1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavfilter/af_biquads.c
Andreas Rheinhardt b4f5201967 avfilter: Replace query_formats callback with union of list and callback
If one looks at the many query_formats callbacks in existence,
one will immediately recognize that there is one type of default
callback for video and a slightly different default callback for
audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);"
for video with a filter-specific pix_fmts list. For audio, it is
the same with a filter-specific sample_fmts list together with
ff_set_common_all_samplerates() and ff_set_common_all_channel_counts().

This commit allows to remove the boilerplate query_formats callbacks
by replacing said callback with a union consisting the old callback
and pointers for pixel and sample format arrays. For the not uncommon
case in which these lists only contain a single entry (besides the
sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also
added to the union to store them directly in the AVFilter,
thereby avoiding a relocation.

The state of said union will be contained in a new, dedicated AVFilter
field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t
in order to create a hole for this new field; this is no problem, as
the maximum of all the nb_inputs is four; for nb_outputs it is only
two).

The state's default value coincides with the earlier default of
query_formats being unset, namely that the filter accepts all formats
(and also sample rates and channel counts/layouts for audio)
provided that these properties agree coincide for all inputs and
outputs.

By using different union members for audio and video filters
the type-unsafety of using the same functions for audio and video
lists will furthermore be more confined to formats.c than before.

When the new fields are used, they will also avoid allocations:
Currently something nearly equivalent to ff_default_query_formats()
is called after every successful call to a query_formats callback;
yet in the common case that the newly allocated AVFilterFormats
are not used at all (namely if there are no free links) these newly
allocated AVFilterFormats are freed again without ever being used.
Filters no longer using the callback will not exhibit this any more.

Reviewed-by: Paul B Mahol <onemda@gmail.com>
Reviewed-by: Nicolas George <george@nsup.org>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-10-05 17:48:25 +02:00

1243 lines
66 KiB
C

/*
* Copyright (c) 2013 Paul B Mahol
* Copyright (c) 2006-2008 Rob Sykes <robs@users.sourceforge.net>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* 2-pole filters designed by Robert Bristow-Johnson <rbj@audioimagination.com>
* see http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
*
* 1-pole filters based on code (c) 2000 Chris Bagwell <cbagwell@sprynet.com>
* Algorithms: Recursive single pole low/high pass filter
* Reference: The Scientist and Engineer's Guide to Digital Signal Processing
*
* low-pass: output[N] = input[N] * A + output[N-1] * B
* X = exp(-2.0 * pi * Fc)
* A = 1 - X
* B = X
* Fc = cutoff freq / sample rate
*
* Mimics an RC low-pass filter:
*
* ---/\/\/\/\----------->
* |
* --- C
* ---
* |
* |
* V
*
* high-pass: output[N] = A0 * input[N] + A1 * input[N-1] + B1 * output[N-1]
* X = exp(-2.0 * pi * Fc)
* A0 = (1 + X) / 2
* A1 = -(1 + X) / 2
* B1 = X
* Fc = cutoff freq / sample rate
*
* Mimics an RC high-pass filter:
*
* || C
* ----||--------->
* || |
* <
* > R
* <
* |
* V
*/
#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#include "libavutil/ffmath.h"
#include "libavutil/opt.h"
#include "audio.h"
#include "avfilter.h"
#include "internal.h"
enum FilterType {
biquad,
equalizer,
bass,
treble,
bandpass,
bandreject,
allpass,
highpass,
lowpass,
lowshelf,
highshelf,
};
enum WidthType {
NONE,
HERTZ,
OCTAVE,
QFACTOR,
SLOPE,
KHERTZ,
NB_WTYPE,
};
enum TransformType {
DI,
DII,
TDII,
LATT,
NB_TTYPE,
};
typedef struct ChanCache {
double i1, i2;
double o1, o2;
int clippings;
} ChanCache;
typedef struct BiquadsContext {
const AVClass *class;
enum FilterType filter_type;
int width_type;
int poles;
int csg;
int transform_type;
int precision;
int bypass;
double gain;
double frequency;
double width;
double mix;
uint64_t channels;
int normalize;
int order;
double a0, a1, a2;
double b0, b1, b2;
double oa0, oa1, oa2;
double ob0, ob1, ob2;
ChanCache *cache;
int block_align;
void (*filter)(struct BiquadsContext *s, const void *ibuf, void *obuf, int len,
double *i1, double *i2, double *o1, double *o2,
double b0, double b1, double b2, double a1, double a2, int *clippings,
int disabled);
} BiquadsContext;
static int query_formats(AVFilterContext *ctx)
{
BiquadsContext *s = ctx->priv;
static const enum AVSampleFormat auto_sample_fmts[] = {
AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_S32P,
AV_SAMPLE_FMT_FLTP,
AV_SAMPLE_FMT_DBLP,
AV_SAMPLE_FMT_NONE
};
enum AVSampleFormat sample_fmts[] = {
AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_NONE
};
const enum AVSampleFormat *sample_fmts_list = sample_fmts;
int ret = ff_set_common_all_channel_counts(ctx);
if (ret < 0)
return ret;
switch (s->precision) {
case 0:
sample_fmts[0] = AV_SAMPLE_FMT_S16P;
break;
case 1:
sample_fmts[0] = AV_SAMPLE_FMT_S32P;
break;
case 2:
sample_fmts[0] = AV_SAMPLE_FMT_FLTP;
break;
case 3:
sample_fmts[0] = AV_SAMPLE_FMT_DBLP;
break;
default:
sample_fmts_list = auto_sample_fmts;
break;
}
ret = ff_set_common_formats_from_list(ctx, sample_fmts_list);
if (ret < 0)
return ret;
return ff_set_common_all_samplerates(ctx);
}
#define BIQUAD_FILTER(name, type, min, max, need_clipping) \
static void biquad_## name (BiquadsContext *s, \
const void *input, void *output, int len, \
double *in1, double *in2, \
double *out1, double *out2, \
double b0, double b1, double b2, \
double a1, double a2, int *clippings, \
int disabled) \
{ \
const type *ibuf = input; \
type *obuf = output; \
double i1 = *in1; \
double i2 = *in2; \
double o1 = *out1; \
double o2 = *out2; \
double wet = s->mix; \
double dry = 1. - wet; \
double out; \
int i; \
a1 = -a1; \
a2 = -a2; \
\
for (i = 0; i+1 < len; i++) { \
o2 = i2 * b2 + i1 * b1 + ibuf[i] * b0 + o2 * a2 + o1 * a1; \
i2 = ibuf[i]; \
out = o2 * wet + i2 * dry; \
if (disabled) { \
obuf[i] = i2; \
} else if (need_clipping && out < min) { \
(*clippings)++; \
obuf[i] = min; \
} else if (need_clipping && out > max) { \
(*clippings)++; \
obuf[i] = max; \
} else { \
obuf[i] = out; \
} \
i++; \
o1 = i1 * b2 + i2 * b1 + ibuf[i] * b0 + o1 * a2 + o2 * a1; \
i1 = ibuf[i]; \
out = o1 * wet + i1 * dry; \
if (disabled) { \
obuf[i] = i1; \
} else if (need_clipping && out < min) { \
(*clippings)++; \
obuf[i] = min; \
} else if (need_clipping && out > max) { \
(*clippings)++; \
obuf[i] = max; \
} else { \
obuf[i] = out; \
} \
} \
if (i < len) { \
double o0 = ibuf[i] * b0 + i1 * b1 + i2 * b2 + o1 * a1 + o2 * a2; \
i2 = i1; \
i1 = ibuf[i]; \
o2 = o1; \
o1 = o0; \
out = o0 * wet + i1 * dry; \
if (disabled) { \
obuf[i] = i1; \
} else if (need_clipping && out < min) { \
(*clippings)++; \
obuf[i] = min; \
} else if (need_clipping && out > max) { \
(*clippings)++; \
obuf[i] = max; \
} else { \
obuf[i] = out; \
} \
} \
*in1 = i1; \
*in2 = i2; \
*out1 = o1; \
*out2 = o2; \
}
BIQUAD_FILTER(s16, int16_t, INT16_MIN, INT16_MAX, 1)
BIQUAD_FILTER(s32, int32_t, INT32_MIN, INT32_MAX, 1)
BIQUAD_FILTER(flt, float, -1., 1., 0)
BIQUAD_FILTER(dbl, double, -1., 1., 0)
#define BIQUAD_DII_FILTER(name, type, min, max, need_clipping) \
static void biquad_dii_## name (BiquadsContext *s, \
const void *input, void *output, int len, \
double *z1, double *z2, \
double *unused1, double *unused2, \
double b0, double b1, double b2, \
double a1, double a2, int *clippings, \
int disabled) \
{ \
const type *ibuf = input; \
type *obuf = output; \
double w1 = *z1; \
double w2 = *z2; \
double wet = s->mix; \
double dry = 1. - wet; \
double in, out, w0; \
\
a1 = -a1; \
a2 = -a2; \
\
for (int i = 0; i < len; i++) { \
in = ibuf[i]; \
w0 = in + a1 * w1 + a2 * w2; \
out = b0 * w0 + b1 * w1 + b2 * w2; \
w2 = w1; \
w1 = w0; \
out = out * wet + in * dry; \
if (disabled) { \
obuf[i] = in; \
} else if (need_clipping && out < min) { \
(*clippings)++; \
obuf[i] = min; \
} else if (need_clipping && out > max) { \
(*clippings)++; \
obuf[i] = max; \
} else { \
obuf[i] = out; \
} \
} \
*z1 = w1; \
*z2 = w2; \
}
BIQUAD_DII_FILTER(s16, int16_t, INT16_MIN, INT16_MAX, 1)
BIQUAD_DII_FILTER(s32, int32_t, INT32_MIN, INT32_MAX, 1)
BIQUAD_DII_FILTER(flt, float, -1., 1., 0)
BIQUAD_DII_FILTER(dbl, double, -1., 1., 0)
#define BIQUAD_TDII_FILTER(name, type, min, max, need_clipping) \
static void biquad_tdii_## name (BiquadsContext *s, \
const void *input, void *output, int len, \
double *z1, double *z2, \
double *unused1, double *unused2, \
double b0, double b1, double b2, \
double a1, double a2, int *clippings, \
int disabled) \
{ \
const type *ibuf = input; \
type *obuf = output; \
double w1 = *z1; \
double w2 = *z2; \
double wet = s->mix; \
double dry = 1. - wet; \
double in, out; \
\
a1 = -a1; \
a2 = -a2; \
\
for (int i = 0; i < len; i++) { \
in = ibuf[i]; \
out = b0 * in + w1; \
w1 = b1 * in + w2 + a1 * out; \
w2 = b2 * in + a2 * out; \
out = out * wet + in * dry; \
if (disabled) { \
obuf[i] = in; \
} else if (need_clipping && out < min) { \
(*clippings)++; \
obuf[i] = min; \
} else if (need_clipping && out > max) { \
(*clippings)++; \
obuf[i] = max; \
} else { \
obuf[i] = out; \
} \
} \
*z1 = w1; \
*z2 = w2; \
}
BIQUAD_TDII_FILTER(s16, int16_t, INT16_MIN, INT16_MAX, 1)
BIQUAD_TDII_FILTER(s32, int32_t, INT32_MIN, INT32_MAX, 1)
BIQUAD_TDII_FILTER(flt, float, -1., 1., 0)
BIQUAD_TDII_FILTER(dbl, double, -1., 1., 0)
#define BIQUAD_LATT_FILTER(name, type, min, max, need_clipping) \
static void biquad_latt_## name (BiquadsContext *s, \
const void *input, void *output, int len, \
double *z1, double *z2, \
double *unused1, double *unused2, \
double v0, double v1, double v2, \
double k0, double k1, int *clippings, \
int disabled) \
{ \
const type *ibuf = input; \
type *obuf = output; \
double s0 = *z1; \
double s1 = *z2; \
double wet = s->mix; \
double dry = 1. - wet; \
double in, out; \
double t0, t1; \
\
for (int i = 0; i < len; i++) { \
out = 0.; \
in = ibuf[i]; \
t0 = in - k1 * s0; \
t1 = t0 * k1 + s0; \
out += t1 * v2; \
\
t0 = t0 - k0 * s1; \
t1 = t0 * k0 + s1; \
out += t1 * v1; \
\
out += t0 * v0; \
s0 = t1; \
s1 = t0; \
\
out = out * wet + in * dry; \
if (disabled) { \
obuf[i] = in; \
} else if (need_clipping && out < min) { \
(*clippings)++; \
obuf[i] = min; \
} else if (need_clipping && out > max) { \
(*clippings)++; \
obuf[i] = max; \
} else { \
obuf[i] = out; \
} \
} \
*z1 = s0; \
*z2 = s1; \
}
BIQUAD_LATT_FILTER(s16, int16_t, INT16_MIN, INT16_MAX, 1)
BIQUAD_LATT_FILTER(s32, int32_t, INT32_MIN, INT32_MAX, 1)
BIQUAD_LATT_FILTER(flt, float, -1., 1., 0)
BIQUAD_LATT_FILTER(dbl, double, -1., 1., 0)
static void convert_dir2latt(BiquadsContext *s)
{
double k0, k1, v0, v1, v2;
k1 = s->a2;
k0 = s->a1 / (1. + k1);
v2 = s->b2;
v1 = s->b1 - v2 * s->a1;
v0 = s->b0 - v1 * k0 - v2 * k1;
s->a1 = k0;
s->a2 = k1;
s->b0 = v0;
s->b1 = v1;
s->b2 = v2;
}
static int config_filter(AVFilterLink *outlink, int reset)
{
AVFilterContext *ctx = outlink->src;
BiquadsContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
double A = ff_exp10(s->gain / 40);
double w0 = 2 * M_PI * s->frequency / inlink->sample_rate;
double K = tan(w0 / 2.);
double alpha, beta;
s->bypass = (((w0 > M_PI || w0 <= 0.) && reset) || (s->width <= 0.)) && (s->filter_type != biquad);
if (s->bypass) {
av_log(ctx, AV_LOG_WARNING, "Invalid frequency and/or width!\n");
return 0;
}
if ((w0 > M_PI || w0 <= 0.) && (s->filter_type != biquad))
return AVERROR(EINVAL);
switch (s->width_type) {
case NONE:
alpha = 0.0;
break;
case HERTZ:
alpha = sin(w0) / (2 * s->frequency / s->width);
break;
case KHERTZ:
alpha = sin(w0) / (2 * s->frequency / (s->width * 1000));
break;
case OCTAVE:
alpha = sin(w0) * sinh(log(2.) / 2 * s->width * w0 / sin(w0));
break;
case QFACTOR:
alpha = sin(w0) / (2 * s->width);
break;
case SLOPE:
alpha = sin(w0) / 2 * sqrt((A + 1 / A) * (1 / s->width - 1) + 2);
break;
default:
av_assert0(0);
}
beta = 2 * sqrt(A);
switch (s->filter_type) {
case biquad:
s->a0 = s->oa0;
s->a1 = s->oa1;
s->a2 = s->oa2;
s->b0 = s->ob0;
s->b1 = s->ob1;
s->b2 = s->ob2;
break;
case equalizer:
s->a0 = 1 + alpha / A;
s->a1 = -2 * cos(w0);
s->a2 = 1 - alpha / A;
s->b0 = 1 + alpha * A;
s->b1 = -2 * cos(w0);
s->b2 = 1 - alpha * A;
break;
case bass:
beta = sqrt((A * A + 1) - (A - 1) * (A - 1));
case lowshelf:
if (s->poles == 1) {
double A = ff_exp10(s->gain / 20);
double ro = -sin(w0 / 2. - M_PI_4) / sin(w0 / 2. + M_PI_4);
double n = (A + 1) / (A - 1);
double alpha1 = A == 1. ? 0. : n - FFSIGN(n) * sqrt(n * n - 1);
double beta0 = ((1 + A) + (1 - A) * alpha1) * 0.5;
double beta1 = ((1 - A) + (1 + A) * alpha1) * 0.5;
s->a0 = 1 + ro * alpha1;
s->a1 = -ro - alpha1;
s->a2 = 0;
s->b0 = beta0 + ro * beta1;
s->b1 = -beta1 - ro * beta0;
s->b2 = 0;
} else {
s->a0 = (A + 1) + (A - 1) * cos(w0) + beta * alpha;
s->a1 = -2 * ((A - 1) + (A + 1) * cos(w0));
s->a2 = (A + 1) + (A - 1) * cos(w0) - beta * alpha;
s->b0 = A * ((A + 1) - (A - 1) * cos(w0) + beta * alpha);
s->b1 = 2 * A * ((A - 1) - (A + 1) * cos(w0));
s->b2 = A * ((A + 1) - (A - 1) * cos(w0) - beta * alpha);
}
break;
case treble:
beta = sqrt((A * A + 1) - (A - 1) * (A - 1));
case highshelf:
if (s->poles == 1) {
double A = ff_exp10(s->gain / 20);
double ro = sin(w0 / 2. - M_PI_4) / sin(w0 / 2. + M_PI_4);
double n = (A + 1) / (A - 1);
double alpha1 = A == 1. ? 0. : n - FFSIGN(n) * sqrt(n * n - 1);
double beta0 = ((1 + A) + (1 - A) * alpha1) * 0.5;
double beta1 = ((1 - A) + (1 + A) * alpha1) * 0.5;
s->a0 = 1 + ro * alpha1;
s->a1 = ro + alpha1;
s->a2 = 0;
s->b0 = beta0 + ro * beta1;
s->b1 = beta1 + ro * beta0;
s->b2 = 0;
} else {
s->a0 = (A + 1) - (A - 1) * cos(w0) + beta * alpha;
s->a1 = 2 * ((A - 1) - (A + 1) * cos(w0));
s->a2 = (A + 1) - (A - 1) * cos(w0) - beta * alpha;
s->b0 = A * ((A + 1) + (A - 1) * cos(w0) + beta * alpha);
s->b1 =-2 * A * ((A - 1) + (A + 1) * cos(w0));
s->b2 = A * ((A + 1) + (A - 1) * cos(w0) - beta * alpha);
}
break;
case bandpass:
if (s->csg) {
s->a0 = 1 + alpha;
s->a1 = -2 * cos(w0);
s->a2 = 1 - alpha;
s->b0 = sin(w0) / 2;
s->b1 = 0;
s->b2 = -sin(w0) / 2;
} else {
s->a0 = 1 + alpha;
s->a1 = -2 * cos(w0);
s->a2 = 1 - alpha;
s->b0 = alpha;
s->b1 = 0;
s->b2 = -alpha;
}
break;
case bandreject:
s->a0 = 1 + alpha;
s->a1 = -2 * cos(w0);
s->a2 = 1 - alpha;
s->b0 = 1;
s->b1 = -2 * cos(w0);
s->b2 = 1;
break;
case lowpass:
if (s->poles == 1) {
s->a0 = 1;
s->a1 = -exp(-w0);
s->a2 = 0;
s->b0 = 1 + s->a1;
s->b1 = 0;
s->b2 = 0;
} else {
s->a0 = 1 + alpha;
s->a1 = -2 * cos(w0);
s->a2 = 1 - alpha;
s->b0 = (1 - cos(w0)) / 2;
s->b1 = 1 - cos(w0);
s->b2 = (1 - cos(w0)) / 2;
}
break;
case highpass:
if (s->poles == 1) {
s->a0 = 1;
s->a1 = -exp(-w0);
s->a2 = 0;
s->b0 = (1 - s->a1) / 2;
s->b1 = -s->b0;
s->b2 = 0;
} else {
s->a0 = 1 + alpha;
s->a1 = -2 * cos(w0);
s->a2 = 1 - alpha;
s->b0 = (1 + cos(w0)) / 2;
s->b1 = -(1 + cos(w0));
s->b2 = (1 + cos(w0)) / 2;
}
break;
case allpass:
switch (s->order) {
case 1:
s->a0 = 1.;
s->a1 = -(1. - K) / (1. + K);
s->a2 = 0.;
s->b0 = s->a1;
s->b1 = s->a0;
s->b2 = 0.;
break;
case 2:
s->a0 = 1 + alpha;
s->a1 = -2 * cos(w0);
s->a2 = 1 - alpha;
s->b0 = 1 - alpha;
s->b1 = -2 * cos(w0);
s->b2 = 1 + alpha;
break;
}
break;
default:
av_assert0(0);
}
av_log(ctx, AV_LOG_VERBOSE, "a=%f %f %f:b=%f %f %f\n", s->a0, s->a1, s->a2, s->b0, s->b1, s->b2);
s->a1 /= s->a0;
s->a2 /= s->a0;
s->b0 /= s->a0;
s->b1 /= s->a0;
s->b2 /= s->a0;
s->a0 /= s->a0;
if (s->normalize && fabs(s->b0 + s->b1 + s->b2) > 1e-6) {
double factor = (s->a0 + s->a1 + s->a2) / (s->b0 + s->b1 + s->b2);
s->b0 *= factor;
s->b1 *= factor;
s->b2 *= factor;
}
s->cache = av_realloc_f(s->cache, sizeof(ChanCache), inlink->channels);
if (!s->cache)
return AVERROR(ENOMEM);
if (reset)
memset(s->cache, 0, sizeof(ChanCache) * inlink->channels);
switch (s->transform_type) {
case DI:
switch (inlink->format) {
case AV_SAMPLE_FMT_S16P:
s->filter = biquad_s16;
break;
case AV_SAMPLE_FMT_S32P:
s->filter = biquad_s32;
break;
case AV_SAMPLE_FMT_FLTP:
s->filter = biquad_flt;
break;
case AV_SAMPLE_FMT_DBLP:
s->filter = biquad_dbl;
break;
default: av_assert0(0);
}
break;
case DII:
switch (inlink->format) {
case AV_SAMPLE_FMT_S16P:
s->filter = biquad_dii_s16;
break;
case AV_SAMPLE_FMT_S32P:
s->filter = biquad_dii_s32;
break;
case AV_SAMPLE_FMT_FLTP:
s->filter = biquad_dii_flt;
break;
case AV_SAMPLE_FMT_DBLP:
s->filter = biquad_dii_dbl;
break;
default: av_assert0(0);
}
break;
case TDII:
switch (inlink->format) {
case AV_SAMPLE_FMT_S16P:
s->filter = biquad_tdii_s16;
break;
case AV_SAMPLE_FMT_S32P:
s->filter = biquad_tdii_s32;
break;
case AV_SAMPLE_FMT_FLTP:
s->filter = biquad_tdii_flt;
break;
case AV_SAMPLE_FMT_DBLP:
s->filter = biquad_tdii_dbl;
break;
default: av_assert0(0);
}
break;
case LATT:
switch (inlink->format) {
case AV_SAMPLE_FMT_S16P:
s->filter = biquad_latt_s16;
break;
case AV_SAMPLE_FMT_S32P:
s->filter = biquad_latt_s32;
break;
case AV_SAMPLE_FMT_FLTP:
s->filter = biquad_latt_flt;
break;
case AV_SAMPLE_FMT_DBLP:
s->filter = biquad_latt_dbl;
break;
default: av_assert0(0);
}
break;
default:
av_assert0(0);
}
s->block_align = av_get_bytes_per_sample(inlink->format);
if (s->transform_type == LATT)
convert_dir2latt(s);
return 0;
}
static int config_output(AVFilterLink *outlink)
{
return config_filter(outlink, 1);
}
typedef struct ThreadData {
AVFrame *in, *out;
} ThreadData;
static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
AVFilterLink *inlink = ctx->inputs[0];
ThreadData *td = arg;
AVFrame *buf = td->in;
AVFrame *out_buf = td->out;
BiquadsContext *s = ctx->priv;
const int start = (buf->channels * jobnr) / nb_jobs;
const int end = (buf->channels * (jobnr+1)) / nb_jobs;
int ch;
for (ch = start; ch < end; ch++) {
if (!((av_channel_layout_extract_channel(inlink->channel_layout, ch) & s->channels))) {
if (buf != out_buf)
memcpy(out_buf->extended_data[ch], buf->extended_data[ch],
buf->nb_samples * s->block_align);
continue;
}
s->filter(s, buf->extended_data[ch], out_buf->extended_data[ch], buf->nb_samples,
&s->cache[ch].i1, &s->cache[ch].i2, &s->cache[ch].o1, &s->cache[ch].o2,
s->b0, s->b1, s->b2, s->a1, s->a2, &s->cache[ch].clippings, ctx->is_disabled);
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
{
AVFilterContext *ctx = inlink->dst;
BiquadsContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out_buf;
ThreadData td;
int ch;
if (s->bypass)
return ff_filter_frame(outlink, buf);
if (av_frame_is_writable(buf)) {
out_buf = buf;
} else {
out_buf = ff_get_audio_buffer(outlink, buf->nb_samples);
if (!out_buf) {
av_frame_free(&buf);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out_buf, buf);
}
td.in = buf;
td.out = out_buf;
ff_filter_execute(ctx, filter_channel, &td, NULL,
FFMIN(outlink->channels, ff_filter_get_nb_threads(ctx)));
for (ch = 0; ch < outlink->channels; ch++) {
if (s->cache[ch].clippings > 0)
av_log(ctx, AV_LOG_WARNING, "Channel %d clipping %d times. Please reduce gain.\n",
ch, s->cache[ch].clippings);
s->cache[ch].clippings = 0;
}
if (buf != out_buf)
av_frame_free(&buf);
return ff_filter_frame(outlink, out_buf);
}
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
char *res, int res_len, int flags)
{
AVFilterLink *outlink = ctx->outputs[0];
int ret;
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
if (ret < 0)
return ret;
return config_filter(outlink, 0);
}
static av_cold void uninit(AVFilterContext *ctx)
{
BiquadsContext *s = ctx->priv;
av_freep(&s->cache);
}
static const AVFilterPad inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.filter_frame = filter_frame,
},
};
static const AVFilterPad outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_output,
},
};
#define OFFSET(x) offsetof(BiquadsContext, x)
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
#define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
#define DEFINE_BIQUAD_FILTER_2(name_, description_, priv_class_) \
static av_cold int name_##_init(AVFilterContext *ctx) \
{ \
BiquadsContext *s = ctx->priv; \
s->filter_type = name_; \
return 0; \
} \
\
const AVFilter ff_af_##name_ = { \
.name = #name_, \
.description = NULL_IF_CONFIG_SMALL(description_), \
.priv_class = &priv_class_##_class, \
.priv_size = sizeof(BiquadsContext), \
.init = name_##_init, \
.uninit = uninit, \
FILTER_INPUTS(inputs), \
FILTER_OUTPUTS(outputs), \
FILTER_QUERY_FUNC(query_formats), \
.process_command = process_command, \
.flags = AVFILTER_FLAG_SLICE_THREADS | AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL, \
}
#define DEFINE_BIQUAD_FILTER(name, description) \
AVFILTER_DEFINE_CLASS(name); \
DEFINE_BIQUAD_FILTER_2(name, description, name)
#if CONFIG_EQUALIZER_FILTER
static const AVOption equalizer_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS},
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"},
{"t", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"},
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
{"k", "kHz", 0, AV_OPT_TYPE_CONST, {.i64=KHERTZ}, 0, 0, FLAGS, "width_type"},
{"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 99999, FLAGS},
{"w", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 99999, FLAGS},
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{"mix", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"m", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"channels", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"c", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"normalize", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"n", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"transform", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"a", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"di", "direct form I", 0, AV_OPT_TYPE_CONST, {.i64=DI}, 0, 0, AF, "transform_type"},
{"dii", "direct form II", 0, AV_OPT_TYPE_CONST, {.i64=DII}, 0, 0, AF, "transform_type"},
{"tdii", "transposed direct form II", 0, AV_OPT_TYPE_CONST, {.i64=TDII}, 0, 0, AF, "transform_type"},
{"latt", "lattice-ladder form", 0, AV_OPT_TYPE_CONST, {.i64=LATT}, 0, 0, AF, "transform_type"},
{"precision", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"r", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"auto", "automatic", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "precision"},
{"s16", "signed 16-bit", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "precision"},
{"s32", "signed 32-bit", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "precision"},
{"f32", "floating-point single", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "precision"},
{"f64", "floating-point double", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, AF, "precision"},
{NULL}
};
DEFINE_BIQUAD_FILTER(equalizer, "Apply two-pole peaking equalization (EQ) filter.");
#endif /* CONFIG_EQUALIZER_FILTER */
#if CONFIG_BASS_FILTER || CONFIG_LOWSHELF_FILTER
static const AVOption bass_lowshelf_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS},
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"},
{"t", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"},
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
{"k", "kHz", 0, AV_OPT_TYPE_CONST, {.i64=KHERTZ}, 0, 0, FLAGS, "width_type"},
{"width", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
{"w", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF},
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF},
{"mix", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"m", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"channels", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"c", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"normalize", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"n", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"transform", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"a", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"di", "direct form I", 0, AV_OPT_TYPE_CONST, {.i64=DI}, 0, 0, AF, "transform_type"},
{"dii", "direct form II", 0, AV_OPT_TYPE_CONST, {.i64=DII}, 0, 0, AF, "transform_type"},
{"tdii", "transposed direct form II", 0, AV_OPT_TYPE_CONST, {.i64=TDII}, 0, 0, AF, "transform_type"},
{"latt", "lattice-ladder form", 0, AV_OPT_TYPE_CONST, {.i64=LATT}, 0, 0, AF, "transform_type"},
{"precision", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"r", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"auto", "automatic", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "precision"},
{"s16", "signed 16-bit", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "precision"},
{"s32", "signed 32-bit", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "precision"},
{"f32", "floating-point single", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "precision"},
{"f64", "floating-point double", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, AF, "precision"},
{NULL}
};
AVFILTER_DEFINE_CLASS_EXT(bass_lowshelf, "bass/lowshelf", bass_lowshelf_options);
#if CONFIG_BASS_FILTER
DEFINE_BIQUAD_FILTER_2(bass, "Boost or cut lower frequencies.", bass_lowshelf);
#endif /* CONFIG_BASS_FILTER */
#if CONFIG_LOWSHELF_FILTER
DEFINE_BIQUAD_FILTER_2(lowshelf, "Apply a low shelf filter.", bass_lowshelf);
#endif /* CONFIG_LOWSHELF_FILTER */
#endif /* CONFIG_BASS_FILTER || CONFIG LOWSHELF_FILTER */
#if CONFIG_TREBLE_FILTER || CONFIG_HIGHSHELF_FILTER
static const AVOption treble_highshelf_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"},
{"t", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"},
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
{"k", "kHz", 0, AV_OPT_TYPE_CONST, {.i64=KHERTZ}, 0, 0, FLAGS, "width_type"},
{"width", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
{"w", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF},
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF},
{"mix", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"m", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"channels", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"c", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"normalize", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"n", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"transform", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"a", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"di", "direct form I", 0, AV_OPT_TYPE_CONST, {.i64=DI}, 0, 0, AF, "transform_type"},
{"dii", "direct form II", 0, AV_OPT_TYPE_CONST, {.i64=DII}, 0, 0, AF, "transform_type"},
{"tdii", "transposed direct form II", 0, AV_OPT_TYPE_CONST, {.i64=TDII}, 0, 0, AF, "transform_type"},
{"latt", "lattice-ladder form", 0, AV_OPT_TYPE_CONST, {.i64=LATT}, 0, 0, AF, "transform_type"},
{"precision", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"r", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"auto", "automatic", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "precision"},
{"s16", "signed 16-bit", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "precision"},
{"s32", "signed 32-bit", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "precision"},
{"f32", "floating-point single", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "precision"},
{"f64", "floating-point double", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, AF, "precision"},
{NULL}
};
AVFILTER_DEFINE_CLASS_EXT(treble_highshelf, "treble/highshelf",
treble_highshelf_options);
#if CONFIG_TREBLE_FILTER
DEFINE_BIQUAD_FILTER_2(treble, "Boost or cut upper frequencies.", treble_highshelf);
#endif /* CONFIG_TREBLE_FILTER */
#if CONFIG_HIGHSHELF_FILTER
DEFINE_BIQUAD_FILTER_2(highshelf, "Apply a high shelf filter.", treble_highshelf);
#endif /* CONFIG_HIGHSHELF_FILTER */
#endif /* CONFIG_TREBLE_FILTER || CONFIG_HIGHSHELF_FILTER */
#if CONFIG_BANDPASS_FILTER
static const AVOption bandpass_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"},
{"t", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"},
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
{"k", "kHz", 0, AV_OPT_TYPE_CONST, {.i64=KHERTZ}, 0, 0, FLAGS, "width_type"},
{"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
{"w", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
{"csg", "use constant skirt gain", OFFSET(csg), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"mix", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"m", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"channels", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"c", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"normalize", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"n", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"transform", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"a", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"di", "direct form I", 0, AV_OPT_TYPE_CONST, {.i64=DI}, 0, 0, AF, "transform_type"},
{"dii", "direct form II", 0, AV_OPT_TYPE_CONST, {.i64=DII}, 0, 0, AF, "transform_type"},
{"tdii", "transposed direct form II", 0, AV_OPT_TYPE_CONST, {.i64=TDII}, 0, 0, AF, "transform_type"},
{"latt", "lattice-ladder form", 0, AV_OPT_TYPE_CONST, {.i64=LATT}, 0, 0, AF, "transform_type"},
{"precision", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"r", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"auto", "automatic", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "precision"},
{"s16", "signed 16-bit", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "precision"},
{"s32", "signed 32-bit", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "precision"},
{"f32", "floating-point single", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "precision"},
{"f64", "floating-point double", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, AF, "precision"},
{NULL}
};
DEFINE_BIQUAD_FILTER(bandpass, "Apply a two-pole Butterworth band-pass filter.");
#endif /* CONFIG_BANDPASS_FILTER */
#if CONFIG_BANDREJECT_FILTER
static const AVOption bandreject_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"},
{"t", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"},
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
{"k", "kHz", 0, AV_OPT_TYPE_CONST, {.i64=KHERTZ}, 0, 0, FLAGS, "width_type"},
{"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
{"w", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
{"mix", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"m", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"channels", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"c", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"normalize", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"n", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"transform", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"a", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"di", "direct form I", 0, AV_OPT_TYPE_CONST, {.i64=DI}, 0, 0, AF, "transform_type"},
{"dii", "direct form II", 0, AV_OPT_TYPE_CONST, {.i64=DII}, 0, 0, AF, "transform_type"},
{"tdii", "transposed direct form II", 0, AV_OPT_TYPE_CONST, {.i64=TDII}, 0, 0, AF, "transform_type"},
{"latt", "lattice-ladder form", 0, AV_OPT_TYPE_CONST, {.i64=LATT}, 0, 0, AF, "transform_type"},
{"precision", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"r", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"auto", "automatic", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "precision"},
{"s16", "signed 16-bit", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "precision"},
{"s32", "signed 32-bit", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "precision"},
{"f32", "floating-point single", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "precision"},
{"f64", "floating-point double", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, AF, "precision"},
{NULL}
};
DEFINE_BIQUAD_FILTER(bandreject, "Apply a two-pole Butterworth band-reject filter.");
#endif /* CONFIG_BANDREJECT_FILTER */
#if CONFIG_LOWPASS_FILTER
static const AVOption lowpass_options[] = {
{"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS},
{"f", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS},
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"},
{"t", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"},
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
{"k", "kHz", 0, AV_OPT_TYPE_CONST, {.i64=KHERTZ}, 0, 0, FLAGS, "width_type"},
{"width", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
{"w", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF},
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF},
{"mix", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"m", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"channels", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"c", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"normalize", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"n", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"transform", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"a", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"di", "direct form I", 0, AV_OPT_TYPE_CONST, {.i64=DI}, 0, 0, AF, "transform_type"},
{"dii", "direct form II", 0, AV_OPT_TYPE_CONST, {.i64=DII}, 0, 0, AF, "transform_type"},
{"tdii", "transposed direct form II", 0, AV_OPT_TYPE_CONST, {.i64=TDII}, 0, 0, AF, "transform_type"},
{"latt", "lattice-ladder form", 0, AV_OPT_TYPE_CONST, {.i64=LATT}, 0, 0, AF, "transform_type"},
{"precision", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"r", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"auto", "automatic", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "precision"},
{"s16", "signed 16-bit", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "precision"},
{"s32", "signed 32-bit", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "precision"},
{"f32", "floating-point single", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "precision"},
{"f64", "floating-point double", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, AF, "precision"},
{NULL}
};
DEFINE_BIQUAD_FILTER(lowpass, "Apply a low-pass filter with 3dB point frequency.");
#endif /* CONFIG_LOWPASS_FILTER */
#if CONFIG_HIGHPASS_FILTER
static const AVOption highpass_options[] = {
{"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"f", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"},
{"t", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"},
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
{"k", "kHz", 0, AV_OPT_TYPE_CONST, {.i64=KHERTZ}, 0, 0, FLAGS, "width_type"},
{"width", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
{"w", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF},
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF},
{"mix", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"m", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"channels", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"c", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"normalize", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"n", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"transform", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"a", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"di", "direct form I", 0, AV_OPT_TYPE_CONST, {.i64=DI}, 0, 0, AF, "transform_type"},
{"dii", "direct form II", 0, AV_OPT_TYPE_CONST, {.i64=DII}, 0, 0, AF, "transform_type"},
{"tdii", "transposed direct form II", 0, AV_OPT_TYPE_CONST, {.i64=TDII}, 0, 0, AF, "transform_type"},
{"latt", "lattice-ladder form", 0, AV_OPT_TYPE_CONST, {.i64=LATT}, 0, 0, AF, "transform_type"},
{"precision", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"r", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"auto", "automatic", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "precision"},
{"s16", "signed 16-bit", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "precision"},
{"s32", "signed 32-bit", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "precision"},
{"f32", "floating-point single", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "precision"},
{"f64", "floating-point double", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, AF, "precision"},
{NULL}
};
DEFINE_BIQUAD_FILTER(highpass, "Apply a high-pass filter with 3dB point frequency.");
#endif /* CONFIG_HIGHPASS_FILTER */
#if CONFIG_ALLPASS_FILTER
static const AVOption allpass_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=HERTZ}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"},
{"t", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=HERTZ}, HERTZ, NB_WTYPE-1, FLAGS, "width_type"},
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
{"k", "kHz", 0, AV_OPT_TYPE_CONST, {.i64=KHERTZ}, 0, 0, FLAGS, "width_type"},
{"width", "set filter-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=707.1}, 0, 99999, FLAGS},
{"w", "set filter-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=707.1}, 0, 99999, FLAGS},
{"mix", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"m", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"channels", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"c", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"normalize", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"n", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"order", "set filter order", OFFSET(order), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
{"o", "set filter order", OFFSET(order), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
{"transform", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"a", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"di", "direct form I", 0, AV_OPT_TYPE_CONST, {.i64=DI}, 0, 0, AF, "transform_type"},
{"dii", "direct form II", 0, AV_OPT_TYPE_CONST, {.i64=DII}, 0, 0, AF, "transform_type"},
{"tdii", "transposed direct form II", 0, AV_OPT_TYPE_CONST, {.i64=TDII}, 0, 0, AF, "transform_type"},
{"latt", "lattice-ladder form", 0, AV_OPT_TYPE_CONST, {.i64=LATT}, 0, 0, AF, "transform_type"},
{"precision", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"r", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"auto", "automatic", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "precision"},
{"s16", "signed 16-bit", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "precision"},
{"s32", "signed 32-bit", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "precision"},
{"f32", "floating-point single", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "precision"},
{"f64", "floating-point double", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, AF, "precision"},
{NULL}
};
DEFINE_BIQUAD_FILTER(allpass, "Apply a two-pole all-pass filter.");
#endif /* CONFIG_ALLPASS_FILTER */
#if CONFIG_BIQUAD_FILTER
static const AVOption biquad_options[] = {
{"a0", NULL, OFFSET(oa0), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT32_MIN, INT32_MAX, FLAGS},
{"a1", NULL, OFFSET(oa1), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS},
{"a2", NULL, OFFSET(oa2), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS},
{"b0", NULL, OFFSET(ob0), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS},
{"b1", NULL, OFFSET(ob1), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS},
{"b2", NULL, OFFSET(ob2), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS},
{"mix", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"m", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 1, FLAGS},
{"channels", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"c", "set channels to filter", OFFSET(channels), AV_OPT_TYPE_CHANNEL_LAYOUT, {.i64=-1}, INT64_MIN, INT64_MAX, FLAGS},
{"normalize", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"n", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{"transform", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"a", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_TTYPE-1, AF, "transform_type"},
{"di", "direct form I", 0, AV_OPT_TYPE_CONST, {.i64=DI}, 0, 0, AF, "transform_type"},
{"dii", "direct form II", 0, AV_OPT_TYPE_CONST, {.i64=DII}, 0, 0, AF, "transform_type"},
{"tdii", "transposed direct form II", 0, AV_OPT_TYPE_CONST, {.i64=TDII}, 0, 0, AF, "transform_type"},
{"latt", "lattice-ladder form", 0, AV_OPT_TYPE_CONST, {.i64=LATT}, 0, 0, AF, "transform_type"},
{"precision", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"r", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=-1}, -1, 3, AF, "precision"},
{"auto", "automatic", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "precision"},
{"s16", "signed 16-bit", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "precision"},
{"s32", "signed 32-bit", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "precision"},
{"f32", "floating-point single", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "precision"},
{"f64", "floating-point double", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, AF, "precision"},
{NULL}
};
DEFINE_BIQUAD_FILTER(biquad, "Apply a biquad IIR filter with the given coefficients.");
#endif /* CONFIG_BIQUAD_FILTER */