mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-11-21 10:55:51 +02:00
670dfda143
Thanks to @nevcairiel for pointing this one out. Another thing which stopped msvc from compiling. Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
239 lines
8.2 KiB
C
239 lines
8.2 KiB
C
/*
|
|
* AAC encoder TNS
|
|
* Copyright (C) 2015 Rostislav Pehlivanov
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* AAC encoder temporal noise shaping
|
|
* @author Rostislav Pehlivanov ( atomnuker gmail com )
|
|
*/
|
|
|
|
#include "aacenc.h"
|
|
#include "aacenc_tns.h"
|
|
#include "aactab.h"
|
|
#include "aacenc_utils.h"
|
|
#include "aacenc_quantization.h"
|
|
|
|
static inline void conv_to_int32(int32_t *loc, float *samples, int num, float norm)
|
|
{
|
|
int i;
|
|
for (i = 0; i < num; i++)
|
|
loc[i] = ceilf((samples[i]/norm)*INT32_MAX);
|
|
}
|
|
|
|
static inline void conv_to_float(float *arr, int32_t *cof, int num)
|
|
{
|
|
int i;
|
|
for (i = 0; i < num; i++)
|
|
arr[i] = (float)cof[i]/INT32_MAX;
|
|
}
|
|
|
|
/* Input: quantized 4 bit coef, output: 1 if first (MSB) 2 bits are the same */
|
|
static inline int coef_test_compression(int coef)
|
|
{
|
|
int tmp = coef >> 2;
|
|
int res = ff_ctz(tmp);
|
|
if (res > 1)
|
|
return 1; /* ...00 -> compressable */
|
|
else if (res == 1)
|
|
return 0; /* ...10 -> uncompressable */
|
|
else if (ff_ctz(tmp >> 1) > 0)
|
|
return 0; /* ...0 1 -> uncompressable */
|
|
else
|
|
return 1; /* ...1 1 -> compressable */
|
|
}
|
|
|
|
static inline int compress_coef(int *coefs, int num)
|
|
{
|
|
int i, res = 0;
|
|
for (i = 0; i < num; i++)
|
|
res += coef_test_compression(coefs[i]);
|
|
return res == num ? 1 : 0;
|
|
}
|
|
|
|
/**
|
|
* Encode TNS data.
|
|
* Coefficient compression saves a single bit.
|
|
*/
|
|
void encode_tns_info(AACEncContext *s, SingleChannelElement *sce)
|
|
{
|
|
int i, w, filt, coef_len, coef_compress;
|
|
const int coef_res = MAX_LPC_PRECISION == 4 ? 1 : 0;
|
|
const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE;
|
|
|
|
put_bits(&s->pb, 1, !!sce->tns.present);
|
|
|
|
if (!sce->tns.present)
|
|
return;
|
|
|
|
for (i = 0; i < sce->ics.num_windows; i++) {
|
|
put_bits(&s->pb, 2 - is8, sce->tns.n_filt[i]);
|
|
if (sce->tns.n_filt[i]) {
|
|
put_bits(&s->pb, 1, !!coef_res);
|
|
for (filt = 0; filt < sce->tns.n_filt[i]; filt++) {
|
|
put_bits(&s->pb, 6 - 2 * is8, sce->tns.length[i][filt]);
|
|
put_bits(&s->pb, 5 - 2 * is8, sce->tns.order[i][filt]);
|
|
if (sce->tns.order[i][filt]) {
|
|
coef_compress = compress_coef(sce->tns.coef_idx[i][filt],
|
|
sce->tns.order[i][filt]);
|
|
put_bits(&s->pb, 1, !!sce->tns.direction[i][filt]);
|
|
put_bits(&s->pb, 1, !!coef_compress);
|
|
coef_len = coef_res + 3 - coef_compress;
|
|
for (w = 0; w < sce->tns.order[i][filt]; w++)
|
|
put_bits(&s->pb, coef_len, sce->tns.coef_idx[i][filt][w]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int process_tns_coeffs(TemporalNoiseShaping *tns, float *tns_coefs_raw,
|
|
int order, int w, int filt)
|
|
{
|
|
int i, j;
|
|
int *idx = tns->coef_idx[w][filt];
|
|
float *lpc = tns->coef[w][filt];
|
|
const int iqfac_p = ((1 << (MAX_LPC_PRECISION-1)) - 0.5)/(M_PI/2.0);
|
|
const int iqfac_m = ((1 << (MAX_LPC_PRECISION-1)) + 0.5)/(M_PI/2.0);
|
|
float temp[TNS_MAX_ORDER] = {0.0f}, out[TNS_MAX_ORDER] = {0.0f};
|
|
|
|
/* Quantization */
|
|
for (i = 0; i < order; i++) {
|
|
idx[i] = ceilf(asin(tns_coefs_raw[i])*((tns_coefs_raw[i] >= 0) ? iqfac_p : iqfac_m));
|
|
lpc[i] = 2*sin(idx[i]/((idx[i] >= 0) ? iqfac_p : iqfac_m));
|
|
}
|
|
|
|
/* Trim any coeff less than 0.1f from the end */
|
|
for (i = order; i > -1; i--) {
|
|
lpc[i] = (fabs(lpc[i]) > 0.1f) ? lpc[i] : 0.0f;
|
|
if (lpc[i] != 0.0 ) {
|
|
order = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!order)
|
|
return 0;
|
|
|
|
/* Step up procedure, convert to LPC coeffs */
|
|
out[0] = 1.0f;
|
|
for (i = 1; i <= order; i++) {
|
|
for (j = 1; j < i; j++) {
|
|
temp[j] = out[j] + lpc[i]*out[i-j];
|
|
}
|
|
for (j = 1; j <= i; j++) {
|
|
out[j] = temp[j];
|
|
}
|
|
out[i] = lpc[i-1];
|
|
}
|
|
memcpy(lpc, out, TNS_MAX_ORDER*sizeof(float));
|
|
|
|
return order;
|
|
}
|
|
|
|
static void apply_tns_filter(float *out, float *in, int order, int direction,
|
|
float *tns_coefs, int ltp_used, int w, int filt, int start_i, int len)
|
|
{
|
|
int i, j, inc, start = start_i;
|
|
float tmp[TNS_MAX_ORDER+1];
|
|
if (direction) {
|
|
inc = -1;
|
|
start = (start + len) - 1;
|
|
} else {
|
|
inc = 1;
|
|
}
|
|
if (!ltp_used) { /* AR filter */
|
|
for (i = 0; i < len; i++, start += inc)
|
|
out[i] = in[start];
|
|
for (j = 1; j <= FFMIN(i, order); j++)
|
|
out[i] += tns_coefs[j]*in[start - j*inc];
|
|
} else { /* MA filter */
|
|
for (i = 0; i < len; i++, start += inc) {
|
|
tmp[0] = out[i] = in[start];
|
|
for (j = 1; j <= FFMIN(i, order); j++)
|
|
out[i] += tmp[j]*tns_coefs[j];
|
|
for (j = order; j > 0; j--)
|
|
tmp[j] = tmp[j - 1];
|
|
}
|
|
}
|
|
}
|
|
|
|
void search_for_tns(AACEncContext *s, SingleChannelElement *sce)
|
|
{
|
|
TemporalNoiseShaping *tns = &sce->tns;
|
|
int w, g, order, sfb_start, sfb_len, coef_start, shift[MAX_LPC_ORDER], count = 0;
|
|
const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE;
|
|
const int tns_max_order = is8 ? 7 : s->profile == FF_PROFILE_AAC_LOW ? 12 : TNS_MAX_ORDER;
|
|
const float freq_mult = mpeg4audio_sample_rates[s->samplerate_index]/(1024.0f/sce->ics.num_windows)/2.0f;
|
|
float max_coef = 0.0f;
|
|
|
|
for (coef_start = 0; coef_start < 1024; coef_start++)
|
|
max_coef = FFMAX(max_coef, sce->pcoeffs[coef_start]);
|
|
|
|
for (w = 0; w < sce->ics.num_windows; w++) {
|
|
int filters = 1, start = 0, coef_len = 0;
|
|
int32_t conv_coeff[1024] = {0};
|
|
int32_t coefs_t[MAX_LPC_ORDER][MAX_LPC_ORDER] = {{0}};
|
|
|
|
/* Determine start sfb + coef - excludes anything below threshold */
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
if (start*freq_mult > TNS_LOW_LIMIT) {
|
|
sfb_start = w*16+g;
|
|
sfb_len = (w+1)*16 + g - sfb_start;
|
|
coef_start = sce->ics.swb_offset[sfb_start];
|
|
coef_len = sce->ics.swb_offset[sfb_start + sfb_len] - coef_start;
|
|
break;
|
|
}
|
|
start += sce->ics.swb_sizes[g];
|
|
}
|
|
|
|
if (coef_len <= 0)
|
|
continue;
|
|
|
|
conv_to_int32(conv_coeff, &sce->pcoeffs[coef_start], coef_len, max_coef);
|
|
|
|
/* LPC */
|
|
order = ff_lpc_calc_coefs(&s->lpc, conv_coeff, coef_len,
|
|
TNS_MIN_PRED_ORDER, tns_max_order,
|
|
32, coefs_t, shift,
|
|
FF_LPC_TYPE_LEVINSON, 10,
|
|
ORDER_METHOD_EST, MAX_LPC_SHIFT, 0) - 1;
|
|
|
|
/* Works surprisingly well, remember to tweak MAX_LPC_SHIFT if you want to play around with this */
|
|
if (shift[order] > 3) {
|
|
int direction = 0;
|
|
float tns_coefs_raw[TNS_MAX_ORDER];
|
|
tns->n_filt[w] = filters++;
|
|
conv_to_float(tns_coefs_raw, coefs_t[order], order);
|
|
for (g = 0; g < tns->n_filt[w]; g++) {
|
|
process_tns_coeffs(tns, tns_coefs_raw, order, w, g);
|
|
apply_tns_filter(&sce->coeffs[coef_start], sce->pcoeffs, order, direction, tns->coef[w][g],
|
|
sce->ics.ltp.present, w, g, coef_start, coef_len);
|
|
tns->order[w][g] = order;
|
|
tns->length[w][g] = sfb_len;
|
|
tns->direction[w][g] = direction;
|
|
}
|
|
count++;
|
|
}
|
|
}
|
|
|
|
sce->tns.present = !!count;
|
|
}
|