mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-23 12:43:46 +02:00
6d75d44d90
All that remains in it are things that belong in avfilter_internal.h. Move them there and remove internal.h
1036 lines
36 KiB
C
1036 lines
36 KiB
C
/*
|
|
* Copyright (c) 2013 Clément Bœsch
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "libavutil/mem.h"
|
|
#include "libavutil/opt.h"
|
|
#include "libavutil/bprint.h"
|
|
#include "libavutil/eval.h"
|
|
#include "libavutil/file.h"
|
|
#include "libavutil/file_open.h"
|
|
#include "libavutil/intreadwrite.h"
|
|
#include "libavutil/avassert.h"
|
|
#include "libavutil/pixdesc.h"
|
|
#include "avfilter.h"
|
|
#include "drawutils.h"
|
|
#include "filters.h"
|
|
#include "video.h"
|
|
|
|
#define R 0
|
|
#define G 1
|
|
#define B 2
|
|
#define A 3
|
|
|
|
struct keypoint {
|
|
double x, y;
|
|
struct keypoint *next;
|
|
};
|
|
|
|
#define NB_COMP 3
|
|
|
|
enum preset {
|
|
PRESET_NONE,
|
|
PRESET_COLOR_NEGATIVE,
|
|
PRESET_CROSS_PROCESS,
|
|
PRESET_DARKER,
|
|
PRESET_INCREASE_CONTRAST,
|
|
PRESET_LIGHTER,
|
|
PRESET_LINEAR_CONTRAST,
|
|
PRESET_MEDIUM_CONTRAST,
|
|
PRESET_NEGATIVE,
|
|
PRESET_STRONG_CONTRAST,
|
|
PRESET_VINTAGE,
|
|
NB_PRESETS,
|
|
};
|
|
|
|
enum interp {
|
|
INTERP_NATURAL,
|
|
INTERP_PCHIP,
|
|
NB_INTERPS,
|
|
};
|
|
|
|
typedef struct CurvesContext {
|
|
const AVClass *class;
|
|
int preset;
|
|
char *comp_points_str[NB_COMP + 1];
|
|
char *comp_points_str_all;
|
|
uint16_t *graph[NB_COMP + 1];
|
|
int lut_size;
|
|
char *psfile;
|
|
uint8_t rgba_map[4];
|
|
int step;
|
|
char *plot_filename;
|
|
int saved_plot;
|
|
int is_16bit;
|
|
int depth;
|
|
int parsed_psfile;
|
|
int interp;
|
|
|
|
int (*filter_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
|
|
} CurvesContext;
|
|
|
|
typedef struct ThreadData {
|
|
AVFrame *in, *out;
|
|
} ThreadData;
|
|
|
|
#define OFFSET(x) offsetof(CurvesContext, x)
|
|
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
|
|
static const AVOption curves_options[] = {
|
|
{ "preset", "select a color curves preset", OFFSET(preset), AV_OPT_TYPE_INT, {.i64=PRESET_NONE}, PRESET_NONE, NB_PRESETS-1, FLAGS, .unit = "preset_name" },
|
|
{ "none", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_NONE}, 0, 0, FLAGS, .unit = "preset_name" },
|
|
{ "color_negative", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_COLOR_NEGATIVE}, 0, 0, FLAGS, .unit = "preset_name" },
|
|
{ "cross_process", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_CROSS_PROCESS}, 0, 0, FLAGS, .unit = "preset_name" },
|
|
{ "darker", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_DARKER}, 0, 0, FLAGS, .unit = "preset_name" },
|
|
{ "increase_contrast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_INCREASE_CONTRAST}, 0, 0, FLAGS, .unit = "preset_name" },
|
|
{ "lighter", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_LIGHTER}, 0, 0, FLAGS, .unit = "preset_name" },
|
|
{ "linear_contrast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_LINEAR_CONTRAST}, 0, 0, FLAGS, .unit = "preset_name" },
|
|
{ "medium_contrast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_MEDIUM_CONTRAST}, 0, 0, FLAGS, .unit = "preset_name" },
|
|
{ "negative", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_NEGATIVE}, 0, 0, FLAGS, .unit = "preset_name" },
|
|
{ "strong_contrast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_STRONG_CONTRAST}, 0, 0, FLAGS, .unit = "preset_name" },
|
|
{ "vintage", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_VINTAGE}, 0, 0, FLAGS, .unit = "preset_name" },
|
|
{ "master","set master points coordinates",OFFSET(comp_points_str[NB_COMP]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
|
|
{ "m", "set master points coordinates",OFFSET(comp_points_str[NB_COMP]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
|
|
{ "red", "set red points coordinates", OFFSET(comp_points_str[0]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
|
|
{ "r", "set red points coordinates", OFFSET(comp_points_str[0]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
|
|
{ "green", "set green points coordinates", OFFSET(comp_points_str[1]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
|
|
{ "g", "set green points coordinates", OFFSET(comp_points_str[1]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
|
|
{ "blue", "set blue points coordinates", OFFSET(comp_points_str[2]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
|
|
{ "b", "set blue points coordinates", OFFSET(comp_points_str[2]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
|
|
{ "all", "set points coordinates for all components", OFFSET(comp_points_str_all), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
|
|
{ "psfile", "set Photoshop curves file name", OFFSET(psfile), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
|
|
{ "plot", "save Gnuplot script of the curves in specified file", OFFSET(plot_filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
|
|
{ "interp", "specify the kind of interpolation", OFFSET(interp), AV_OPT_TYPE_INT, {.i64=INTERP_NATURAL}, INTERP_NATURAL, NB_INTERPS-1, FLAGS, .unit = "interp_name" },
|
|
{ "natural", "natural cubic spline", 0, AV_OPT_TYPE_CONST, {.i64=INTERP_NATURAL}, 0, 0, FLAGS, .unit = "interp_name" },
|
|
{ "pchip", "monotonically cubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERP_PCHIP}, 0, 0, FLAGS, .unit = "interp_name" },
|
|
{ NULL }
|
|
};
|
|
|
|
AVFILTER_DEFINE_CLASS(curves);
|
|
|
|
static const struct {
|
|
const char *r;
|
|
const char *g;
|
|
const char *b;
|
|
const char *master;
|
|
} curves_presets[] = {
|
|
[PRESET_COLOR_NEGATIVE] = {
|
|
"0.129/1 0.466/0.498 0.725/0",
|
|
"0.109/1 0.301/0.498 0.517/0",
|
|
"0.098/1 0.235/0.498 0.423/0",
|
|
},
|
|
[PRESET_CROSS_PROCESS] = {
|
|
"0/0 0.25/0.156 0.501/0.501 0.686/0.745 1/1",
|
|
"0/0 0.25/0.188 0.38/0.501 0.745/0.815 1/0.815",
|
|
"0/0 0.231/0.094 0.709/0.874 1/1",
|
|
},
|
|
[PRESET_DARKER] = { .master = "0/0 0.5/0.4 1/1" },
|
|
[PRESET_INCREASE_CONTRAST] = { .master = "0/0 0.149/0.066 0.831/0.905 0.905/0.98 1/1" },
|
|
[PRESET_LIGHTER] = { .master = "0/0 0.4/0.5 1/1" },
|
|
[PRESET_LINEAR_CONTRAST] = { .master = "0/0 0.305/0.286 0.694/0.713 1/1" },
|
|
[PRESET_MEDIUM_CONTRAST] = { .master = "0/0 0.286/0.219 0.639/0.643 1/1" },
|
|
[PRESET_NEGATIVE] = { .master = "0/1 1/0" },
|
|
[PRESET_STRONG_CONTRAST] = { .master = "0/0 0.301/0.196 0.592/0.6 0.686/0.737 1/1" },
|
|
[PRESET_VINTAGE] = {
|
|
"0/0.11 0.42/0.51 1/0.95",
|
|
"0/0 0.50/0.48 1/1",
|
|
"0/0.22 0.49/0.44 1/0.8",
|
|
}
|
|
};
|
|
|
|
static struct keypoint *make_point(double x, double y, struct keypoint *next)
|
|
{
|
|
struct keypoint *point = av_mallocz(sizeof(*point));
|
|
|
|
if (!point)
|
|
return NULL;
|
|
point->x = x;
|
|
point->y = y;
|
|
point->next = next;
|
|
return point;
|
|
}
|
|
|
|
static int parse_points_str(AVFilterContext *ctx, struct keypoint **points, const char *s,
|
|
int lut_size)
|
|
{
|
|
char *p = (char *)s; // strtod won't alter the string
|
|
struct keypoint *last = NULL;
|
|
const int scale = lut_size - 1;
|
|
|
|
/* construct a linked list based on the key points string */
|
|
while (p && *p) {
|
|
struct keypoint *point = make_point(0, 0, NULL);
|
|
if (!point)
|
|
return AVERROR(ENOMEM);
|
|
point->x = av_strtod(p, &p); if (p && *p) p++;
|
|
point->y = av_strtod(p, &p); if (p && *p) p++;
|
|
if (point->x < 0 || point->x > 1 || point->y < 0 || point->y > 1) {
|
|
av_log(ctx, AV_LOG_ERROR, "Invalid key point coordinates (%f;%f), "
|
|
"x and y must be in the [0;1] range.\n", point->x, point->y);
|
|
av_free(point);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
if (last) {
|
|
if ((int)(last->x * scale) >= (int)(point->x * scale)) {
|
|
av_log(ctx, AV_LOG_ERROR, "Key point coordinates (%f;%f) "
|
|
"and (%f;%f) are too close from each other or not "
|
|
"strictly increasing on the x-axis\n",
|
|
last->x, last->y, point->x, point->y);
|
|
av_free(point);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
last->next = point;
|
|
}
|
|
if (!*points)
|
|
*points = point;
|
|
last = point;
|
|
}
|
|
|
|
if (*points && !(*points)->next) {
|
|
av_log(ctx, AV_LOG_WARNING, "Only one point (at (%f;%f)) is defined, "
|
|
"this is unlikely to behave as you expect. You probably want"
|
|
"at least 2 points.",
|
|
(*points)->x, (*points)->y);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_nb_points(const struct keypoint *d)
|
|
{
|
|
int n = 0;
|
|
while (d) {
|
|
n++;
|
|
d = d->next;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* Natural cubic spline interpolation
|
|
* Finding curves using Cubic Splines notes by Steven Rauch and John Stockie.
|
|
* @see http://people.math.sfu.ca/~stockie/teaching/macm316/notes/splines.pdf
|
|
*/
|
|
|
|
#define CLIP(v) (nbits == 8 ? av_clip_uint8(v) : av_clip_uintp2_c(v, nbits))
|
|
|
|
static inline int interpolate(void *log_ctx, uint16_t *y,
|
|
const struct keypoint *points, int nbits)
|
|
{
|
|
int i, ret = 0;
|
|
const struct keypoint *point = points;
|
|
double xprev = 0;
|
|
const int lut_size = 1<<nbits;
|
|
const int scale = lut_size - 1;
|
|
|
|
double (*matrix)[3];
|
|
double *h, *r;
|
|
const int n = get_nb_points(points); // number of splines
|
|
|
|
if (n == 0) {
|
|
for (i = 0; i < lut_size; i++)
|
|
y[i] = i;
|
|
return 0;
|
|
}
|
|
|
|
if (n == 1) {
|
|
for (i = 0; i < lut_size; i++)
|
|
y[i] = CLIP(point->y * scale);
|
|
return 0;
|
|
}
|
|
|
|
matrix = av_calloc(n, sizeof(*matrix));
|
|
h = av_malloc((n - 1) * sizeof(*h));
|
|
r = av_calloc(n, sizeof(*r));
|
|
|
|
if (!matrix || !h || !r) {
|
|
ret = AVERROR(ENOMEM);
|
|
goto end;
|
|
}
|
|
|
|
/* h(i) = x(i+1) - x(i) */
|
|
i = -1;
|
|
for (point = points; point; point = point->next) {
|
|
if (i != -1)
|
|
h[i] = point->x - xprev;
|
|
xprev = point->x;
|
|
i++;
|
|
}
|
|
|
|
/* right-side of the polynomials, will be modified to contains the solution */
|
|
point = points;
|
|
for (i = 1; i < n - 1; i++) {
|
|
const double yp = point->y;
|
|
const double yc = point->next->y;
|
|
const double yn = point->next->next->y;
|
|
r[i] = 6 * ((yn-yc)/h[i] - (yc-yp)/h[i-1]);
|
|
point = point->next;
|
|
}
|
|
|
|
#define BD 0 /* sub diagonal (below main) */
|
|
#define MD 1 /* main diagonal (center) */
|
|
#define AD 2 /* sup diagonal (above main) */
|
|
|
|
/* left side of the polynomials into a tridiagonal matrix. */
|
|
matrix[0][MD] = matrix[n - 1][MD] = 1;
|
|
for (i = 1; i < n - 1; i++) {
|
|
matrix[i][BD] = h[i-1];
|
|
matrix[i][MD] = 2 * (h[i-1] + h[i]);
|
|
matrix[i][AD] = h[i];
|
|
}
|
|
|
|
/* tridiagonal solving of the linear system */
|
|
for (i = 1; i < n; i++) {
|
|
const double den = matrix[i][MD] - matrix[i][BD] * matrix[i-1][AD];
|
|
const double k = den ? 1./den : 1.;
|
|
matrix[i][AD] *= k;
|
|
r[i] = (r[i] - matrix[i][BD] * r[i - 1]) * k;
|
|
}
|
|
for (i = n - 2; i >= 0; i--)
|
|
r[i] = r[i] - matrix[i][AD] * r[i + 1];
|
|
|
|
point = points;
|
|
|
|
/* left padding */
|
|
for (i = 0; i < (int)(point->x * scale); i++)
|
|
y[i] = CLIP(point->y * scale);
|
|
|
|
/* compute the graph with x=[x0..xN] */
|
|
i = 0;
|
|
av_assert0(point->next); // always at least 2 key points
|
|
while (point->next) {
|
|
const double yc = point->y;
|
|
const double yn = point->next->y;
|
|
|
|
const double a = yc;
|
|
const double b = (yn-yc)/h[i] - h[i]*r[i]/2. - h[i]*(r[i+1]-r[i])/6.;
|
|
const double c = r[i] / 2.;
|
|
const double d = (r[i+1] - r[i]) / (6.*h[i]);
|
|
|
|
int x;
|
|
const int x_start = point->x * scale;
|
|
const int x_end = point->next->x * scale;
|
|
|
|
av_assert0(x_start >= 0 && x_start < lut_size &&
|
|
x_end >= 0 && x_end < lut_size);
|
|
|
|
for (x = x_start; x <= x_end; x++) {
|
|
const double xx = (x - x_start) * 1./scale;
|
|
const double yy = a + b*xx + c*xx*xx + d*xx*xx*xx;
|
|
y[x] = CLIP(yy * scale);
|
|
av_log(log_ctx, AV_LOG_DEBUG, "f(%f)=%f -> y[%d]=%d\n", xx, yy, x, y[x]);
|
|
}
|
|
|
|
point = point->next;
|
|
i++;
|
|
}
|
|
|
|
/* right padding */
|
|
for (i = (int)(point->x * scale); i < lut_size; i++)
|
|
y[i] = CLIP(point->y * scale);
|
|
|
|
end:
|
|
av_free(matrix);
|
|
av_free(h);
|
|
av_free(r);
|
|
return ret;
|
|
|
|
}
|
|
|
|
#define SIGN(x) (x > 0.0 ? 1 : x < 0.0 ? -1 : 0)
|
|
|
|
/**
|
|
* Evalaute the derivative of an edge endpoint
|
|
*
|
|
* @param h0 input interval of the interval closest to the edge
|
|
* @param h1 input interval of the interval next to the closest
|
|
* @param m0 linear slope of the interval closest to the edge
|
|
* @param m1 linear slope of the intervalnext to the closest
|
|
* @return edge endpoint derivative
|
|
*
|
|
* Based on scipy.interpolate._edge_case()
|
|
* https://github.com/scipy/scipy/blob/2e5883ef7af4f5ed4a5b80a1759a45e43163bf3f/scipy/interpolate/_cubic.py#L239
|
|
* which is a python implementation of the special case endpoints, as suggested in
|
|
* Cleve Moler, Numerical Computing with MATLAB, Chap 3.6 (pchiptx.m)
|
|
*/
|
|
static double pchip_edge_case(double h0, double h1, double m0, double m1)
|
|
{
|
|
int mask, mask2;
|
|
double d;
|
|
|
|
d = ((2 * h0 + h1) * m0 - h0 * m1) / (h0 + h1);
|
|
|
|
mask = SIGN(d) != SIGN(m0);
|
|
mask2 = (SIGN(m0) != SIGN(m1)) && (fabs(d) > 3. * fabs(m0));
|
|
|
|
if (mask) d = 0.0;
|
|
else if (mask2) d = 3.0 * m0;
|
|
|
|
return d;
|
|
}
|
|
|
|
/**
|
|
* Evalaute the piecewise polynomial derivatives at endpoints
|
|
*
|
|
* @param n input interval of the interval closest to the edge
|
|
* @param hk input intervals
|
|
* @param mk linear slopes over intervals
|
|
* @param dk endpoint derivatives (output)
|
|
* @return 0 success
|
|
*
|
|
* Based on scipy.interpolate._find_derivatives()
|
|
* https://github.com/scipy/scipy/blob/2e5883ef7af4f5ed4a5b80a1759a45e43163bf3f/scipy/interpolate/_cubic.py#L254
|
|
*/
|
|
|
|
static int pchip_find_derivatives(const int n, const double *hk, const double *mk, double *dk)
|
|
{
|
|
int ret = 0;
|
|
const int m = n - 1;
|
|
int8_t *smk;
|
|
|
|
smk = av_malloc(n);
|
|
if (!smk) {
|
|
ret = AVERROR(ENOMEM);
|
|
goto end;
|
|
}
|
|
|
|
/* smk = sgn(mk) */
|
|
for (int i = 0; i < n; i++) smk[i] = SIGN(mk[i]);
|
|
|
|
/* check the strict monotonicity */
|
|
for (int i = 0; i < m; i++) {
|
|
int8_t condition = (smk[i + 1] != smk[i]) || (mk[i + 1] == 0) || (mk[i] == 0);
|
|
if (condition) {
|
|
dk[i + 1] = 0.0;
|
|
} else {
|
|
double w1 = 2 * hk[i + 1] + hk[i];
|
|
double w2 = hk[i + 1] + 2 * hk[i];
|
|
dk[i + 1] = (w1 + w2) / (w1 / mk[i] + w2 / mk[i + 1]);
|
|
}
|
|
}
|
|
|
|
dk[0] = pchip_edge_case(hk[0], hk[1], mk[0], mk[1]);
|
|
dk[n] = pchip_edge_case(hk[n - 1], hk[n - 2], mk[n - 1], mk[n - 2]);
|
|
|
|
end:
|
|
av_free(smk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Evalaute half of the cubic hermite interpolation expression, wrt one interval endpoint
|
|
*
|
|
* @param x normalized input value at the endpoint
|
|
* @param f output value at the endpoint
|
|
* @param d derivative at the endpoint: normalized to the interval, and properly sign adjusted
|
|
* @return half of the interpolated value
|
|
*/
|
|
static inline double interp_cubic_hermite_half(const double x, const double f,
|
|
const double d)
|
|
{
|
|
double x2 = x * x, x3 = x2 * x;
|
|
return f * (3.0 * x2 - 2.0 * x3) + d * (x3 - x2);
|
|
}
|
|
|
|
/**
|
|
* Prepare the lookup table by piecewise monotonic cubic interpolation (PCHIP)
|
|
*
|
|
* @param log_ctx for logging
|
|
* @param y output lookup table (output)
|
|
* @param points user-defined control points/endpoints
|
|
* @param nbits bitdepth
|
|
* @return 0 success
|
|
*
|
|
* References:
|
|
* [1] F. N. Fritsch and J. Butland, A method for constructing local monotone piecewise
|
|
* cubic interpolants, SIAM J. Sci. Comput., 5(2), 300-304 (1984). DOI:10.1137/0905021.
|
|
* [2] scipy.interpolate: https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
|
|
*/
|
|
static inline int interpolate_pchip(void *log_ctx, uint16_t *y,
|
|
const struct keypoint *points, int nbits)
|
|
{
|
|
const struct keypoint *point = points;
|
|
const int lut_size = 1<<nbits;
|
|
const int n = get_nb_points(points); // number of endpoints
|
|
double *xi, *fi, *di, *hi, *mi;
|
|
const int scale = lut_size - 1; // white value
|
|
uint16_t x; /* input index/value */
|
|
int ret = 0;
|
|
|
|
/* no change for n = 0 or 1 */
|
|
if (n == 0) {
|
|
/* no points, no change */
|
|
for (int i = 0; i < lut_size; i++) y[i] = i;
|
|
return 0;
|
|
}
|
|
|
|
if (n == 1) {
|
|
/* 1 point - 1 color everywhere */
|
|
const uint16_t yval = CLIP(point->y * scale);
|
|
for (int i = 0; i < lut_size; i++) y[i] = yval;
|
|
return 0;
|
|
}
|
|
|
|
xi = av_calloc(3*n + 2*(n-1), sizeof(double)); /* output values at interval endpoints */
|
|
if (!xi) {
|
|
ret = AVERROR(ENOMEM);
|
|
goto end;
|
|
}
|
|
|
|
fi = xi + n; /* output values at inteval endpoints */
|
|
di = fi + n; /* output slope wrt normalized input at interval endpoints */
|
|
hi = di + n; /* interval widths */
|
|
mi = hi + n - 1; /* linear slope over intervals */
|
|
|
|
/* scale endpoints and store them in a contiguous memory block */
|
|
for (int i = 0; i < n; i++) {
|
|
xi[i] = point->x * scale;
|
|
fi[i] = point->y * scale;
|
|
point = point->next;
|
|
}
|
|
|
|
/* h(i) = x(i+1) - x(i); mi(i) = (f(i+1)-f(i))/h(i) */
|
|
for (int i = 0; i < n - 1; i++) {
|
|
const double val = (xi[i+1]-xi[i]);
|
|
hi[i] = val;
|
|
mi[i] = (fi[i+1]-fi[i]) / val;
|
|
}
|
|
|
|
if (n == 2) {
|
|
/* edge case, use linear interpolation */
|
|
const double m = mi[0], b = fi[0] - xi[0]*m;
|
|
for (int i = 0; i < lut_size; i++) y[i] = CLIP(i*m + b);
|
|
goto end;
|
|
}
|
|
|
|
/* compute the derivatives at the endpoints*/
|
|
ret = pchip_find_derivatives(n-1, hi, mi, di);
|
|
if (ret)
|
|
goto end;
|
|
|
|
/* interpolate/extrapolate */
|
|
x = 0;
|
|
if (xi[0] > 0) {
|
|
/* below first endpoint, use the first endpoint value*/
|
|
const double xi0 = xi[0];
|
|
const double yi0 = fi[0];
|
|
const uint16_t yval = CLIP(yi0);
|
|
for (; x < xi0; x++) {
|
|
y[x] = yval;
|
|
av_log(log_ctx, AV_LOG_TRACE, "f(%f)=%f -> y[%d]=%d\n", xi0, yi0, x, y[x]);
|
|
}
|
|
av_log(log_ctx, AV_LOG_DEBUG, "Interval -1: [0, %d] -> %d\n", x - 1, yval);
|
|
}
|
|
|
|
/* for each interval */
|
|
for (int i = 0, x0 = x; i < n-1; i++, x0 = x) {
|
|
const double xi0 = xi[i]; /* start-of-interval input value */
|
|
const double xi1 = xi[i + 1]; /* end-of-interval input value */
|
|
const double h = hi[i]; /* interval width */
|
|
const double f0 = fi[i]; /* start-of-interval output value */
|
|
const double f1 = fi[i + 1]; /* end-of-interval output value */
|
|
const double d0 = di[i]; /* start-of-interval derivative */
|
|
const double d1 = di[i + 1]; /* end-of-interval derivative */
|
|
|
|
/* fill the lut over the interval */
|
|
for (; x < xi1; x++) { /* safe not to check j < lut_size */
|
|
const double xx = (x - xi0) / h; /* normalize input */
|
|
const double yy = interp_cubic_hermite_half(1 - xx, f0, -h * d0)
|
|
+ interp_cubic_hermite_half(xx, f1, h * d1);
|
|
y[x] = CLIP(yy);
|
|
av_log(log_ctx, AV_LOG_TRACE, "f(%f)=%f -> y[%d]=%d\n", xx, yy, x, y[x]);
|
|
}
|
|
|
|
if (x > x0)
|
|
av_log(log_ctx, AV_LOG_DEBUG, "Interval %d: [%d, %d] -> [%d, %d]\n",
|
|
i, x0, x-1, y[x0], y[x-1]);
|
|
else
|
|
av_log(log_ctx, AV_LOG_DEBUG, "Interval %d: empty\n", i);
|
|
}
|
|
|
|
if (x && x < lut_size) {
|
|
/* above the last endpoint, use the last endpoint value*/
|
|
const double xi1 = xi[n - 1];
|
|
const double yi1 = fi[n - 1];
|
|
const uint16_t yval = CLIP(yi1);
|
|
av_log(log_ctx, AV_LOG_DEBUG, "Interval %d: [%d, %d] -> %d\n",
|
|
n-1, x, lut_size - 1, yval);
|
|
for (; x && x < lut_size; x++) { /* loop until int overflow */
|
|
y[x] = yval;
|
|
av_log(log_ctx, AV_LOG_TRACE, "f(%f)=%f -> y[%d]=%d\n", xi1, yi1, x, yval);
|
|
}
|
|
}
|
|
|
|
end:
|
|
av_free(xi);
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int parse_psfile(AVFilterContext *ctx, const char *fname)
|
|
{
|
|
CurvesContext *curves = ctx->priv;
|
|
uint8_t *buf;
|
|
size_t size;
|
|
int i, ret, av_unused(version), nb_curves;
|
|
AVBPrint ptstr;
|
|
static const int comp_ids[] = {3, 0, 1, 2};
|
|
|
|
av_bprint_init(&ptstr, 0, AV_BPRINT_SIZE_AUTOMATIC);
|
|
|
|
ret = av_file_map(fname, &buf, &size, 0, NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
#define READ16(dst) do { \
|
|
if (size < 2) { \
|
|
ret = AVERROR_INVALIDDATA; \
|
|
goto end; \
|
|
} \
|
|
dst = AV_RB16(buf); \
|
|
buf += 2; \
|
|
size -= 2; \
|
|
} while (0)
|
|
|
|
READ16(version);
|
|
READ16(nb_curves);
|
|
for (i = 0; i < FFMIN(nb_curves, FF_ARRAY_ELEMS(comp_ids)); i++) {
|
|
int nb_points, n;
|
|
av_bprint_clear(&ptstr);
|
|
READ16(nb_points);
|
|
for (n = 0; n < nb_points; n++) {
|
|
int y, x;
|
|
READ16(y);
|
|
READ16(x);
|
|
av_bprintf(&ptstr, "%f/%f ", x / 255., y / 255.);
|
|
}
|
|
if (*ptstr.str) {
|
|
char **pts = &curves->comp_points_str[comp_ids[i]];
|
|
if (!*pts) {
|
|
*pts = av_strdup(ptstr.str);
|
|
av_log(ctx, AV_LOG_DEBUG, "curves %d (intid=%d) [%d points]: [%s]\n",
|
|
i, comp_ids[i], nb_points, *pts);
|
|
if (!*pts) {
|
|
ret = AVERROR(ENOMEM);
|
|
goto end;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
end:
|
|
av_bprint_finalize(&ptstr, NULL);
|
|
av_file_unmap(buf, size);
|
|
return ret;
|
|
}
|
|
|
|
static int dump_curves(const char *fname, uint16_t *graph[NB_COMP + 1],
|
|
struct keypoint *comp_points[NB_COMP + 1],
|
|
int lut_size)
|
|
{
|
|
int i;
|
|
AVBPrint buf;
|
|
const double scale = 1. / (lut_size - 1);
|
|
static const char * const colors[] = { "red", "green", "blue", "#404040", };
|
|
FILE *f = avpriv_fopen_utf8(fname, "w");
|
|
|
|
av_assert0(FF_ARRAY_ELEMS(colors) == NB_COMP + 1);
|
|
|
|
if (!f) {
|
|
int ret = AVERROR(errno);
|
|
av_log(NULL, AV_LOG_ERROR, "Cannot open file '%s' for writing: %s\n",
|
|
fname, av_err2str(ret));
|
|
return ret;
|
|
}
|
|
|
|
av_bprint_init(&buf, 0, AV_BPRINT_SIZE_UNLIMITED);
|
|
|
|
av_bprintf(&buf, "set xtics 0.1\n");
|
|
av_bprintf(&buf, "set ytics 0.1\n");
|
|
av_bprintf(&buf, "set size square\n");
|
|
av_bprintf(&buf, "set grid\n");
|
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(colors); i++) {
|
|
av_bprintf(&buf, "%s'-' using 1:2 with lines lc '%s' title ''",
|
|
i ? ", " : "plot ", colors[i]);
|
|
if (comp_points[i])
|
|
av_bprintf(&buf, ", '-' using 1:2 with points pointtype 3 lc '%s' title ''",
|
|
colors[i]);
|
|
}
|
|
av_bprintf(&buf, "\n");
|
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(colors); i++) {
|
|
int x;
|
|
|
|
/* plot generated values */
|
|
for (x = 0; x < lut_size; x++)
|
|
av_bprintf(&buf, "%f %f\n", x * scale, graph[i][x] * scale);
|
|
av_bprintf(&buf, "e\n");
|
|
|
|
/* plot user knots */
|
|
if (comp_points[i]) {
|
|
const struct keypoint *point = comp_points[i];
|
|
|
|
while (point) {
|
|
av_bprintf(&buf, "%f %f\n", point->x, point->y);
|
|
point = point->next;
|
|
}
|
|
av_bprintf(&buf, "e\n");
|
|
}
|
|
}
|
|
|
|
fwrite(buf.str, 1, buf.len, f);
|
|
fclose(f);
|
|
av_bprint_finalize(&buf, NULL);
|
|
return 0;
|
|
}
|
|
|
|
static av_cold int curves_init(AVFilterContext *ctx)
|
|
{
|
|
int i, ret;
|
|
CurvesContext *curves = ctx->priv;
|
|
char **pts = curves->comp_points_str;
|
|
const char *allp = curves->comp_points_str_all;
|
|
|
|
//if (!allp && curves->preset != PRESET_NONE && curves_presets[curves->preset].all)
|
|
// allp = curves_presets[curves->preset].all;
|
|
|
|
if (allp) {
|
|
for (i = 0; i < NB_COMP; i++) {
|
|
if (!pts[i])
|
|
pts[i] = av_strdup(allp);
|
|
if (!pts[i])
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
}
|
|
|
|
if (curves->psfile && !curves->parsed_psfile) {
|
|
ret = parse_psfile(ctx, curves->psfile);
|
|
if (ret < 0)
|
|
return ret;
|
|
curves->parsed_psfile = 1;
|
|
}
|
|
|
|
if (curves->preset != PRESET_NONE) {
|
|
#define SET_COMP_IF_NOT_SET(n, name) do { \
|
|
if (!pts[n] && curves_presets[curves->preset].name) { \
|
|
pts[n] = av_strdup(curves_presets[curves->preset].name); \
|
|
if (!pts[n]) \
|
|
return AVERROR(ENOMEM); \
|
|
} \
|
|
} while (0)
|
|
SET_COMP_IF_NOT_SET(0, r);
|
|
SET_COMP_IF_NOT_SET(1, g);
|
|
SET_COMP_IF_NOT_SET(2, b);
|
|
SET_COMP_IF_NOT_SET(3, master);
|
|
curves->preset = PRESET_NONE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int filter_slice_packed(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
|
|
{
|
|
int x, y;
|
|
const CurvesContext *curves = ctx->priv;
|
|
const ThreadData *td = arg;
|
|
const AVFrame *in = td->in;
|
|
const AVFrame *out = td->out;
|
|
const int direct = out == in;
|
|
const int step = curves->step;
|
|
const uint8_t r = curves->rgba_map[R];
|
|
const uint8_t g = curves->rgba_map[G];
|
|
const uint8_t b = curves->rgba_map[B];
|
|
const uint8_t a = curves->rgba_map[A];
|
|
const int slice_start = (in->height * jobnr ) / nb_jobs;
|
|
const int slice_end = (in->height * (jobnr+1)) / nb_jobs;
|
|
|
|
if (curves->is_16bit) {
|
|
for (y = slice_start; y < slice_end; y++) {
|
|
uint16_t *dstp = ( uint16_t *)(out->data[0] + y * out->linesize[0]);
|
|
const uint16_t *srcp = (const uint16_t *)(in ->data[0] + y * in->linesize[0]);
|
|
|
|
for (x = 0; x < in->width * step; x += step) {
|
|
dstp[x + r] = curves->graph[R][srcp[x + r]];
|
|
dstp[x + g] = curves->graph[G][srcp[x + g]];
|
|
dstp[x + b] = curves->graph[B][srcp[x + b]];
|
|
if (!direct && step == 4)
|
|
dstp[x + a] = srcp[x + a];
|
|
}
|
|
}
|
|
} else {
|
|
uint8_t *dst = out->data[0] + slice_start * out->linesize[0];
|
|
const uint8_t *src = in->data[0] + slice_start * in->linesize[0];
|
|
|
|
for (y = slice_start; y < slice_end; y++) {
|
|
for (x = 0; x < in->width * step; x += step) {
|
|
dst[x + r] = curves->graph[R][src[x + r]];
|
|
dst[x + g] = curves->graph[G][src[x + g]];
|
|
dst[x + b] = curves->graph[B][src[x + b]];
|
|
if (!direct && step == 4)
|
|
dst[x + a] = src[x + a];
|
|
}
|
|
dst += out->linesize[0];
|
|
src += in ->linesize[0];
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int filter_slice_planar(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
|
|
{
|
|
int x, y;
|
|
const CurvesContext *curves = ctx->priv;
|
|
const ThreadData *td = arg;
|
|
const AVFrame *in = td->in;
|
|
const AVFrame *out = td->out;
|
|
const int direct = out == in;
|
|
const int step = curves->step;
|
|
const uint8_t r = curves->rgba_map[R];
|
|
const uint8_t g = curves->rgba_map[G];
|
|
const uint8_t b = curves->rgba_map[B];
|
|
const uint8_t a = curves->rgba_map[A];
|
|
const int slice_start = (in->height * jobnr ) / nb_jobs;
|
|
const int slice_end = (in->height * (jobnr+1)) / nb_jobs;
|
|
|
|
if (curves->is_16bit) {
|
|
for (y = slice_start; y < slice_end; y++) {
|
|
uint16_t *dstrp = ( uint16_t *)(out->data[r] + y * out->linesize[r]);
|
|
uint16_t *dstgp = ( uint16_t *)(out->data[g] + y * out->linesize[g]);
|
|
uint16_t *dstbp = ( uint16_t *)(out->data[b] + y * out->linesize[b]);
|
|
uint16_t *dstap = ( uint16_t *)(out->data[a] + y * out->linesize[a]);
|
|
const uint16_t *srcrp = (const uint16_t *)(in ->data[r] + y * in->linesize[r]);
|
|
const uint16_t *srcgp = (const uint16_t *)(in ->data[g] + y * in->linesize[g]);
|
|
const uint16_t *srcbp = (const uint16_t *)(in ->data[b] + y * in->linesize[b]);
|
|
const uint16_t *srcap = (const uint16_t *)(in ->data[a] + y * in->linesize[a]);
|
|
|
|
for (x = 0; x < in->width; x++) {
|
|
dstrp[x] = curves->graph[R][srcrp[x]];
|
|
dstgp[x] = curves->graph[G][srcgp[x]];
|
|
dstbp[x] = curves->graph[B][srcbp[x]];
|
|
if (!direct && step == 4)
|
|
dstap[x] = srcap[x];
|
|
}
|
|
}
|
|
} else {
|
|
uint8_t *dstr = out->data[r] + slice_start * out->linesize[r];
|
|
uint8_t *dstg = out->data[g] + slice_start * out->linesize[g];
|
|
uint8_t *dstb = out->data[b] + slice_start * out->linesize[b];
|
|
uint8_t *dsta = out->data[a] + slice_start * out->linesize[a];
|
|
const uint8_t *srcr = in->data[r] + slice_start * in->linesize[r];
|
|
const uint8_t *srcg = in->data[g] + slice_start * in->linesize[g];
|
|
const uint8_t *srcb = in->data[b] + slice_start * in->linesize[b];
|
|
const uint8_t *srca = in->data[a] + slice_start * in->linesize[a];
|
|
|
|
for (y = slice_start; y < slice_end; y++) {
|
|
for (x = 0; x < in->width; x++) {
|
|
dstr[x] = curves->graph[R][srcr[x]];
|
|
dstg[x] = curves->graph[G][srcg[x]];
|
|
dstb[x] = curves->graph[B][srcb[x]];
|
|
if (!direct && step == 4)
|
|
dsta[x] = srca[x];
|
|
}
|
|
dstr += out->linesize[r];
|
|
dstg += out->linesize[g];
|
|
dstb += out->linesize[b];
|
|
dsta += out->linesize[a];
|
|
srcr += in ->linesize[r];
|
|
srcg += in ->linesize[g];
|
|
srcb += in ->linesize[b];
|
|
srca += in ->linesize[a];
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int config_input(AVFilterLink *inlink)
|
|
{
|
|
int i, j, ret;
|
|
AVFilterContext *ctx = inlink->dst;
|
|
CurvesContext *curves = ctx->priv;
|
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
|
|
char **pts = curves->comp_points_str;
|
|
struct keypoint *comp_points[NB_COMP + 1] = {0};
|
|
|
|
ff_fill_rgba_map(curves->rgba_map, inlink->format);
|
|
curves->is_16bit = desc->comp[0].depth > 8;
|
|
curves->depth = desc->comp[0].depth;
|
|
curves->lut_size = 1 << curves->depth;
|
|
curves->step = av_get_padded_bits_per_pixel(desc) >> (3 + curves->is_16bit);
|
|
curves->filter_slice = desc->flags & AV_PIX_FMT_FLAG_PLANAR ? filter_slice_planar : filter_slice_packed;
|
|
|
|
for (i = 0; i < NB_COMP + 1; i++) {
|
|
if (!curves->graph[i])
|
|
curves->graph[i] = av_calloc(curves->lut_size, sizeof(*curves->graph[0]));
|
|
if (!curves->graph[i])
|
|
return AVERROR(ENOMEM);
|
|
ret = parse_points_str(ctx, comp_points + i, curves->comp_points_str[i], curves->lut_size);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (curves->interp == INTERP_PCHIP)
|
|
ret = interpolate_pchip(ctx, curves->graph[i], comp_points[i], curves->depth);
|
|
else
|
|
ret = interpolate(ctx, curves->graph[i], comp_points[i], curves->depth);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
if (pts[NB_COMP]) {
|
|
for (i = 0; i < NB_COMP; i++)
|
|
for (j = 0; j < curves->lut_size; j++)
|
|
curves->graph[i][j] = curves->graph[NB_COMP][curves->graph[i][j]];
|
|
}
|
|
|
|
if (av_log_get_level() >= AV_LOG_VERBOSE) {
|
|
for (i = 0; i < NB_COMP; i++) {
|
|
const struct keypoint *point = comp_points[i];
|
|
av_log(ctx, AV_LOG_VERBOSE, "#%d points:", i);
|
|
while (point) {
|
|
av_log(ctx, AV_LOG_VERBOSE, " (%f;%f)", point->x, point->y);
|
|
point = point->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (curves->plot_filename && !curves->saved_plot) {
|
|
dump_curves(curves->plot_filename, curves->graph, comp_points, curves->lut_size);
|
|
curves->saved_plot = 1;
|
|
}
|
|
|
|
for (i = 0; i < NB_COMP + 1; i++) {
|
|
struct keypoint *point = comp_points[i];
|
|
while (point) {
|
|
struct keypoint *next = point->next;
|
|
av_free(point);
|
|
point = next;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
|
|
{
|
|
AVFilterContext *ctx = inlink->dst;
|
|
CurvesContext *curves = ctx->priv;
|
|
AVFilterLink *outlink = ctx->outputs[0];
|
|
AVFrame *out;
|
|
ThreadData td;
|
|
|
|
if (av_frame_is_writable(in)) {
|
|
out = in;
|
|
} else {
|
|
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
|
|
if (!out) {
|
|
av_frame_free(&in);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
av_frame_copy_props(out, in);
|
|
}
|
|
|
|
td.in = in;
|
|
td.out = out;
|
|
ff_filter_execute(ctx, curves->filter_slice, &td, NULL,
|
|
FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
|
|
|
|
if (out != in)
|
|
av_frame_free(&in);
|
|
|
|
return ff_filter_frame(outlink, out);
|
|
}
|
|
|
|
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
|
|
char *res, int res_len, int flags)
|
|
{
|
|
CurvesContext *curves = ctx->priv;
|
|
int ret;
|
|
|
|
if (!strcmp(cmd, "plot")) {
|
|
curves->saved_plot = 0;
|
|
} else if (!strcmp(cmd, "all") || !strcmp(cmd, "preset") || !strcmp(cmd, "psfile") || !strcmp(cmd, "interp")) {
|
|
if (!strcmp(cmd, "psfile"))
|
|
curves->parsed_psfile = 0;
|
|
av_freep(&curves->comp_points_str_all);
|
|
av_freep(&curves->comp_points_str[0]);
|
|
av_freep(&curves->comp_points_str[1]);
|
|
av_freep(&curves->comp_points_str[2]);
|
|
av_freep(&curves->comp_points_str[NB_COMP]);
|
|
} else if (!strcmp(cmd, "red") || !strcmp(cmd, "r")) {
|
|
av_freep(&curves->comp_points_str[0]);
|
|
} else if (!strcmp(cmd, "green") || !strcmp(cmd, "g")) {
|
|
av_freep(&curves->comp_points_str[1]);
|
|
} else if (!strcmp(cmd, "blue") || !strcmp(cmd, "b")) {
|
|
av_freep(&curves->comp_points_str[2]);
|
|
} else if (!strcmp(cmd, "master") || !strcmp(cmd, "m")) {
|
|
av_freep(&curves->comp_points_str[NB_COMP]);
|
|
}
|
|
|
|
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = curves_init(ctx);
|
|
if (ret < 0)
|
|
return ret;
|
|
return config_input(ctx->inputs[0]);
|
|
}
|
|
|
|
static av_cold void curves_uninit(AVFilterContext *ctx)
|
|
{
|
|
int i;
|
|
CurvesContext *curves = ctx->priv;
|
|
|
|
for (i = 0; i < NB_COMP + 1; i++)
|
|
av_freep(&curves->graph[i]);
|
|
}
|
|
|
|
static const AVFilterPad curves_inputs[] = {
|
|
{
|
|
.name = "default",
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.filter_frame = filter_frame,
|
|
.config_props = config_input,
|
|
},
|
|
};
|
|
|
|
const AVFilter ff_vf_curves = {
|
|
.name = "curves",
|
|
.description = NULL_IF_CONFIG_SMALL("Adjust components curves."),
|
|
.priv_size = sizeof(CurvesContext),
|
|
.init = curves_init,
|
|
.uninit = curves_uninit,
|
|
FILTER_INPUTS(curves_inputs),
|
|
FILTER_OUTPUTS(ff_video_default_filterpad),
|
|
FILTER_PIXFMTS(AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
|
|
AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA,
|
|
AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR,
|
|
AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR,
|
|
AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0,
|
|
AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48,
|
|
AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
|
|
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
|
|
AV_PIX_FMT_GBRP9,
|
|
AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRAP10,
|
|
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRAP12,
|
|
AV_PIX_FMT_GBRP14,
|
|
AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP16),
|
|
.priv_class = &curves_class,
|
|
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
|
|
.process_command = process_command,
|
|
};
|