1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/tests/checkasm/h264dsp.c
Anton Khirnov c8c2dfbc37 lavu: move LOCAL_ALIGNED from internal.h to mem_internal.h
That is a more appropriate place for it.
2021-01-01 14:11:01 +01:00

454 lines
22 KiB
C

/*
* Copyright (c) 2016 Martin Storsjo
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with FFmpeg; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <string.h>
#include "checkasm.h"
#include "libavcodec/avcodec.h"
#include "libavcodec/h264dsp.h"
#include "libavcodec/h264data.h"
#include "libavutil/common.h"
#include "libavutil/internal.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mem_internal.h"
static const uint32_t pixel_mask[3] = { 0xffffffff, 0x01ff01ff, 0x03ff03ff };
static const uint32_t pixel_mask_lf[3] = { 0xff0fff0f, 0x01ff000f, 0x03ff000f };
#define SIZEOF_PIXEL ((bit_depth + 7) / 8)
#define SIZEOF_COEF (2 * ((bit_depth + 7) / 8))
#define PIXEL_STRIDE 16
#define randomize_buffers() \
do { \
int x, y; \
uint32_t mask = pixel_mask[bit_depth - 8]; \
for (y = 0; y < sz; y++) { \
for (x = 0; x < PIXEL_STRIDE; x += 4) { \
AV_WN32A(src + y * PIXEL_STRIDE + x, rnd() & mask); \
AV_WN32A(dst + y * PIXEL_STRIDE + x, rnd() & mask); \
} \
for (x = 0; x < sz; x++) { \
if (bit_depth == 8) { \
coef[y * sz + x] = src[y * PIXEL_STRIDE + x] - \
dst[y * PIXEL_STRIDE + x]; \
} else { \
((int32_t *)coef)[y * sz + x] = \
((uint16_t *)src)[y * (PIXEL_STRIDE/2) + x] - \
((uint16_t *)dst)[y * (PIXEL_STRIDE/2) + x]; \
} \
} \
} \
} while (0)
#define dct4x4_impl(size, dctcoef) \
static void dct4x4_##size(dctcoef *coef) \
{ \
int i, y, x; \
dctcoef tmp[16]; \
for (i = 0; i < 4; i++) { \
const int z0 = coef[i*4 + 0] + coef[i*4 + 3]; \
const int z1 = coef[i*4 + 1] + coef[i*4 + 2]; \
const int z2 = coef[i*4 + 0] - coef[i*4 + 3]; \
const int z3 = coef[i*4 + 1] - coef[i*4 + 2]; \
tmp[i + 4*0] = z0 + z1; \
tmp[i + 4*1] = 2*z2 + z3; \
tmp[i + 4*2] = z0 - z1; \
tmp[i + 4*3] = z2 - 2*z3; \
} \
for (i = 0; i < 4; i++) { \
const int z0 = tmp[i*4 + 0] + tmp[i*4 + 3]; \
const int z1 = tmp[i*4 + 1] + tmp[i*4 + 2]; \
const int z2 = tmp[i*4 + 0] - tmp[i*4 + 3]; \
const int z3 = tmp[i*4 + 1] - tmp[i*4 + 2]; \
coef[i*4 + 0] = z0 + z1; \
coef[i*4 + 1] = 2*z2 + z3; \
coef[i*4 + 2] = z0 - z1; \
coef[i*4 + 3] = z2 - 2*z3; \
} \
for (y = 0; y < 4; y++) { \
for (x = 0; x < 4; x++) { \
static const int scale[] = { 13107 * 10, 8066 * 13, 5243 * 16 }; \
const int idx = (y & 1) + (x & 1); \
coef[y*4 + x] = (coef[y*4 + x] * scale[idx] + (1 << 14)) >> 15; \
} \
} \
}
#define DCT8_1D(src, srcstride, dst, dststride) do { \
const int a0 = (src)[srcstride * 0] + (src)[srcstride * 7]; \
const int a1 = (src)[srcstride * 0] - (src)[srcstride * 7]; \
const int a2 = (src)[srcstride * 1] + (src)[srcstride * 6]; \
const int a3 = (src)[srcstride * 1] - (src)[srcstride * 6]; \
const int a4 = (src)[srcstride * 2] + (src)[srcstride * 5]; \
const int a5 = (src)[srcstride * 2] - (src)[srcstride * 5]; \
const int a6 = (src)[srcstride * 3] + (src)[srcstride * 4]; \
const int a7 = (src)[srcstride * 3] - (src)[srcstride * 4]; \
const int b0 = a0 + a6; \
const int b1 = a2 + a4; \
const int b2 = a0 - a6; \
const int b3 = a2 - a4; \
const int b4 = a3 + a5 + (a1 + (a1 >> 1)); \
const int b5 = a1 - a7 - (a5 + (a5 >> 1)); \
const int b6 = a1 + a7 - (a3 + (a3 >> 1)); \
const int b7 = a3 - a5 + (a7 + (a7 >> 1)); \
(dst)[dststride * 0] = b0 + b1; \
(dst)[dststride * 1] = b4 + (b7 >> 2); \
(dst)[dststride * 2] = b2 + (b3 >> 1); \
(dst)[dststride * 3] = b5 + (b6 >> 2); \
(dst)[dststride * 4] = b0 - b1; \
(dst)[dststride * 5] = b6 - (b5 >> 2); \
(dst)[dststride * 6] = (b2 >> 1) - b3; \
(dst)[dststride * 7] = (b4 >> 2) - b7; \
} while (0)
#define dct8x8_impl(size, dctcoef) \
static void dct8x8_##size(dctcoef *coef) \
{ \
int i, x, y; \
dctcoef tmp[64]; \
for (i = 0; i < 8; i++) \
DCT8_1D(coef + i, 8, tmp + i, 8); \
\
for (i = 0; i < 8; i++) \
DCT8_1D(tmp + 8*i, 1, coef + i, 8); \
\
for (y = 0; y < 8; y++) { \
for (x = 0; x < 8; x++) { \
static const int scale[] = { \
13107 * 20, 11428 * 18, 20972 * 32, \
12222 * 19, 16777 * 25, 15481 * 24, \
}; \
static const int idxmap[] = { \
0, 3, 4, 3, \
3, 1, 5, 1, \
4, 5, 2, 5, \
3, 1, 5, 1, \
}; \
const int idx = idxmap[(y & 3) * 4 + (x & 3)]; \
coef[y*8 + x] = ((int64_t)coef[y*8 + x] * \
scale[idx] + (1 << 17)) >> 18; \
} \
} \
}
dct4x4_impl(16, int16_t)
dct4x4_impl(32, int32_t)
dct8x8_impl(16, int16_t)
dct8x8_impl(32, int32_t)
static void dct4x4(int16_t *coef, int bit_depth)
{
if (bit_depth == 8)
dct4x4_16(coef);
else
dct4x4_32((int32_t *) coef);
}
static void dct8x8(int16_t *coef, int bit_depth)
{
if (bit_depth == 8) {
dct8x8_16(coef);
} else {
dct8x8_32((int32_t *) coef);
}
}
static void check_idct(void)
{
LOCAL_ALIGNED_16(uint8_t, src, [8 * 8 * 2]);
LOCAL_ALIGNED_16(uint8_t, dst, [8 * 8 * 2]);
LOCAL_ALIGNED_16(uint8_t, dst0, [8 * 8 * 2]);
LOCAL_ALIGNED_16(uint8_t, dst1_base, [8 * 8 * 2 + 32]);
LOCAL_ALIGNED_16(int16_t, coef, [8 * 8 * 2]);
LOCAL_ALIGNED_16(int16_t, subcoef0, [8 * 8 * 2]);
LOCAL_ALIGNED_16(int16_t, subcoef1, [8 * 8 * 2]);
H264DSPContext h;
int bit_depth, sz, align, dc;
declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *dst, int16_t *block, int stride);
for (bit_depth = 8; bit_depth <= 10; bit_depth++) {
ff_h264dsp_init(&h, bit_depth, 1);
for (sz = 4; sz <= 8; sz += 4) {
randomize_buffers();
if (sz == 4)
dct4x4(coef, bit_depth);
else
dct8x8(coef, bit_depth);
for (dc = 0; dc <= 1; dc++) {
void (*idct)(uint8_t *, int16_t *, int) = NULL;
switch ((sz << 1) | dc) {
case (4 << 1) | 0: idct = h.h264_idct_add; break;
case (4 << 1) | 1: idct = h.h264_idct_dc_add; break;
case (8 << 1) | 0: idct = h.h264_idct8_add; break;
case (8 << 1) | 1: idct = h.h264_idct8_dc_add; break;
}
if (check_func(idct, "h264_idct%d_add%s_%dbpp", sz, dc ? "_dc" : "", bit_depth)) {
for (align = 0; align < 16; align += sz * SIZEOF_PIXEL) {
uint8_t *dst1 = dst1_base + align;
if (dc) {
memset(subcoef0, 0, sz * sz * SIZEOF_COEF);
memcpy(subcoef0, coef, SIZEOF_COEF);
} else {
memcpy(subcoef0, coef, sz * sz * SIZEOF_COEF);
}
memcpy(dst0, dst, sz * PIXEL_STRIDE);
memcpy(dst1, dst, sz * PIXEL_STRIDE);
memcpy(subcoef1, subcoef0, sz * sz * SIZEOF_COEF);
call_ref(dst0, subcoef0, PIXEL_STRIDE);
call_new(dst1, subcoef1, PIXEL_STRIDE);
if (memcmp(dst0, dst1, sz * PIXEL_STRIDE) ||
memcmp(subcoef0, subcoef1, sz * sz * SIZEOF_COEF))
fail();
bench_new(dst1, subcoef1, sz * SIZEOF_PIXEL);
}
}
}
}
}
}
static void check_idct_multiple(void)
{
LOCAL_ALIGNED_16(uint8_t, dst_full, [16 * 16 * 2]);
LOCAL_ALIGNED_16(int16_t, coef_full, [16 * 16 * 2]);
LOCAL_ALIGNED_16(uint8_t, dst0, [16 * 16 * 2]);
LOCAL_ALIGNED_16(uint8_t, dst1, [16 * 16 * 2]);
LOCAL_ALIGNED_16(int16_t, coef0, [16 * 16 * 2]);
LOCAL_ALIGNED_16(int16_t, coef1, [16 * 16 * 2]);
LOCAL_ALIGNED_16(uint8_t, nnzc, [15 * 8]);
H264DSPContext h;
int bit_depth, i, y, func;
declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *dst, const int *block_offset, int16_t *block, int stride, const uint8_t nnzc[15*8]);
for (bit_depth = 8; bit_depth <= 10; bit_depth++) {
ff_h264dsp_init(&h, bit_depth, 1);
for (func = 0; func < 3; func++) {
void (*idct)(uint8_t *, const int *, int16_t *, int, const uint8_t[]) = NULL;
const char *name;
int sz = 4, intra = 0;
int block_offset[16] = { 0 };
switch (func) {
case 0:
idct = h.h264_idct_add16;
name = "h264_idct_add16";
break;
case 1:
idct = h.h264_idct_add16intra;
name = "h264_idct_add16intra";
intra = 1;
break;
case 2:
idct = h.h264_idct8_add4;
name = "h264_idct8_add4";
sz = 8;
break;
}
memset(nnzc, 0, 15 * 8);
memset(coef_full, 0, 16 * 16 * SIZEOF_COEF);
for (i = 0; i < 16 * 16; i += sz * sz) {
uint8_t src[8 * 8 * 2];
uint8_t dst[8 * 8 * 2];
int16_t coef[8 * 8 * 2];
int index = i / sz;
int block_y = (index / 16) * sz;
int block_x = index % 16;
int offset = (block_y * 16 + block_x) * SIZEOF_PIXEL;
int nnz = rnd() % 3;
randomize_buffers();
if (sz == 4)
dct4x4(coef, bit_depth);
else
dct8x8(coef, bit_depth);
for (y = 0; y < sz; y++)
memcpy(&dst_full[offset + y * 16 * SIZEOF_PIXEL],
&dst[PIXEL_STRIDE * y], sz * SIZEOF_PIXEL);
if (nnz > 1)
nnz = sz * sz;
memcpy(&coef_full[i * SIZEOF_COEF/sizeof(coef[0])],
coef, nnz * SIZEOF_COEF);
if (intra && nnz == 1)
nnz = 0;
nnzc[scan8[i / 16]] = nnz;
block_offset[i / 16] = offset;
}
if (check_func(idct, "%s_%dbpp", name, bit_depth)) {
memcpy(coef0, coef_full, 16 * 16 * SIZEOF_COEF);
memcpy(coef1, coef_full, 16 * 16 * SIZEOF_COEF);
memcpy(dst0, dst_full, 16 * 16 * SIZEOF_PIXEL);
memcpy(dst1, dst_full, 16 * 16 * SIZEOF_PIXEL);
call_ref(dst0, block_offset, coef0, 16 * SIZEOF_PIXEL, nnzc);
call_new(dst1, block_offset, coef1, 16 * SIZEOF_PIXEL, nnzc);
if (memcmp(dst0, dst1, 16 * 16 * SIZEOF_PIXEL) ||
memcmp(coef0, coef1, 16 * 16 * SIZEOF_COEF))
fail();
bench_new(dst1, block_offset, coef1, 16 * SIZEOF_PIXEL, nnzc);
}
}
}
}
static void check_loop_filter(void)
{
LOCAL_ALIGNED_16(uint8_t, dst, [32 * 16 * 2]);
LOCAL_ALIGNED_16(uint8_t, dst0, [32 * 16 * 2]);
LOCAL_ALIGNED_16(uint8_t, dst1, [32 * 16 * 2]);
H264DSPContext h;
int bit_depth;
int alphas[36], betas[36];
int8_t tc0[36][4];
declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *pix, ptrdiff_t stride,
int alpha, int beta, int8_t *tc0);
for (bit_depth = 8; bit_depth <= 10; bit_depth++) {
int i, j, a, c;
uint32_t mask = pixel_mask_lf[bit_depth - 8];
ff_h264dsp_init(&h, bit_depth, 1);
for (i = 35, a = 255, c = 250; i >= 0; i--) {
alphas[i] = a << (bit_depth - 8);
betas[i] = (i + 1) / 2 << (bit_depth - 8);
tc0[i][0] = tc0[i][3] = (c + 6) / 10;
tc0[i][1] = (c + 7) / 15;
tc0[i][2] = (c + 9) / 20;
a = a*9/10;
c = c*9/10;
}
#define CHECK_LOOP_FILTER(name, align, idc) \
do { \
if (check_func(h.name, #name #idc "_%dbpp", bit_depth)) { \
for (j = 0; j < 36; j++) { \
intptr_t off = 8 * 32 + (j & 15) * 4 * !align; \
for (i = 0; i < 1024; i+=4) { \
AV_WN32A(dst + i, rnd() & mask); \
} \
memcpy(dst0, dst, 32 * 16 * 2); \
memcpy(dst1, dst, 32 * 16 * 2); \
\
call_ref(dst0 + off, 32, alphas[j], betas[j], tc0[j]); \
call_new(dst1 + off, 32, alphas[j], betas[j], tc0[j]); \
if (memcmp(dst0, dst1, 32 * 16 * SIZEOF_PIXEL)) { \
fprintf(stderr, #name #idc ": j:%d, alpha:%d beta:%d " \
"tc0:{%d,%d,%d,%d}\n", j, alphas[j], betas[j], \
tc0[j][0], tc0[j][1], tc0[j][2], tc0[j][3]); \
fail(); \
} \
bench_new(dst1, 32, alphas[j], betas[j], tc0[j]); \
} \
} \
} while (0)
CHECK_LOOP_FILTER(h264_v_loop_filter_luma, 1,);
CHECK_LOOP_FILTER(h264_h_loop_filter_luma, 0,);
CHECK_LOOP_FILTER(h264_h_loop_filter_luma_mbaff, 0,);
CHECK_LOOP_FILTER(h264_v_loop_filter_chroma, 1,);
CHECK_LOOP_FILTER(h264_h_loop_filter_chroma, 0,);
CHECK_LOOP_FILTER(h264_h_loop_filter_chroma_mbaff, 0,);
ff_h264dsp_init(&h, bit_depth, 2);
CHECK_LOOP_FILTER(h264_h_loop_filter_chroma, 0, 422);
CHECK_LOOP_FILTER(h264_h_loop_filter_chroma_mbaff, 0, 422);
#undef CHECK_LOOP_FILTER
}
}
static void check_loop_filter_intra(void)
{
LOCAL_ALIGNED_16(uint8_t, dst, [32 * 16 * 2]);
LOCAL_ALIGNED_16(uint8_t, dst0, [32 * 16 * 2]);
LOCAL_ALIGNED_16(uint8_t, dst1, [32 * 16 * 2]);
H264DSPContext h;
int bit_depth;
int alphas[36], betas[36];
declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *pix, ptrdiff_t stride,
int alpha, int beta);
for (bit_depth = 8; bit_depth <= 10; bit_depth++) {
int i, j, a;
uint32_t mask = pixel_mask_lf[bit_depth - 8];
ff_h264dsp_init(&h, bit_depth, 1);
for (i = 35, a = 255; i >= 0; i--) {
alphas[i] = a << (bit_depth - 8);
betas[i] = (i + 1) / 2 << (bit_depth - 8);
a = a*9/10;
}
#define CHECK_LOOP_FILTER(name, align, idc) \
do { \
if (check_func(h.name, #name #idc "_%dbpp", bit_depth)) { \
for (j = 0; j < 36; j++) { \
intptr_t off = 8 * 32 + (j & 15) * 4 * !align; \
for (i = 0; i < 1024; i+=4) { \
AV_WN32A(dst + i, rnd() & mask); \
} \
memcpy(dst0, dst, 32 * 16 * 2); \
memcpy(dst1, dst, 32 * 16 * 2); \
\
call_ref(dst0 + off, 32, alphas[j], betas[j]); \
call_new(dst1 + off, 32, alphas[j], betas[j]); \
if (memcmp(dst0, dst1, 32 * 16 * SIZEOF_PIXEL)) { \
fprintf(stderr, #name #idc ": j:%d, alpha:%d beta:%d\n", \
j, alphas[j], betas[j]); \
fail(); \
} \
bench_new(dst1, 32, alphas[j], betas[j]); \
} \
} \
} while (0)
CHECK_LOOP_FILTER(h264_v_loop_filter_luma_intra, 1,);
CHECK_LOOP_FILTER(h264_h_loop_filter_luma_intra, 0,);
CHECK_LOOP_FILTER(h264_h_loop_filter_luma_mbaff_intra, 0,);
CHECK_LOOP_FILTER(h264_v_loop_filter_chroma_intra, 1,);
CHECK_LOOP_FILTER(h264_h_loop_filter_chroma_intra, 0,);
CHECK_LOOP_FILTER(h264_h_loop_filter_chroma_mbaff_intra, 0,);
ff_h264dsp_init(&h, bit_depth, 2);
CHECK_LOOP_FILTER(h264_h_loop_filter_chroma_intra, 0, 422);
CHECK_LOOP_FILTER(h264_h_loop_filter_chroma_mbaff_intra, 0, 422);
#undef CHECK_LOOP_FILTER
}
}
void checkasm_check_h264dsp(void)
{
check_idct();
check_idct_multiple();
report("idct");
check_loop_filter();
report("loop_filter");
check_loop_filter_intra();
report("loop_filter_intra");
}