1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00
FFmpeg/libavfilter/vf_curves.c
Anton Khirnov 6d75d44d90 lavfi: drop internal.h
All that remains in it are things that belong in avfilter_internal.h.

Move them there and remove internal.h
2024-08-19 21:48:04 +02:00

1036 lines
36 KiB
C

/*
* Copyright (c) 2013 Clément Bœsch
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/bprint.h"
#include "libavutil/eval.h"
#include "libavutil/file.h"
#include "libavutil/file_open.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/avassert.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "drawutils.h"
#include "filters.h"
#include "video.h"
#define R 0
#define G 1
#define B 2
#define A 3
struct keypoint {
double x, y;
struct keypoint *next;
};
#define NB_COMP 3
enum preset {
PRESET_NONE,
PRESET_COLOR_NEGATIVE,
PRESET_CROSS_PROCESS,
PRESET_DARKER,
PRESET_INCREASE_CONTRAST,
PRESET_LIGHTER,
PRESET_LINEAR_CONTRAST,
PRESET_MEDIUM_CONTRAST,
PRESET_NEGATIVE,
PRESET_STRONG_CONTRAST,
PRESET_VINTAGE,
NB_PRESETS,
};
enum interp {
INTERP_NATURAL,
INTERP_PCHIP,
NB_INTERPS,
};
typedef struct CurvesContext {
const AVClass *class;
int preset;
char *comp_points_str[NB_COMP + 1];
char *comp_points_str_all;
uint16_t *graph[NB_COMP + 1];
int lut_size;
char *psfile;
uint8_t rgba_map[4];
int step;
char *plot_filename;
int saved_plot;
int is_16bit;
int depth;
int parsed_psfile;
int interp;
int (*filter_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
} CurvesContext;
typedef struct ThreadData {
AVFrame *in, *out;
} ThreadData;
#define OFFSET(x) offsetof(CurvesContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption curves_options[] = {
{ "preset", "select a color curves preset", OFFSET(preset), AV_OPT_TYPE_INT, {.i64=PRESET_NONE}, PRESET_NONE, NB_PRESETS-1, FLAGS, .unit = "preset_name" },
{ "none", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_NONE}, 0, 0, FLAGS, .unit = "preset_name" },
{ "color_negative", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_COLOR_NEGATIVE}, 0, 0, FLAGS, .unit = "preset_name" },
{ "cross_process", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_CROSS_PROCESS}, 0, 0, FLAGS, .unit = "preset_name" },
{ "darker", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_DARKER}, 0, 0, FLAGS, .unit = "preset_name" },
{ "increase_contrast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_INCREASE_CONTRAST}, 0, 0, FLAGS, .unit = "preset_name" },
{ "lighter", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_LIGHTER}, 0, 0, FLAGS, .unit = "preset_name" },
{ "linear_contrast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_LINEAR_CONTRAST}, 0, 0, FLAGS, .unit = "preset_name" },
{ "medium_contrast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_MEDIUM_CONTRAST}, 0, 0, FLAGS, .unit = "preset_name" },
{ "negative", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_NEGATIVE}, 0, 0, FLAGS, .unit = "preset_name" },
{ "strong_contrast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_STRONG_CONTRAST}, 0, 0, FLAGS, .unit = "preset_name" },
{ "vintage", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PRESET_VINTAGE}, 0, 0, FLAGS, .unit = "preset_name" },
{ "master","set master points coordinates",OFFSET(comp_points_str[NB_COMP]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "m", "set master points coordinates",OFFSET(comp_points_str[NB_COMP]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "red", "set red points coordinates", OFFSET(comp_points_str[0]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "r", "set red points coordinates", OFFSET(comp_points_str[0]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "green", "set green points coordinates", OFFSET(comp_points_str[1]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "g", "set green points coordinates", OFFSET(comp_points_str[1]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "blue", "set blue points coordinates", OFFSET(comp_points_str[2]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "b", "set blue points coordinates", OFFSET(comp_points_str[2]), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "all", "set points coordinates for all components", OFFSET(comp_points_str_all), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "psfile", "set Photoshop curves file name", OFFSET(psfile), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "plot", "save Gnuplot script of the curves in specified file", OFFSET(plot_filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
{ "interp", "specify the kind of interpolation", OFFSET(interp), AV_OPT_TYPE_INT, {.i64=INTERP_NATURAL}, INTERP_NATURAL, NB_INTERPS-1, FLAGS, .unit = "interp_name" },
{ "natural", "natural cubic spline", 0, AV_OPT_TYPE_CONST, {.i64=INTERP_NATURAL}, 0, 0, FLAGS, .unit = "interp_name" },
{ "pchip", "monotonically cubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERP_PCHIP}, 0, 0, FLAGS, .unit = "interp_name" },
{ NULL }
};
AVFILTER_DEFINE_CLASS(curves);
static const struct {
const char *r;
const char *g;
const char *b;
const char *master;
} curves_presets[] = {
[PRESET_COLOR_NEGATIVE] = {
"0.129/1 0.466/0.498 0.725/0",
"0.109/1 0.301/0.498 0.517/0",
"0.098/1 0.235/0.498 0.423/0",
},
[PRESET_CROSS_PROCESS] = {
"0/0 0.25/0.156 0.501/0.501 0.686/0.745 1/1",
"0/0 0.25/0.188 0.38/0.501 0.745/0.815 1/0.815",
"0/0 0.231/0.094 0.709/0.874 1/1",
},
[PRESET_DARKER] = { .master = "0/0 0.5/0.4 1/1" },
[PRESET_INCREASE_CONTRAST] = { .master = "0/0 0.149/0.066 0.831/0.905 0.905/0.98 1/1" },
[PRESET_LIGHTER] = { .master = "0/0 0.4/0.5 1/1" },
[PRESET_LINEAR_CONTRAST] = { .master = "0/0 0.305/0.286 0.694/0.713 1/1" },
[PRESET_MEDIUM_CONTRAST] = { .master = "0/0 0.286/0.219 0.639/0.643 1/1" },
[PRESET_NEGATIVE] = { .master = "0/1 1/0" },
[PRESET_STRONG_CONTRAST] = { .master = "0/0 0.301/0.196 0.592/0.6 0.686/0.737 1/1" },
[PRESET_VINTAGE] = {
"0/0.11 0.42/0.51 1/0.95",
"0/0 0.50/0.48 1/1",
"0/0.22 0.49/0.44 1/0.8",
}
};
static struct keypoint *make_point(double x, double y, struct keypoint *next)
{
struct keypoint *point = av_mallocz(sizeof(*point));
if (!point)
return NULL;
point->x = x;
point->y = y;
point->next = next;
return point;
}
static int parse_points_str(AVFilterContext *ctx, struct keypoint **points, const char *s,
int lut_size)
{
char *p = (char *)s; // strtod won't alter the string
struct keypoint *last = NULL;
const int scale = lut_size - 1;
/* construct a linked list based on the key points string */
while (p && *p) {
struct keypoint *point = make_point(0, 0, NULL);
if (!point)
return AVERROR(ENOMEM);
point->x = av_strtod(p, &p); if (p && *p) p++;
point->y = av_strtod(p, &p); if (p && *p) p++;
if (point->x < 0 || point->x > 1 || point->y < 0 || point->y > 1) {
av_log(ctx, AV_LOG_ERROR, "Invalid key point coordinates (%f;%f), "
"x and y must be in the [0;1] range.\n", point->x, point->y);
av_free(point);
return AVERROR(EINVAL);
}
if (last) {
if ((int)(last->x * scale) >= (int)(point->x * scale)) {
av_log(ctx, AV_LOG_ERROR, "Key point coordinates (%f;%f) "
"and (%f;%f) are too close from each other or not "
"strictly increasing on the x-axis\n",
last->x, last->y, point->x, point->y);
av_free(point);
return AVERROR(EINVAL);
}
last->next = point;
}
if (!*points)
*points = point;
last = point;
}
if (*points && !(*points)->next) {
av_log(ctx, AV_LOG_WARNING, "Only one point (at (%f;%f)) is defined, "
"this is unlikely to behave as you expect. You probably want"
"at least 2 points.",
(*points)->x, (*points)->y);
}
return 0;
}
static int get_nb_points(const struct keypoint *d)
{
int n = 0;
while (d) {
n++;
d = d->next;
}
return n;
}
/**
* Natural cubic spline interpolation
* Finding curves using Cubic Splines notes by Steven Rauch and John Stockie.
* @see http://people.math.sfu.ca/~stockie/teaching/macm316/notes/splines.pdf
*/
#define CLIP(v) (nbits == 8 ? av_clip_uint8(v) : av_clip_uintp2_c(v, nbits))
static inline int interpolate(void *log_ctx, uint16_t *y,
const struct keypoint *points, int nbits)
{
int i, ret = 0;
const struct keypoint *point = points;
double xprev = 0;
const int lut_size = 1<<nbits;
const int scale = lut_size - 1;
double (*matrix)[3];
double *h, *r;
const int n = get_nb_points(points); // number of splines
if (n == 0) {
for (i = 0; i < lut_size; i++)
y[i] = i;
return 0;
}
if (n == 1) {
for (i = 0; i < lut_size; i++)
y[i] = CLIP(point->y * scale);
return 0;
}
matrix = av_calloc(n, sizeof(*matrix));
h = av_malloc((n - 1) * sizeof(*h));
r = av_calloc(n, sizeof(*r));
if (!matrix || !h || !r) {
ret = AVERROR(ENOMEM);
goto end;
}
/* h(i) = x(i+1) - x(i) */
i = -1;
for (point = points; point; point = point->next) {
if (i != -1)
h[i] = point->x - xprev;
xprev = point->x;
i++;
}
/* right-side of the polynomials, will be modified to contains the solution */
point = points;
for (i = 1; i < n - 1; i++) {
const double yp = point->y;
const double yc = point->next->y;
const double yn = point->next->next->y;
r[i] = 6 * ((yn-yc)/h[i] - (yc-yp)/h[i-1]);
point = point->next;
}
#define BD 0 /* sub diagonal (below main) */
#define MD 1 /* main diagonal (center) */
#define AD 2 /* sup diagonal (above main) */
/* left side of the polynomials into a tridiagonal matrix. */
matrix[0][MD] = matrix[n - 1][MD] = 1;
for (i = 1; i < n - 1; i++) {
matrix[i][BD] = h[i-1];
matrix[i][MD] = 2 * (h[i-1] + h[i]);
matrix[i][AD] = h[i];
}
/* tridiagonal solving of the linear system */
for (i = 1; i < n; i++) {
const double den = matrix[i][MD] - matrix[i][BD] * matrix[i-1][AD];
const double k = den ? 1./den : 1.;
matrix[i][AD] *= k;
r[i] = (r[i] - matrix[i][BD] * r[i - 1]) * k;
}
for (i = n - 2; i >= 0; i--)
r[i] = r[i] - matrix[i][AD] * r[i + 1];
point = points;
/* left padding */
for (i = 0; i < (int)(point->x * scale); i++)
y[i] = CLIP(point->y * scale);
/* compute the graph with x=[x0..xN] */
i = 0;
av_assert0(point->next); // always at least 2 key points
while (point->next) {
const double yc = point->y;
const double yn = point->next->y;
const double a = yc;
const double b = (yn-yc)/h[i] - h[i]*r[i]/2. - h[i]*(r[i+1]-r[i])/6.;
const double c = r[i] / 2.;
const double d = (r[i+1] - r[i]) / (6.*h[i]);
int x;
const int x_start = point->x * scale;
const int x_end = point->next->x * scale;
av_assert0(x_start >= 0 && x_start < lut_size &&
x_end >= 0 && x_end < lut_size);
for (x = x_start; x <= x_end; x++) {
const double xx = (x - x_start) * 1./scale;
const double yy = a + b*xx + c*xx*xx + d*xx*xx*xx;
y[x] = CLIP(yy * scale);
av_log(log_ctx, AV_LOG_DEBUG, "f(%f)=%f -> y[%d]=%d\n", xx, yy, x, y[x]);
}
point = point->next;
i++;
}
/* right padding */
for (i = (int)(point->x * scale); i < lut_size; i++)
y[i] = CLIP(point->y * scale);
end:
av_free(matrix);
av_free(h);
av_free(r);
return ret;
}
#define SIGN(x) (x > 0.0 ? 1 : x < 0.0 ? -1 : 0)
/**
* Evalaute the derivative of an edge endpoint
*
* @param h0 input interval of the interval closest to the edge
* @param h1 input interval of the interval next to the closest
* @param m0 linear slope of the interval closest to the edge
* @param m1 linear slope of the intervalnext to the closest
* @return edge endpoint derivative
*
* Based on scipy.interpolate._edge_case()
* https://github.com/scipy/scipy/blob/2e5883ef7af4f5ed4a5b80a1759a45e43163bf3f/scipy/interpolate/_cubic.py#L239
* which is a python implementation of the special case endpoints, as suggested in
* Cleve Moler, Numerical Computing with MATLAB, Chap 3.6 (pchiptx.m)
*/
static double pchip_edge_case(double h0, double h1, double m0, double m1)
{
int mask, mask2;
double d;
d = ((2 * h0 + h1) * m0 - h0 * m1) / (h0 + h1);
mask = SIGN(d) != SIGN(m0);
mask2 = (SIGN(m0) != SIGN(m1)) && (fabs(d) > 3. * fabs(m0));
if (mask) d = 0.0;
else if (mask2) d = 3.0 * m0;
return d;
}
/**
* Evalaute the piecewise polynomial derivatives at endpoints
*
* @param n input interval of the interval closest to the edge
* @param hk input intervals
* @param mk linear slopes over intervals
* @param dk endpoint derivatives (output)
* @return 0 success
*
* Based on scipy.interpolate._find_derivatives()
* https://github.com/scipy/scipy/blob/2e5883ef7af4f5ed4a5b80a1759a45e43163bf3f/scipy/interpolate/_cubic.py#L254
*/
static int pchip_find_derivatives(const int n, const double *hk, const double *mk, double *dk)
{
int ret = 0;
const int m = n - 1;
int8_t *smk;
smk = av_malloc(n);
if (!smk) {
ret = AVERROR(ENOMEM);
goto end;
}
/* smk = sgn(mk) */
for (int i = 0; i < n; i++) smk[i] = SIGN(mk[i]);
/* check the strict monotonicity */
for (int i = 0; i < m; i++) {
int8_t condition = (smk[i + 1] != smk[i]) || (mk[i + 1] == 0) || (mk[i] == 0);
if (condition) {
dk[i + 1] = 0.0;
} else {
double w1 = 2 * hk[i + 1] + hk[i];
double w2 = hk[i + 1] + 2 * hk[i];
dk[i + 1] = (w1 + w2) / (w1 / mk[i] + w2 / mk[i + 1]);
}
}
dk[0] = pchip_edge_case(hk[0], hk[1], mk[0], mk[1]);
dk[n] = pchip_edge_case(hk[n - 1], hk[n - 2], mk[n - 1], mk[n - 2]);
end:
av_free(smk);
return ret;
}
/**
* Evalaute half of the cubic hermite interpolation expression, wrt one interval endpoint
*
* @param x normalized input value at the endpoint
* @param f output value at the endpoint
* @param d derivative at the endpoint: normalized to the interval, and properly sign adjusted
* @return half of the interpolated value
*/
static inline double interp_cubic_hermite_half(const double x, const double f,
const double d)
{
double x2 = x * x, x3 = x2 * x;
return f * (3.0 * x2 - 2.0 * x3) + d * (x3 - x2);
}
/**
* Prepare the lookup table by piecewise monotonic cubic interpolation (PCHIP)
*
* @param log_ctx for logging
* @param y output lookup table (output)
* @param points user-defined control points/endpoints
* @param nbits bitdepth
* @return 0 success
*
* References:
* [1] F. N. Fritsch and J. Butland, A method for constructing local monotone piecewise
* cubic interpolants, SIAM J. Sci. Comput., 5(2), 300-304 (1984). DOI:10.1137/0905021.
* [2] scipy.interpolate: https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
*/
static inline int interpolate_pchip(void *log_ctx, uint16_t *y,
const struct keypoint *points, int nbits)
{
const struct keypoint *point = points;
const int lut_size = 1<<nbits;
const int n = get_nb_points(points); // number of endpoints
double *xi, *fi, *di, *hi, *mi;
const int scale = lut_size - 1; // white value
uint16_t x; /* input index/value */
int ret = 0;
/* no change for n = 0 or 1 */
if (n == 0) {
/* no points, no change */
for (int i = 0; i < lut_size; i++) y[i] = i;
return 0;
}
if (n == 1) {
/* 1 point - 1 color everywhere */
const uint16_t yval = CLIP(point->y * scale);
for (int i = 0; i < lut_size; i++) y[i] = yval;
return 0;
}
xi = av_calloc(3*n + 2*(n-1), sizeof(double)); /* output values at interval endpoints */
if (!xi) {
ret = AVERROR(ENOMEM);
goto end;
}
fi = xi + n; /* output values at inteval endpoints */
di = fi + n; /* output slope wrt normalized input at interval endpoints */
hi = di + n; /* interval widths */
mi = hi + n - 1; /* linear slope over intervals */
/* scale endpoints and store them in a contiguous memory block */
for (int i = 0; i < n; i++) {
xi[i] = point->x * scale;
fi[i] = point->y * scale;
point = point->next;
}
/* h(i) = x(i+1) - x(i); mi(i) = (f(i+1)-f(i))/h(i) */
for (int i = 0; i < n - 1; i++) {
const double val = (xi[i+1]-xi[i]);
hi[i] = val;
mi[i] = (fi[i+1]-fi[i]) / val;
}
if (n == 2) {
/* edge case, use linear interpolation */
const double m = mi[0], b = fi[0] - xi[0]*m;
for (int i = 0; i < lut_size; i++) y[i] = CLIP(i*m + b);
goto end;
}
/* compute the derivatives at the endpoints*/
ret = pchip_find_derivatives(n-1, hi, mi, di);
if (ret)
goto end;
/* interpolate/extrapolate */
x = 0;
if (xi[0] > 0) {
/* below first endpoint, use the first endpoint value*/
const double xi0 = xi[0];
const double yi0 = fi[0];
const uint16_t yval = CLIP(yi0);
for (; x < xi0; x++) {
y[x] = yval;
av_log(log_ctx, AV_LOG_TRACE, "f(%f)=%f -> y[%d]=%d\n", xi0, yi0, x, y[x]);
}
av_log(log_ctx, AV_LOG_DEBUG, "Interval -1: [0, %d] -> %d\n", x - 1, yval);
}
/* for each interval */
for (int i = 0, x0 = x; i < n-1; i++, x0 = x) {
const double xi0 = xi[i]; /* start-of-interval input value */
const double xi1 = xi[i + 1]; /* end-of-interval input value */
const double h = hi[i]; /* interval width */
const double f0 = fi[i]; /* start-of-interval output value */
const double f1 = fi[i + 1]; /* end-of-interval output value */
const double d0 = di[i]; /* start-of-interval derivative */
const double d1 = di[i + 1]; /* end-of-interval derivative */
/* fill the lut over the interval */
for (; x < xi1; x++) { /* safe not to check j < lut_size */
const double xx = (x - xi0) / h; /* normalize input */
const double yy = interp_cubic_hermite_half(1 - xx, f0, -h * d0)
+ interp_cubic_hermite_half(xx, f1, h * d1);
y[x] = CLIP(yy);
av_log(log_ctx, AV_LOG_TRACE, "f(%f)=%f -> y[%d]=%d\n", xx, yy, x, y[x]);
}
if (x > x0)
av_log(log_ctx, AV_LOG_DEBUG, "Interval %d: [%d, %d] -> [%d, %d]\n",
i, x0, x-1, y[x0], y[x-1]);
else
av_log(log_ctx, AV_LOG_DEBUG, "Interval %d: empty\n", i);
}
if (x && x < lut_size) {
/* above the last endpoint, use the last endpoint value*/
const double xi1 = xi[n - 1];
const double yi1 = fi[n - 1];
const uint16_t yval = CLIP(yi1);
av_log(log_ctx, AV_LOG_DEBUG, "Interval %d: [%d, %d] -> %d\n",
n-1, x, lut_size - 1, yval);
for (; x && x < lut_size; x++) { /* loop until int overflow */
y[x] = yval;
av_log(log_ctx, AV_LOG_TRACE, "f(%f)=%f -> y[%d]=%d\n", xi1, yi1, x, yval);
}
}
end:
av_free(xi);
return ret;
}
static int parse_psfile(AVFilterContext *ctx, const char *fname)
{
CurvesContext *curves = ctx->priv;
uint8_t *buf;
size_t size;
int i, ret, av_unused(version), nb_curves;
AVBPrint ptstr;
static const int comp_ids[] = {3, 0, 1, 2};
av_bprint_init(&ptstr, 0, AV_BPRINT_SIZE_AUTOMATIC);
ret = av_file_map(fname, &buf, &size, 0, NULL);
if (ret < 0)
return ret;
#define READ16(dst) do { \
if (size < 2) { \
ret = AVERROR_INVALIDDATA; \
goto end; \
} \
dst = AV_RB16(buf); \
buf += 2; \
size -= 2; \
} while (0)
READ16(version);
READ16(nb_curves);
for (i = 0; i < FFMIN(nb_curves, FF_ARRAY_ELEMS(comp_ids)); i++) {
int nb_points, n;
av_bprint_clear(&ptstr);
READ16(nb_points);
for (n = 0; n < nb_points; n++) {
int y, x;
READ16(y);
READ16(x);
av_bprintf(&ptstr, "%f/%f ", x / 255., y / 255.);
}
if (*ptstr.str) {
char **pts = &curves->comp_points_str[comp_ids[i]];
if (!*pts) {
*pts = av_strdup(ptstr.str);
av_log(ctx, AV_LOG_DEBUG, "curves %d (intid=%d) [%d points]: [%s]\n",
i, comp_ids[i], nb_points, *pts);
if (!*pts) {
ret = AVERROR(ENOMEM);
goto end;
}
}
}
}
end:
av_bprint_finalize(&ptstr, NULL);
av_file_unmap(buf, size);
return ret;
}
static int dump_curves(const char *fname, uint16_t *graph[NB_COMP + 1],
struct keypoint *comp_points[NB_COMP + 1],
int lut_size)
{
int i;
AVBPrint buf;
const double scale = 1. / (lut_size - 1);
static const char * const colors[] = { "red", "green", "blue", "#404040", };
FILE *f = avpriv_fopen_utf8(fname, "w");
av_assert0(FF_ARRAY_ELEMS(colors) == NB_COMP + 1);
if (!f) {
int ret = AVERROR(errno);
av_log(NULL, AV_LOG_ERROR, "Cannot open file '%s' for writing: %s\n",
fname, av_err2str(ret));
return ret;
}
av_bprint_init(&buf, 0, AV_BPRINT_SIZE_UNLIMITED);
av_bprintf(&buf, "set xtics 0.1\n");
av_bprintf(&buf, "set ytics 0.1\n");
av_bprintf(&buf, "set size square\n");
av_bprintf(&buf, "set grid\n");
for (i = 0; i < FF_ARRAY_ELEMS(colors); i++) {
av_bprintf(&buf, "%s'-' using 1:2 with lines lc '%s' title ''",
i ? ", " : "plot ", colors[i]);
if (comp_points[i])
av_bprintf(&buf, ", '-' using 1:2 with points pointtype 3 lc '%s' title ''",
colors[i]);
}
av_bprintf(&buf, "\n");
for (i = 0; i < FF_ARRAY_ELEMS(colors); i++) {
int x;
/* plot generated values */
for (x = 0; x < lut_size; x++)
av_bprintf(&buf, "%f %f\n", x * scale, graph[i][x] * scale);
av_bprintf(&buf, "e\n");
/* plot user knots */
if (comp_points[i]) {
const struct keypoint *point = comp_points[i];
while (point) {
av_bprintf(&buf, "%f %f\n", point->x, point->y);
point = point->next;
}
av_bprintf(&buf, "e\n");
}
}
fwrite(buf.str, 1, buf.len, f);
fclose(f);
av_bprint_finalize(&buf, NULL);
return 0;
}
static av_cold int curves_init(AVFilterContext *ctx)
{
int i, ret;
CurvesContext *curves = ctx->priv;
char **pts = curves->comp_points_str;
const char *allp = curves->comp_points_str_all;
//if (!allp && curves->preset != PRESET_NONE && curves_presets[curves->preset].all)
// allp = curves_presets[curves->preset].all;
if (allp) {
for (i = 0; i < NB_COMP; i++) {
if (!pts[i])
pts[i] = av_strdup(allp);
if (!pts[i])
return AVERROR(ENOMEM);
}
}
if (curves->psfile && !curves->parsed_psfile) {
ret = parse_psfile(ctx, curves->psfile);
if (ret < 0)
return ret;
curves->parsed_psfile = 1;
}
if (curves->preset != PRESET_NONE) {
#define SET_COMP_IF_NOT_SET(n, name) do { \
if (!pts[n] && curves_presets[curves->preset].name) { \
pts[n] = av_strdup(curves_presets[curves->preset].name); \
if (!pts[n]) \
return AVERROR(ENOMEM); \
} \
} while (0)
SET_COMP_IF_NOT_SET(0, r);
SET_COMP_IF_NOT_SET(1, g);
SET_COMP_IF_NOT_SET(2, b);
SET_COMP_IF_NOT_SET(3, master);
curves->preset = PRESET_NONE;
}
return 0;
}
static int filter_slice_packed(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
int x, y;
const CurvesContext *curves = ctx->priv;
const ThreadData *td = arg;
const AVFrame *in = td->in;
const AVFrame *out = td->out;
const int direct = out == in;
const int step = curves->step;
const uint8_t r = curves->rgba_map[R];
const uint8_t g = curves->rgba_map[G];
const uint8_t b = curves->rgba_map[B];
const uint8_t a = curves->rgba_map[A];
const int slice_start = (in->height * jobnr ) / nb_jobs;
const int slice_end = (in->height * (jobnr+1)) / nb_jobs;
if (curves->is_16bit) {
for (y = slice_start; y < slice_end; y++) {
uint16_t *dstp = ( uint16_t *)(out->data[0] + y * out->linesize[0]);
const uint16_t *srcp = (const uint16_t *)(in ->data[0] + y * in->linesize[0]);
for (x = 0; x < in->width * step; x += step) {
dstp[x + r] = curves->graph[R][srcp[x + r]];
dstp[x + g] = curves->graph[G][srcp[x + g]];
dstp[x + b] = curves->graph[B][srcp[x + b]];
if (!direct && step == 4)
dstp[x + a] = srcp[x + a];
}
}
} else {
uint8_t *dst = out->data[0] + slice_start * out->linesize[0];
const uint8_t *src = in->data[0] + slice_start * in->linesize[0];
for (y = slice_start; y < slice_end; y++) {
for (x = 0; x < in->width * step; x += step) {
dst[x + r] = curves->graph[R][src[x + r]];
dst[x + g] = curves->graph[G][src[x + g]];
dst[x + b] = curves->graph[B][src[x + b]];
if (!direct && step == 4)
dst[x + a] = src[x + a];
}
dst += out->linesize[0];
src += in ->linesize[0];
}
}
return 0;
}
static int filter_slice_planar(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
int x, y;
const CurvesContext *curves = ctx->priv;
const ThreadData *td = arg;
const AVFrame *in = td->in;
const AVFrame *out = td->out;
const int direct = out == in;
const int step = curves->step;
const uint8_t r = curves->rgba_map[R];
const uint8_t g = curves->rgba_map[G];
const uint8_t b = curves->rgba_map[B];
const uint8_t a = curves->rgba_map[A];
const int slice_start = (in->height * jobnr ) / nb_jobs;
const int slice_end = (in->height * (jobnr+1)) / nb_jobs;
if (curves->is_16bit) {
for (y = slice_start; y < slice_end; y++) {
uint16_t *dstrp = ( uint16_t *)(out->data[r] + y * out->linesize[r]);
uint16_t *dstgp = ( uint16_t *)(out->data[g] + y * out->linesize[g]);
uint16_t *dstbp = ( uint16_t *)(out->data[b] + y * out->linesize[b]);
uint16_t *dstap = ( uint16_t *)(out->data[a] + y * out->linesize[a]);
const uint16_t *srcrp = (const uint16_t *)(in ->data[r] + y * in->linesize[r]);
const uint16_t *srcgp = (const uint16_t *)(in ->data[g] + y * in->linesize[g]);
const uint16_t *srcbp = (const uint16_t *)(in ->data[b] + y * in->linesize[b]);
const uint16_t *srcap = (const uint16_t *)(in ->data[a] + y * in->linesize[a]);
for (x = 0; x < in->width; x++) {
dstrp[x] = curves->graph[R][srcrp[x]];
dstgp[x] = curves->graph[G][srcgp[x]];
dstbp[x] = curves->graph[B][srcbp[x]];
if (!direct && step == 4)
dstap[x] = srcap[x];
}
}
} else {
uint8_t *dstr = out->data[r] + slice_start * out->linesize[r];
uint8_t *dstg = out->data[g] + slice_start * out->linesize[g];
uint8_t *dstb = out->data[b] + slice_start * out->linesize[b];
uint8_t *dsta = out->data[a] + slice_start * out->linesize[a];
const uint8_t *srcr = in->data[r] + slice_start * in->linesize[r];
const uint8_t *srcg = in->data[g] + slice_start * in->linesize[g];
const uint8_t *srcb = in->data[b] + slice_start * in->linesize[b];
const uint8_t *srca = in->data[a] + slice_start * in->linesize[a];
for (y = slice_start; y < slice_end; y++) {
for (x = 0; x < in->width; x++) {
dstr[x] = curves->graph[R][srcr[x]];
dstg[x] = curves->graph[G][srcg[x]];
dstb[x] = curves->graph[B][srcb[x]];
if (!direct && step == 4)
dsta[x] = srca[x];
}
dstr += out->linesize[r];
dstg += out->linesize[g];
dstb += out->linesize[b];
dsta += out->linesize[a];
srcr += in ->linesize[r];
srcg += in ->linesize[g];
srcb += in ->linesize[b];
srca += in ->linesize[a];
}
}
return 0;
}
static int config_input(AVFilterLink *inlink)
{
int i, j, ret;
AVFilterContext *ctx = inlink->dst;
CurvesContext *curves = ctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
char **pts = curves->comp_points_str;
struct keypoint *comp_points[NB_COMP + 1] = {0};
ff_fill_rgba_map(curves->rgba_map, inlink->format);
curves->is_16bit = desc->comp[0].depth > 8;
curves->depth = desc->comp[0].depth;
curves->lut_size = 1 << curves->depth;
curves->step = av_get_padded_bits_per_pixel(desc) >> (3 + curves->is_16bit);
curves->filter_slice = desc->flags & AV_PIX_FMT_FLAG_PLANAR ? filter_slice_planar : filter_slice_packed;
for (i = 0; i < NB_COMP + 1; i++) {
if (!curves->graph[i])
curves->graph[i] = av_calloc(curves->lut_size, sizeof(*curves->graph[0]));
if (!curves->graph[i])
return AVERROR(ENOMEM);
ret = parse_points_str(ctx, comp_points + i, curves->comp_points_str[i], curves->lut_size);
if (ret < 0)
return ret;
if (curves->interp == INTERP_PCHIP)
ret = interpolate_pchip(ctx, curves->graph[i], comp_points[i], curves->depth);
else
ret = interpolate(ctx, curves->graph[i], comp_points[i], curves->depth);
if (ret < 0)
return ret;
}
if (pts[NB_COMP]) {
for (i = 0; i < NB_COMP; i++)
for (j = 0; j < curves->lut_size; j++)
curves->graph[i][j] = curves->graph[NB_COMP][curves->graph[i][j]];
}
if (av_log_get_level() >= AV_LOG_VERBOSE) {
for (i = 0; i < NB_COMP; i++) {
const struct keypoint *point = comp_points[i];
av_log(ctx, AV_LOG_VERBOSE, "#%d points:", i);
while (point) {
av_log(ctx, AV_LOG_VERBOSE, " (%f;%f)", point->x, point->y);
point = point->next;
}
}
}
if (curves->plot_filename && !curves->saved_plot) {
dump_curves(curves->plot_filename, curves->graph, comp_points, curves->lut_size);
curves->saved_plot = 1;
}
for (i = 0; i < NB_COMP + 1; i++) {
struct keypoint *point = comp_points[i];
while (point) {
struct keypoint *next = point->next;
av_free(point);
point = next;
}
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
CurvesContext *curves = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out;
ThreadData td;
if (av_frame_is_writable(in)) {
out = in;
} else {
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
}
td.in = in;
td.out = out;
ff_filter_execute(ctx, curves->filter_slice, &td, NULL,
FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
if (out != in)
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
char *res, int res_len, int flags)
{
CurvesContext *curves = ctx->priv;
int ret;
if (!strcmp(cmd, "plot")) {
curves->saved_plot = 0;
} else if (!strcmp(cmd, "all") || !strcmp(cmd, "preset") || !strcmp(cmd, "psfile") || !strcmp(cmd, "interp")) {
if (!strcmp(cmd, "psfile"))
curves->parsed_psfile = 0;
av_freep(&curves->comp_points_str_all);
av_freep(&curves->comp_points_str[0]);
av_freep(&curves->comp_points_str[1]);
av_freep(&curves->comp_points_str[2]);
av_freep(&curves->comp_points_str[NB_COMP]);
} else if (!strcmp(cmd, "red") || !strcmp(cmd, "r")) {
av_freep(&curves->comp_points_str[0]);
} else if (!strcmp(cmd, "green") || !strcmp(cmd, "g")) {
av_freep(&curves->comp_points_str[1]);
} else if (!strcmp(cmd, "blue") || !strcmp(cmd, "b")) {
av_freep(&curves->comp_points_str[2]);
} else if (!strcmp(cmd, "master") || !strcmp(cmd, "m")) {
av_freep(&curves->comp_points_str[NB_COMP]);
}
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
if (ret < 0)
return ret;
ret = curves_init(ctx);
if (ret < 0)
return ret;
return config_input(ctx->inputs[0]);
}
static av_cold void curves_uninit(AVFilterContext *ctx)
{
int i;
CurvesContext *curves = ctx->priv;
for (i = 0; i < NB_COMP + 1; i++)
av_freep(&curves->graph[i]);
}
static const AVFilterPad curves_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
const AVFilter ff_vf_curves = {
.name = "curves",
.description = NULL_IF_CONFIG_SMALL("Adjust components curves."),
.priv_size = sizeof(CurvesContext),
.init = curves_init,
.uninit = curves_uninit,
FILTER_INPUTS(curves_inputs),
FILTER_OUTPUTS(ff_video_default_filterpad),
FILTER_PIXFMTS(AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA,
AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR,
AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR,
AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0,
AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48,
AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
AV_PIX_FMT_GBRP9,
AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRAP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRAP12,
AV_PIX_FMT_GBRP14,
AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP16),
.priv_class = &curves_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
.process_command = process_command,
};