mi_ctx->mv_table[i] = av_calloc(mi_ctx->b_count, sizeof(*mi_ctx->mv_table[0]));
if (!mi_ctx->mv_table[i])
return AVERROR(ENOMEM);
}
}
}
if (mi_ctx->scd_method == SCD_METHOD_FDIFF) {
mi_ctx->sad = ff_scene_sad_get_fn(mi_ctx->bitdepth == 8 ? 8 : 16);
if (!mi_ctx->sad)
return AVERROR(EINVAL);
}
return 0;
}
static int config_output(AVFilterLink *outlink)
{
MIContext *mi_ctx = outlink->src->priv;
outlink->frame_rate = mi_ctx->frame_rate;
outlink->time_base = av_inv_q(mi_ctx->frame_rate);
return 0;
}
#define ADD_PRED(preds, px, py)\
do {\
preds.mvs[preds.nb][0] = px;\
preds.mvs[preds.nb][1] = py;\
preds.nb++;\
} while(0)
static void search_mv(MIContext *mi_ctx, Block *blocks, int mb_x, int mb_y, int dir)
{
AVMotionEstContext *me_ctx = &mi_ctx->me_ctx;
AVMotionEstPredictor *preds = me_ctx->preds;
Block *block = &blocks[mb_x + mb_y * mi_ctx->b_width];
const int x_mb = mb_x << mi_ctx->log2_mb_size;
const int y_mb = mb_y << mi_ctx->log2_mb_size;
const int mb_i = mb_x + mb_y * mi_ctx->b_width;
int mv[2] = {x_mb, y_mb};
switch (mi_ctx->me_method) {
case AV_ME_METHOD_ESA:
ff_me_search_esa(me_ctx, x_mb, y_mb, mv);
break;
case AV_ME_METHOD_TSS:
ff_me_search_tss(me_ctx, x_mb, y_mb, mv);
break;
case AV_ME_METHOD_TDLS:
ff_me_search_tdls(me_ctx, x_mb, y_mb, mv);
break;
case AV_ME_METHOD_NTSS:
ff_me_search_ntss(me_ctx, x_mb, y_mb, mv);
break;
case AV_ME_METHOD_FSS:
ff_me_search_fss(me_ctx, x_mb, y_mb, mv);
break;
case AV_ME_METHOD_DS:
ff_me_search_ds(me_ctx, x_mb, y_mb, mv);
break;
case AV_ME_METHOD_HEXBS:
ff_me_search_hexbs(me_ctx, x_mb, y_mb, mv);
break;
case AV_ME_METHOD_EPZS:
preds[0].nb = 0;
preds[1].nb = 0;
ADD_PRED(preds[0], 0, 0);
//left mb in current frame
if (mb_x > 0)
ADD_PRED(preds[0], mi_ctx->mv_table[0][mb_i - 1][dir][0], mi_ctx->mv_table[0][mb_i - 1][dir][1]);
//top mb in current frame
if (mb_y > 0)
ADD_PRED(preds[0], mi_ctx->mv_table[0][mb_i - mi_ctx->b_width][dir][0], mi_ctx->mv_table[0][mb_i - mi_ctx->b_width][dir][1]);
//top-right mb in current frame
if (mb_y > 0 && mb_x + 1 < mi_ctx->b_width)
ADD_PRED(preds[0], mi_ctx->mv_table[0][mb_i - mi_ctx->b_width + 1][dir][0], mi_ctx->mv_table[0][mb_i - mi_ctx->b_width + 1][dir][1]);
//median predictor
if (preds[0].nb == 4) {
me_ctx->pred_x = mid_pred(preds[0].mvs[1][0], preds[0].mvs[2][0], preds[0].mvs[3][0]);
me_ctx->pred_y = mid_pred(preds[0].mvs[1][1], preds[0].mvs[2][1], preds[0].mvs[3][1]);
} else if (preds[0].nb == 3) {
me_ctx->pred_x = mid_pred(0, preds[0].mvs[1][0], preds[0].mvs[2][0]);
me_ctx->pred_y = mid_pred(0, preds[0].mvs[1][1], preds[0].mvs[2][1]);
} else if (preds[0].nb == 2) {
me_ctx->pred_x = preds[0].mvs[1][0];
me_ctx->pred_y = preds[0].mvs[1][1];
} else {
me_ctx->pred_x = 0;
me_ctx->pred_y = 0;
}
//collocated mb in prev frame
ADD_PRED(preds[0], mi_ctx->mv_table[1][mb_i][dir][0], mi_ctx->mv_table[1][mb_i][dir][1]);
//accelerator motion vector of collocated block in prev frame
ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i][dir][0] + (mi_ctx->mv_table[1][mb_i][dir][0] - mi_ctx->mv_table[2][mb_i][dir][0]),
mi_ctx->mv_table[1][mb_i][dir][1] + (mi_ctx->mv_table[1][mb_i][dir][1] - mi_ctx->mv_table[2][mb_i][dir][1]));
//left mb in prev frame
if (mb_x > 0)
ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i - 1][dir][0], mi_ctx->mv_table[1][mb_i - 1][dir][1]);
//top mb in prev frame
if (mb_y > 0)
ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i - mi_ctx->b_width][dir][0], mi_ctx->mv_table[1][mb_i - mi_ctx->b_width][dir][1]);
//right mb in prev frame
if (mb_x + 1 < mi_ctx->b_width)
ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i + 1][dir][0], mi_ctx->mv_table[1][mb_i + 1][dir][1]);
//bottom mb in prev frame
if (mb_y + 1 < mi_ctx->b_height)
ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i + mi_ctx->b_width][dir][0], mi_ctx->mv_table[1][mb_i + mi_ctx->b_width][dir][1]);
ff_me_search_epzs(me_ctx, x_mb, y_mb, mv);
mi_ctx->mv_table[0][mb_i][dir][0] = mv[0] - x_mb;
mi_ctx->mv_table[0][mb_i][dir][1] = mv[1] - y_mb;
break;
case AV_ME_METHOD_UMH:
preds[0].nb = 0;
ADD_PRED(preds[0], 0, 0);
//left mb in current frame
if (mb_x > 0)
ADD_PRED(preds[0], blocks[mb_i - 1].mvs[dir][0], blocks[mb_i - 1].mvs[dir][1]);
if (mb_y > 0) {
//top mb in current frame
ADD_PRED(preds[0], blocks[mb_i - mi_ctx->b_width].mvs[dir][0], blocks[mb_i - mi_ctx->b_width].mvs[dir][1]);
//top-right mb in current frame
if (mb_x + 1 < mi_ctx->b_width)
ADD_PRED(preds[0], blocks[mb_i - mi_ctx->b_width + 1].mvs[dir][0], blocks[mb_i - mi_ctx->b_width + 1].mvs[dir][1]);
//top-left mb in current frame
else if (mb_x > 0)
ADD_PRED(preds[0], blocks[mb_i - mi_ctx->b_width - 1].mvs[dir][0], blocks[mb_i - mi_ctx->b_width - 1].mvs[dir][1]);
}
//median predictor
if (preds[0].nb == 4) {
me_ctx->pred_x = mid_pred(preds[0].mvs[1][0], preds[0].mvs[2][0], preds[0].mvs[3][0]);
me_ctx->pred_y = mid_pred(preds[0].mvs[1][1], preds[0].mvs[2][1], preds[0].mvs[3][1]);
} else if (preds[0].nb == 3) {
me_ctx->pred_x = mid_pred(0, preds[0].mvs[1][0], preds[0].mvs[2][0]);
me_ctx->pred_y = mid_pred(0, preds[0].mvs[1][1], preds[0].mvs[2][1]);
} else if (preds[0].nb == 2) {
me_ctx->pred_x = preds[0].mvs[1][0];
me_ctx->pred_y = preds[0].mvs[1][1];
} else {
me_ctx->pred_x = 0;
me_ctx->pred_y = 0;
}
ff_me_search_umh(me_ctx, x_mb, y_mb, mv);
break;
}
block->mvs[dir][0] = mv[0] - x_mb;
block->mvs[dir][1] = mv[1] - y_mb;
}
static void bilateral_me(MIContext *mi_ctx)
{
Block *block;
int mb_x, mb_y;
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
block->cid = 0;
block->sb = 0;
block->mvs[0][0] = 0;
block->mvs[0][1] = 0;
}
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++)
search_mv(mi_ctx, mi_ctx->int_blocks, mb_x, mb_y, 0);
}
static int var_size_bme(MIContext *mi_ctx, Block *block, int x_mb, int y_mb, int n)
{
AVMotionEstContext *me_ctx = &mi_ctx->me_ctx;
uint64_t cost_sb, cost_old;
int mb_size = me_ctx->mb_size;
int search_param = me_ctx->search_param;
int mv_x, mv_y;
int x, y;
int ret;
me_ctx->mb_size = 1 << n;
cost_old = me_ctx->get_cost(me_ctx, x_mb, y_mb, x_mb + block->mvs[0][0], y_mb + block->mvs[0][1]);
me_ctx->mb_size = mb_size;
if (!cost_old) {
block->sb = 0;
return 0;
}
if (!block->subs) {
block->subs = av_mallocz(4 * sizeof(*block->subs));
if (!block->subs)
return AVERROR(ENOMEM);
}
block->sb = 1;
for (y = 0; y < 2; y++)
for (x = 0; x < 2; x++) {
Block *sb = &block->subs[x + y * 2];
int mv[2] = {x_mb + block->mvs[0][0], y_mb + block->mvs[0][1]};
me_ctx->mb_size = 1 << (n - 1);
me_ctx->search_param = 2;
me_ctx->pred_x = block->mvs[0][0];
me_ctx->pred_y = block->mvs[0][1];
cost_sb = ff_me_search_ds(&mi_ctx->me_ctx, x_mb + block->mvs[0][0], y_mb + block->mvs[0][1], mv);
mv_x = mv[0] - x_mb;
mv_y = mv[1] - y_mb;
me_ctx->mb_size = mb_size;
me_ctx->search_param = search_param;
if (cost_sb < cost_old / 4) {
sb->mvs[0][0] = mv_x;
sb->mvs[0][1] = mv_y;
if (n > 1) {
if (ret = var_size_bme(mi_ctx, sb, x_mb + (x << (n - 1)), y_mb + (y << (n - 1)), n - 1))
return ret;
} else
sb->sb = 0;
} else {
block->sb = 0;
return 0;
}
}
return 0;
}
static int cluster_mvs(MIContext *mi_ctx)
{
int changed, c, c_max = 0;
int mb_x, mb_y, x, y;
int mv_x, mv_y, avg_x, avg_y, dx, dy;
int d, ret;
Block *block;
Cluster *cluster, *cluster_new;
do {
changed = 0;
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
c = block->cid;
cluster = &mi_ctx->clusters[c];
mv_x = block->mvs[0][0];
mv_y = block->mvs[0][1];
if (cluster->nb < 2)
continue;
avg_x = cluster->sum[0] / cluster->nb;
avg_y = cluster->sum[1] / cluster->nb;
dx = avg_x - mv_x;
dy = avg_y - mv_y;
if (FFABS(dx) > CLUSTER_THRESHOLD || FFABS(dy) > CLUSTER_THRESHOLD) {
for (d = 1; d < 5; d++)
for (y = FFMAX(mb_y - d, 0); y < FFMIN(mb_y + d + 1, mi_ctx->b_height); y++)
for (x = FFMAX(mb_x - d, 0); x < FFMIN(mb_x + d + 1, mi_ctx->b_width); x++) {
Block *nb = &mi_ctx->int_blocks[x + y * mi_ctx->b_width];
if (nb->cid > block->cid) {
if (nb->cid < c || c == block->cid)
c = nb->cid;
}
}
if (c == block->cid)
c = c_max + 1;
if (c >= NB_CLUSTERS) {
continue;
}
cluster_new = &mi_ctx->clusters[c];
cluster_new->sum[0] += mv_x;
cluster_new->sum[1] += mv_y;
cluster->sum[0] -= mv_x;
cluster->sum[1] -= mv_y;
cluster_new->nb++;
cluster->nb--;
c_max = FFMAX(c_max, c);
block->cid = c;
changed = 1;
}
}
} while (changed);
/* find boundaries */
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
for (y = FFMAX(mb_y - 1, 0); y < FFMIN(mb_y + 2, mi_ctx->b_height); y++)
for (x = FFMAX(mb_x - 1, 0); x < FFMIN(mb_x + 2, mi_ctx->b_width); x++) {
dx = x - mb_x;
dy = y - mb_y;
if ((x - mb_x) && (y - mb_y) || !dx && !dy)
continue;
if (!mb_x || !mb_y || mb_x == mi_ctx->b_width - 1 || mb_y == mi_ctx->b_height - 1)
continue;
if (block->cid != mi_ctx->int_blocks[x + y * mi_ctx->b_width].cid) {
if (!dx && block->cid == mi_ctx->int_blocks[x + (mb_y - dy) * mi_ctx->b_width].cid ||
!dy && block->cid == mi_ctx->int_blocks[(mb_x - dx) + y * mi_ctx->b_width].cid) {
if (ret = var_size_bme(mi_ctx, block, mb_x << mi_ctx->log2_mb_size, mb_y << mi_ctx->log2_mb_size, mi_ctx->log2_mb_size))
return ret;
}
}
}
}
return 0;
}
static int inject_frame(AVFilterLink *inlink, AVFrame *avf_in)
{
AVFilterContext *ctx = inlink->dst;
MIContext *mi_ctx = ctx->priv;
Frame frame_tmp;
int mb_x, mb_y, dir;
av_frame_free(&mi_ctx->frames[0].avf);
frame_tmp = mi_ctx->frames[0];
memmove(&mi_ctx->frames[0], &mi_ctx->frames[1], sizeof(mi_ctx->frames[0]) * (NB_FRAMES - 1));
mi_ctx->frames[NB_FRAMES - 1] = frame_tmp;
mi_ctx->frames[NB_FRAMES - 1].avf = avf_in;
if (mi_ctx->mi_mode == MI_MODE_MCI) {
if (mi_ctx->me_method == AV_ME_METHOD_EPZS) {
mi_ctx->mv_table[2] = memcpy(mi_ctx->mv_table[2], mi_ctx->mv_table[1], sizeof(*mi_ctx->mv_table[1]) * mi_ctx->b_count);
mi_ctx->mv_table[1] = memcpy(mi_ctx->mv_table[1], mi_ctx->mv_table[0], sizeof(*mi_ctx->mv_table[0]) * mi_ctx->b_count);
}
if (mi_ctx->me_mode == ME_MODE_BIDIR) {
if (mi_ctx->frames[1].avf) {
for (dir = 0; dir < 2; dir++) {
mi_ctx->me_ctx.linesize = mi_ctx->frames[2].avf->linesize[0];
mi_ctx->me_ctx.data_cur = mi_ctx->frames[2].avf->data[0];
mi_ctx->me_ctx.data_ref = mi_ctx->frames[dir ? 3 : 1].avf->data[0];
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++)
search_mv(mi_ctx, mi_ctx->frames[2].blocks, mb_x, mb_y, dir);
}
}
} else if (mi_ctx->me_mode == ME_MODE_BILAT) {
Block *block;
int i, ret;
if (!mi_ctx->frames[0].avf)
return 0;
mi_ctx->me_ctx.linesize = mi_ctx->frames[0].avf->linesize[0];
mi_ctx->me_ctx.data_cur = mi_ctx->frames[1].avf->data[0];
mi_ctx->me_ctx.data_ref = mi_ctx->frames[2].avf->data[0];
bilateral_me(mi_ctx);
if (mi_ctx->mc_mode == MC_MODE_AOBMC) {
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
int x_mb = mb_x << mi_ctx->log2_mb_size;
int y_mb = mb_y << mi_ctx->log2_mb_size;
block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
block->sbad = get_sbad(&mi_ctx->me_ctx, x_mb, y_mb, x_mb + block->mvs[0][0], y_mb + block->mvs[0][1]);
}
}
if (mi_ctx->vsbmc) {
for (i = 0; i < NB_CLUSTERS; i++) {
mi_ctx->clusters[i].sum[0] = 0;
mi_ctx->clusters[i].sum[1] = 0;
mi_ctx->clusters[i].nb = 0;
}
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
mi_ctx->clusters[0].sum[0] += block->mvs[0][0];
mi_ctx->clusters[0].sum[1] += block->mvs[0][1];
}
mi_ctx->clusters[0].nb = mi_ctx->b_count;
if (ret = cluster_mvs(mi_ctx))
return ret;
}
}
}
return 0;
}
static int detect_scene_change(AVFilterContext *ctx)
{
MIContext *mi_ctx = ctx->priv;
AVFilterLink *input = ctx->inputs[0];
uint8_t *p1 = mi_ctx->frames[1].avf->data[0];
ptrdiff_t linesize1 = mi_ctx->frames[1].avf->linesize[0];
uint8_t *p2 = mi_ctx->frames[2].avf->data[0];
ptrdiff_t linesize2 = mi_ctx->frames[2].avf->linesize[0];
if (mi_ctx->scd_method == SCD_METHOD_FDIFF) {
double ret = 0, mafd, diff;
uint64_t sad;
mi_ctx->sad(p1, linesize1, p2, linesize2, input->w, input->h, &sad);
mafd = (double) sad * 100.0 / (input->h * input->w) / (1 << mi_ctx->bitdepth);
diff = fabs(mafd - mi_ctx->prev_mafd);
ret = av_clipf(FFMIN(mafd, diff), 0, 100.0);
mi_ctx->prev_mafd = mafd;
return ret >= mi_ctx->scd_threshold;
}
return 0;
}
#define ADD_PIXELS(b_weight, mv_x, mv_y)\
do {\
if (!b_weight || pixel_refs->nb + 1 >= NB_PIXEL_MVS)\
continue;\
pixel_refs->refs[pixel_refs->nb] = 1;\
pixel_weights->weights[pixel_refs->nb] = b_weight * (ALPHA_MAX - alpha);\
pixel_mvs->mvs[pixel_refs->nb][0] = av_clip((mv_x * alpha) / ALPHA_MAX, x_min, x_max);\
pixel_mvs->mvs[pixel_refs->nb][1] = av_clip((mv_y * alpha) / ALPHA_MAX, y_min, y_max);\
pixel_refs->nb++;\
pixel_refs->refs[pixel_refs->nb] = 2;\
pixel_weights->weights[pixel_refs->nb] = b_weight * alpha;\
pixel_mvs->mvs[pixel_refs->nb][0] = av_clip(-mv_x * (ALPHA_MAX - alpha) / ALPHA_MAX, x_min, x_max);\
pixel_mvs->mvs[pixel_refs->nb][1] = av_clip(-mv_y * (ALPHA_MAX - alpha) / ALPHA_MAX, y_min, y_max);\
pixel_refs->nb++;\
} while(0)
static void bidirectional_obmc(MIContext *mi_ctx, int alpha)
{
int x, y;
int width = mi_ctx->frames[0].avf->width;
int height = mi_ctx->frames[0].avf->height;
int mb_y, mb_x, dir;
for (y = 0; y < height; y++)
for (x = 0; x < width; x++)
mi_ctx->pixel_refs[x + y * width].nb = 0;
for (dir = 0; dir < 2; dir++)
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
int a = dir ? alpha : (ALPHA_MAX - alpha);
int mv_x = mi_ctx->frames[2 - dir].blocks[mb_x + mb_y * mi_ctx->b_width].mvs[dir][0];
int mv_y = mi_ctx->frames[2 - dir].blocks[mb_x + mb_y * mi_ctx->b_width].mvs[dir][1];
int start_x, start_y;
int startc_x, startc_y, endc_x, endc_y;
start_x = (mb_x << mi_ctx->log2_mb_size) - mi_ctx->mb_size / 2 + mv_x * a / ALPHA_MAX;
start_y = (mb_y << mi_ctx->log2_mb_size) - mi_ctx->mb_size / 2 + mv_y * a / ALPHA_MAX;
startc_x = av_clip(start_x, 0, width - 1);
startc_y = av_clip(start_y, 0, height - 1);
endc_x = av_clip(start_x + (2 << mi_ctx->log2_mb_size), 0, width - 1);
endc_y = av_clip(start_y + (2 << mi_ctx->log2_mb_size), 0, height - 1);
if (dir) {
mv_x = -mv_x;
mv_y = -mv_y;
}
for (y = startc_y; y < endc_y; y++) {
int y_min = -y;
int y_max = height - y - 1;
for (x = startc_x; x < endc_x; x++) {
int x_min = -x;
int x_max = width - x - 1;
int obmc_weight = obmc_tab_linear[4 - mi_ctx->log2_mb_size][(x - start_x) + ((y - start_y) << (mi_ctx->log2_mb_size + 1))];
PixelMVS *pixel_mvs = &mi_ctx->pixel_mvs[x + y * width];
PixelWeights *pixel_weights = &mi_ctx->pixel_weights[x + y * width];
PixelRefs *pixel_refs = &mi_ctx->pixel_refs[x + y * width];
ADD_PIXELS(obmc_weight, mv_x, mv_y);
}
}
}
}
static void set_frame_data(MIContext *mi_ctx, int alpha, AVFrame *avf_out)
{
int x, y, plane;
for (plane = 0; plane < mi_ctx->nb_planes; plane++) {
int width = avf_out->width;
int height = avf_out->height;
int chroma = plane == 1 || plane == 2;
for (y = 0; y < height; y++)
for (x = 0; x < width; x++) {
int x_mv, y_mv;
int weight_sum = 0;
int i, val = 0;
PixelMVS *pixel_mvs = &mi_ctx->pixel_mvs[x + y * avf_out->width];
PixelWeights *pixel_weights = &mi_ctx->pixel_weights[x + y * avf_out->width];
PixelRefs *pixel_refs = &mi_ctx->pixel_refs[x + y * avf_out->width];
for (i = 0; i < pixel_refs->nb; i++)
weight_sum += pixel_weights->weights[i];
if (!weight_sum || !pixel_refs->nb) {
pixel_weights->weights[0] = ALPHA_MAX - alpha;
pixel_refs->refs[0] = 1;
pixel_mvs->mvs[0][0] = 0;
pixel_mvs->mvs[0][1] = 0;
pixel_weights->weights[1] = alpha;
pixel_refs->refs[1] = 2;
pixel_mvs->mvs[1][0] = 0;
pixel_mvs->mvs[1][1] = 0;
pixel_refs->nb = 2;
weight_sum = ALPHA_MAX;
}
for (i = 0; i < pixel_refs->nb; i++) {
Frame *frame = &mi_ctx->frames[pixel_refs->refs[i]];
if (chroma) {
x_mv = (x >> mi_ctx->log2_chroma_w) + pixel_mvs->mvs[i][0] / (1 << mi_ctx->log2_chroma_w);
y_mv = (y >> mi_ctx->log2_chroma_h) + pixel_mvs->mvs[i][1] / (1 << mi_ctx->log2_chroma_h);
} else {
x_mv = x + pixel_mvs->mvs[i][0];
y_mv = y + pixel_mvs->mvs[i][1];
}
val += pixel_weights->weights[i] * frame->avf->data[plane][x_mv + y_mv * frame->avf->linesize[plane]];
}
val = ROUNDED_DIV(val, weight_sum);
if (chroma)
avf_out->data[plane][(x >> mi_ctx->log2_chroma_w) + (y >> mi_ctx->log2_chroma_h) * avf_out->linesize[plane]] = val;
else
avf_out->data[plane][x + y * avf_out->linesize[plane]] = val;
}
}
}
static void var_size_bmc(MIContext *mi_ctx, Block *block, int x_mb, int y_mb, int n, int alpha)
{
int sb_x, sb_y;
int width = mi_ctx->frames[0].avf->width;
int height = mi_ctx->frames[0].avf->height;
for (sb_y = 0; sb_y < 2; sb_y++)
for (sb_x = 0; sb_x < 2; sb_x++) {
Block *sb = &block->subs[sb_x + sb_y * 2];
if (sb->sb)
var_size_bmc(mi_ctx, sb, x_mb + (sb_x << (n - 1)), y_mb + (sb_y << (n - 1)), n - 1, alpha);
else {
int x, y;
int mv_x = sb->mvs[0][0] * 2;
int mv_y = sb->mvs[0][1] * 2;
int start_x = x_mb + (sb_x << (n - 1));
int start_y = y_mb + (sb_y << (n - 1));
int end_x = start_x + (1 << (n - 1));
int end_y = start_y + (1 << (n - 1));
for (y = start_y; y < end_y; y++) {
int y_min = -y;
int y_max = height - y - 1;
for (x = start_x; x < end_x; x++) {
int x_min = -x;
int x_max = width - x - 1;
PixelMVS *pixel_mvs = &mi_ctx->pixel_mvs[x + y * width];
PixelWeights *pixel_weights = &mi_ctx->pixel_weights[x + y * width];
PixelRefs *pixel_refs = &mi_ctx->pixel_refs[x + y * width];
ADD_PIXELS(PX_WEIGHT_MAX, mv_x, mv_y);
}
}
}
}
}
static void bilateral_obmc(MIContext *mi_ctx, Block *block, int mb_x, int mb_y, int alpha)
{
int x, y;
int width = mi_ctx->frames[0].avf->width;
int height = mi_ctx->frames[0].avf->height;
Block *nb;
int nb_x, nb_y;
uint64_t sbads[9];
int mv_x = block->mvs[0][0] * 2;
int mv_y = block->mvs[0][1] * 2;
int start_x, start_y;
int startc_x, startc_y, endc_x, endc_y;
if (mi_ctx->mc_mode == MC_MODE_AOBMC)
for (nb_y = FFMAX(0, mb_y - 1); nb_y < FFMIN(mb_y + 2, mi_ctx->b_height); nb_y++)
for (nb_x = FFMAX(0, mb_x - 1); nb_x < FFMIN(mb_x + 2, mi_ctx->b_width); nb_x++) {
int x_nb = nb_x << mi_ctx->log2_mb_size;
int y_nb = nb_y << mi_ctx->log2_mb_size;
if (nb_x - mb_x || nb_y - mb_y)
sbads[nb_x - mb_x + 1 + (nb_y - mb_y + 1) * 3] = get_sbad(&mi_ctx->me_ctx, x_nb, y_nb, x_nb + block->mvs[0][0], y_nb + block->mvs[0][1]);
}
start_x = (mb_x << mi_ctx->log2_mb_size) - mi_ctx->mb_size / 2;
start_y = (mb_y << mi_ctx->log2_mb_size) - mi_ctx->mb_size / 2;
startc_x = av_clip(start_x, 0, width - 1);
startc_y = av_clip(start_y, 0, height - 1);
endc_x = av_clip(start_x + (2 << mi_ctx->log2_mb_size), 0, width - 1);
endc_y = av_clip(start_y + (2 << mi_ctx->log2_mb_size), 0, height - 1);
for (y = startc_y; y < endc_y; y++) {
int y_min = -y;
int y_max = height - y - 1;
for (x = startc_x; x < endc_x; x++) {
int x_min = -x;
int x_max = width - x - 1;
int obmc_weight = obmc_tab_linear[4 - mi_ctx->log2_mb_size][(x - start_x) + ((y - start_y) << (mi_ctx->log2_mb_size + 1))];
PixelMVS *pixel_mvs = &mi_ctx->pixel_mvs[x + y * width];
PixelWeights *pixel_weights = &mi_ctx->pixel_weights[x + y * width];
PixelRefs *pixel_refs = &mi_ctx->pixel_refs[x + y * width];
if (mi_ctx->mc_mode == MC_MODE_AOBMC) {
nb_x = (((x - start_x) >> (mi_ctx->log2_mb_size - 1)) * 2 - 3) / 2;
nb_y = (((y - start_y) >> (mi_ctx->log2_mb_size - 1)) * 2 - 3) / 2;
if (nb_x || nb_y) {
uint64_t sbad = sbads[nb_x + 1 + (nb_y + 1) * 3];
nb = &mi_ctx->int_blocks[mb_x + nb_x + (mb_y + nb_y) * mi_ctx->b_width];
if (sbad && sbad != UINT64_MAX && nb->sbad != UINT64_MAX) {
int phi = av_clip(ALPHA_MAX * nb->sbad / sbad, 0, ALPHA_MAX);
obmc_weight = obmc_weight * phi / ALPHA_MAX;
}
}
}
ADD_PIXELS(obmc_weight, mv_x, mv_y);
}
}
}
static void interpolate(AVFilterLink *inlink, AVFrame *avf_out)
{
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = ctx->outputs[0];
MIContext *mi_ctx = ctx->priv;
int x, y;
int plane, alpha;
int64_t pts;
pts = av_rescale(avf_out->pts, (int64_t) ALPHA_MAX * outlink->time_base.num * inlink->time_base.den,
(int64_t) outlink->time_base.den * inlink->time_base.num);
if (mi_ctx->frames[2].avf->pts > mi_ctx->frames[1].avf->pts) {
alpha = (pts - mi_ctx->frames[1].avf->pts * ALPHA_MAX) / (mi_ctx->frames[2].avf->pts - mi_ctx->frames[1].avf->pts);
alpha = av_clip(alpha, 0, ALPHA_MAX);
} else {
av_log(ctx, AV_LOG_DEBUG, "duplicate input PTS detected\n");
alpha = 0;
}
if (alpha == 0 || alpha == ALPHA_MAX) {
av_frame_copy(avf_out, alpha ? mi_ctx->frames[2].avf : mi_ctx->frames[1].avf);
return;
}
if (mi_ctx->scene_changed) {
av_log(ctx, AV_LOG_DEBUG, "scene changed, input pts %"PRId64"\n", mi_ctx->frames[1].avf->pts);
/* duplicate frame */
av_frame_copy(avf_out, alpha > ALPHA_MAX / 2 ? mi_ctx->frames[2].avf : mi_ctx->frames[1].avf);
return;
}
switch(mi_ctx->mi_mode) {
case MI_MODE_DUP:
av_frame_copy(avf_out, alpha > ALPHA_MAX / 2 ? mi_ctx->frames[2].avf : mi_ctx->frames[1].avf);
break;
case MI_MODE_BLEND:
for (plane = 0; plane < mi_ctx->nb_planes; plane++) {
int width = avf_out->width;
int height = avf_out->height;
if (plane == 1 || plane == 2) {
width = AV_CEIL_RSHIFT(width, mi_ctx->log2_chroma_w);
height = AV_CEIL_RSHIFT(height, mi_ctx->log2_chroma_h);
}
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
avf_out->data[plane][x + y * avf_out->linesize[plane]] =
(alpha * mi_ctx->frames[2].avf->data[plane][x + y * mi_ctx->frames[2].avf->linesize[plane]] +
(ALPHA_MAX - alpha) * mi_ctx->frames[1].avf->data[plane][x + y * mi_ctx->frames[1].avf->linesize[plane]] + 512) >> 10;
}
}
}
break;
case MI_MODE_MCI:
if (mi_ctx->me_mode == ME_MODE_BIDIR) {
bidirectional_obmc(mi_ctx, alpha);
set_frame_data(mi_ctx, alpha, avf_out);
} else if (mi_ctx->me_mode == ME_MODE_BILAT) {
int mb_x, mb_y;
Block *block;
for (y = 0; y < mi_ctx->frames[0].avf->height; y++)
for (x = 0; x < mi_ctx->frames[0].avf->width; x++)
mi_ctx->pixel_refs[x + y * mi_ctx->frames[0].avf->width].nb = 0;
for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
if (block->sb)
var_size_bmc(mi_ctx, block, mb_x << mi_ctx->log2_mb_size, mb_y << mi_ctx->log2_mb_size, mi_ctx->log2_mb_size, alpha);
bilateral_obmc(mi_ctx, block, mb_x, mb_y, alpha);
}
set_frame_data(mi_ctx, alpha, avf_out);
}
break;
}
}
static int filter_frame(AVFilterLink *inlink, AVFrame *avf_in)
{
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = ctx->outputs[0];
MIContext *mi_ctx = ctx->priv;
int ret;
if (avf_in->pts == AV_NOPTS_VALUE) {
ret = ff_filter_frame(ctx->outputs[0], avf_in);
return ret;
}
if (!mi_ctx->frames[NB_FRAMES - 1].avf || avf_in->pts < mi_ctx->frames[NB_FRAMES - 1].avf->pts) {
av_log(ctx, AV_LOG_VERBOSE, "Initializing out pts from input pts %"PRId64"\n", avf_in->pts);
mi_ctx->out_pts = av_rescale_q(avf_in->pts, inlink->time_base, outlink->time_base);
}
if (!mi_ctx->frames[NB_FRAMES - 1].avf)
if (ret = inject_frame(inlink, av_frame_clone(avf_in)))
return ret;
if (ret = inject_frame(inlink, avf_in))
return ret;
if (!mi_ctx->frames[0].avf)
return 0;
mi_ctx->scene_changed = detect_scene_change(ctx);
for (;;) {
AVFrame *avf_out;
if (av_compare_ts(mi_ctx->out_pts, outlink->time_base, mi_ctx->frames[2].avf->pts, inlink->time_base) > 0)
break;
if (!(avf_out = ff_get_video_buffer(ctx->outputs[0], inlink->w, inlink->h)))
return AVERROR(ENOMEM);
av_frame_copy_props(avf_out, mi_ctx->frames[NB_FRAMES - 1].avf);
avf_out->pts = mi_ctx->out_pts++;
avf_out->duration = 1;
interpolate(inlink, avf_out);
if ((ret = ff_filter_frame(ctx->outputs[0], avf_out)) < 0)
return ret;
}
return 0;
}
static av_cold void free_blocks(Block *block, int sb)
{
if (block->subs)
free_blocks(block->subs, 1);
if (sb)
av_freep(&block);
}
static av_cold void uninit(AVFilterContext *ctx)
{
MIContext *mi_ctx = ctx->priv;
int i, m;
av_freep(&mi_ctx->pixel_mvs);
av_freep(&mi_ctx->pixel_weights);
av_freep(&mi_ctx->pixel_refs);
if (mi_ctx->int_blocks)
for (m = 0; m < mi_ctx->b_count; m++)
free_blocks(&mi_ctx->int_blocks[m], 0);
av_freep(&mi_ctx->int_blocks);
for (i = 0; i < NB_FRAMES; i++) {
Frame *frame = &mi_ctx->frames[i];
av_freep(&frame->blocks);
av_frame_free(&frame->avf);
}
for (i = 0; i < 3; i++)
av_freep(&mi_ctx->mv_table[i]);
}
static const AVFilterPad minterpolate_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
static const AVFilterPad minterpolate_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
};
const AVFilter ff_vf_minterpolate = {
.name = "minterpolate",
.description = NULL_IF_CONFIG_SMALL("Frame rate conversion using Motion Interpolation."),
.priv_size = sizeof(MIContext),
.priv_class = &minterpolate_class,
.uninit = uninit,
FILTER_INPUTS(minterpolate_inputs),
FILTER_OUTPUTS(minterpolate_outputs),
FILTER_PIXFMTS_ARRAY(pix_fmts),
};