mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-02 03:06:28 +02:00
6aa7e07e7c
It can be tested with the model file generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') z1 = 0.039 + x z2 = x + 0.042 z3 = z1 + z2 z4 = z3 - 0.381 z5 = z4 - x y = tf.math.maximum(z5, 0.0, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Guo, Yejun <yejun.guo@intel.com> |
||
---|---|---|
.. | ||
dnn_backend_native_layer_conv2d.c | ||
dnn_backend_native_layer_conv2d.h | ||
dnn_backend_native_layer_depth2space.c | ||
dnn_backend_native_layer_depth2space.h | ||
dnn_backend_native_layer_mathbinary.c | ||
dnn_backend_native_layer_mathbinary.h | ||
dnn_backend_native_layer_maximum.c | ||
dnn_backend_native_layer_maximum.h | ||
dnn_backend_native_layer_pad.c | ||
dnn_backend_native_layer_pad.h | ||
dnn_backend_native_layers.c | ||
dnn_backend_native_layers.h | ||
dnn_backend_native.c | ||
dnn_backend_native.h | ||
dnn_backend_tf.c | ||
dnn_backend_tf.h | ||
dnn_interface.c | ||
Makefile |