1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavfilter/vf_v360.c
Andreas Rheinhardt 0d7430d3ab avfilter/vf_v360: Add assert to suppress Coverity false positives
Should fix many Coverity false positives, namely #1457947-#1457994
as well as #1461195-#146210.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-05-20 14:16:39 +02:00

5006 lines
158 KiB
C

/*
* Copyright (c) 2019 Eugene Lyapustin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* 360 video conversion filter.
* Principle of operation:
*
* (for each pixel in output frame)
* 1) Calculate OpenGL-like coordinates (x, y, z) for pixel position (i, j)
* 2) Apply 360 operations (rotation, mirror) to (x, y, z)
* 3) Calculate pixel position (u, v) in input frame
* 4) Calculate interpolation window and weight for each pixel
*
* (for each frame)
* 5) Remap input frame to output frame using precalculated data
*/
#include <math.h>
#include "libavutil/avassert.h"
#include "libavutil/mem.h"
#include "libavutil/pixdesc.h"
#include "libavutil/opt.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#include "v360.h"
typedef struct ThreadData {
AVFrame *in;
AVFrame *out;
} ThreadData;
#define OFFSET(x) offsetof(V360Context, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
#define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption v360_options[] = {
{ "input", "set input projection", OFFSET(in), AV_OPT_TYPE_INT, {.i64=EQUIRECTANGULAR}, 0, NB_PROJECTIONS-1, FLAGS, .unit = "in" },
{ "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, .unit = "in" },
{ "equirect", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, .unit = "in" },
{ "c3x2", "cubemap 3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, .unit = "in" },
{ "c6x1", "cubemap 6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, .unit = "in" },
{ "eac", "equi-angular cubemap", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, .unit = "in" },
{ "dfisheye", "dual fisheye", 0, AV_OPT_TYPE_CONST, {.i64=DUAL_FISHEYE}, 0, 0, FLAGS, .unit = "in" },
{ "flat", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "in" },
{"rectilinear", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "in" },
{ "gnomonic", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "in" },
{ "barrel", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, .unit = "in" },
{ "fb", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, .unit = "in" },
{ "c1x6", "cubemap 1x6", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_1_6}, 0, 0, FLAGS, .unit = "in" },
{ "sg", "stereographic", 0, AV_OPT_TYPE_CONST, {.i64=STEREOGRAPHIC}, 0, 0, FLAGS, .unit = "in" },
{ "mercator", "mercator", 0, AV_OPT_TYPE_CONST, {.i64=MERCATOR}, 0, 0, FLAGS, .unit = "in" },
{ "ball", "ball", 0, AV_OPT_TYPE_CONST, {.i64=BALL}, 0, 0, FLAGS, .unit = "in" },
{ "hammer", "hammer", 0, AV_OPT_TYPE_CONST, {.i64=HAMMER}, 0, 0, FLAGS, .unit = "in" },
{"sinusoidal", "sinusoidal", 0, AV_OPT_TYPE_CONST, {.i64=SINUSOIDAL}, 0, 0, FLAGS, .unit = "in" },
{ "fisheye", "fisheye", 0, AV_OPT_TYPE_CONST, {.i64=FISHEYE}, 0, 0, FLAGS, .unit = "in" },
{ "pannini", "pannini", 0, AV_OPT_TYPE_CONST, {.i64=PANNINI}, 0, 0, FLAGS, .unit = "in" },
{"cylindrical", "cylindrical", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICAL}, 0, 0, FLAGS, .unit = "in" },
{"tetrahedron", "tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=TETRAHEDRON}, 0, 0, FLAGS, .unit = "in" },
{"barrelsplit", "barrel split facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL_SPLIT}, 0, 0, FLAGS, .unit = "in" },
{ "tsp", "truncated square pyramid", 0, AV_OPT_TYPE_CONST, {.i64=TSPYRAMID}, 0, 0, FLAGS, .unit = "in" },
{ "hequirect", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, .unit = "in" },
{ "he", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, .unit = "in" },
{ "equisolid", "equisolid", 0, AV_OPT_TYPE_CONST, {.i64=EQUISOLID}, 0, 0, FLAGS, .unit = "in" },
{ "og", "orthographic", 0, AV_OPT_TYPE_CONST, {.i64=ORTHOGRAPHIC}, 0, 0, FLAGS, .unit = "in" },
{"octahedron", "octahedron", 0, AV_OPT_TYPE_CONST, {.i64=OCTAHEDRON}, 0, 0, FLAGS, .unit = "in" },
{"cylindricalea", "cylindrical equal area", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICALEA}, 0, 0, FLAGS, .unit = "in" },
{ "output", "set output projection", OFFSET(out), AV_OPT_TYPE_INT, {.i64=CUBEMAP_3_2}, 0, NB_PROJECTIONS-1, FLAGS, .unit = "out" },
{ "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, .unit = "out" },
{ "equirect", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, .unit = "out" },
{ "c3x2", "cubemap 3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, .unit = "out" },
{ "c6x1", "cubemap 6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, .unit = "out" },
{ "eac", "equi-angular cubemap", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, .unit = "out" },
{ "dfisheye", "dual fisheye", 0, AV_OPT_TYPE_CONST, {.i64=DUAL_FISHEYE}, 0, 0, FLAGS, .unit = "out" },
{ "flat", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "out" },
{"rectilinear", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "out" },
{ "gnomonic", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, .unit = "out" },
{ "barrel", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, .unit = "out" },
{ "fb", "barrel facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL}, 0, 0, FLAGS, .unit = "out" },
{ "c1x6", "cubemap 1x6", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_1_6}, 0, 0, FLAGS, .unit = "out" },
{ "sg", "stereographic", 0, AV_OPT_TYPE_CONST, {.i64=STEREOGRAPHIC}, 0, 0, FLAGS, .unit = "out" },
{ "mercator", "mercator", 0, AV_OPT_TYPE_CONST, {.i64=MERCATOR}, 0, 0, FLAGS, .unit = "out" },
{ "ball", "ball", 0, AV_OPT_TYPE_CONST, {.i64=BALL}, 0, 0, FLAGS, .unit = "out" },
{ "hammer", "hammer", 0, AV_OPT_TYPE_CONST, {.i64=HAMMER}, 0, 0, FLAGS, .unit = "out" },
{"sinusoidal", "sinusoidal", 0, AV_OPT_TYPE_CONST, {.i64=SINUSOIDAL}, 0, 0, FLAGS, .unit = "out" },
{ "fisheye", "fisheye", 0, AV_OPT_TYPE_CONST, {.i64=FISHEYE}, 0, 0, FLAGS, .unit = "out" },
{ "pannini", "pannini", 0, AV_OPT_TYPE_CONST, {.i64=PANNINI}, 0, 0, FLAGS, .unit = "out" },
{"cylindrical", "cylindrical", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICAL}, 0, 0, FLAGS, .unit = "out" },
{"perspective", "perspective", 0, AV_OPT_TYPE_CONST, {.i64=PERSPECTIVE}, 0, 0, FLAGS, .unit = "out" },
{"tetrahedron", "tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=TETRAHEDRON}, 0, 0, FLAGS, .unit = "out" },
{"barrelsplit", "barrel split facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=BARREL_SPLIT}, 0, 0, FLAGS, .unit = "out" },
{ "tsp", "truncated square pyramid", 0, AV_OPT_TYPE_CONST, {.i64=TSPYRAMID}, 0, 0, FLAGS, .unit = "out" },
{ "hequirect", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, .unit = "out" },
{ "he", "half equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=HEQUIRECTANGULAR},0, 0, FLAGS, .unit = "out" },
{ "equisolid", "equisolid", 0, AV_OPT_TYPE_CONST, {.i64=EQUISOLID}, 0, 0, FLAGS, .unit = "out" },
{ "og", "orthographic", 0, AV_OPT_TYPE_CONST, {.i64=ORTHOGRAPHIC}, 0, 0, FLAGS, .unit = "out" },
{"octahedron", "octahedron", 0, AV_OPT_TYPE_CONST, {.i64=OCTAHEDRON}, 0, 0, FLAGS, .unit = "out" },
{"cylindricalea", "cylindrical equal area", 0, AV_OPT_TYPE_CONST, {.i64=CYLINDRICALEA}, 0, 0, FLAGS, .unit = "out" },
{ "interp", "set interpolation method", OFFSET(interp), AV_OPT_TYPE_INT, {.i64=BILINEAR}, 0, NB_INTERP_METHODS-1, FLAGS, .unit = "interp" },
{ "near", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, .unit = "interp" },
{ "nearest", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, .unit = "interp" },
{ "line", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, .unit = "interp" },
{ "linear", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, .unit = "interp" },
{ "lagrange9", "lagrange9 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LAGRANGE9}, 0, 0, FLAGS, .unit = "interp" },
{ "cube", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, .unit = "interp" },
{ "cubic", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, .unit = "interp" },
{ "lanc", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, .unit = "interp" },
{ "lanczos", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, .unit = "interp" },
{ "sp16", "spline16 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=SPLINE16}, 0, 0, FLAGS, .unit = "interp" },
{ "spline16", "spline16 interpolation", 0, AV_OPT_TYPE_CONST, {.i64=SPLINE16}, 0, 0, FLAGS, .unit = "interp" },
{ "gauss", "gaussian interpolation", 0, AV_OPT_TYPE_CONST, {.i64=GAUSSIAN}, 0, 0, FLAGS, .unit = "interp" },
{ "gaussian", "gaussian interpolation", 0, AV_OPT_TYPE_CONST, {.i64=GAUSSIAN}, 0, 0, FLAGS, .unit = "interp" },
{ "mitchell", "mitchell interpolation", 0, AV_OPT_TYPE_CONST, {.i64=MITCHELL}, 0, 0, FLAGS, .unit = "interp" },
{ "w", "output width", OFFSET(width), AV_OPT_TYPE_INT, {.i64=0}, 0, INT16_MAX, FLAGS, .unit = "w"},
{ "h", "output height", OFFSET(height), AV_OPT_TYPE_INT, {.i64=0}, 0, INT16_MAX, FLAGS, .unit = "h"},
{ "in_stereo", "input stereo format", OFFSET(in_stereo), AV_OPT_TYPE_INT, {.i64=STEREO_2D}, 0, NB_STEREO_FMTS-1, FLAGS, .unit = "stereo" },
{"out_stereo", "output stereo format", OFFSET(out_stereo), AV_OPT_TYPE_INT, {.i64=STEREO_2D}, 0, NB_STEREO_FMTS-1, FLAGS, .unit = "stereo" },
{ "2d", "2d mono", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_2D}, 0, 0, FLAGS, .unit = "stereo" },
{ "sbs", "side by side", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_SBS}, 0, 0, FLAGS, .unit = "stereo" },
{ "tb", "top bottom", 0, AV_OPT_TYPE_CONST, {.i64=STEREO_TB}, 0, 0, FLAGS, .unit = "stereo" },
{ "in_forder", "input cubemap face order", OFFSET(in_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, .unit = "in_forder"},
{"out_forder", "output cubemap face order", OFFSET(out_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, .unit = "out_forder"},
{ "in_frot", "input cubemap face rotation", OFFSET(in_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, .unit = "in_frot"},
{ "out_frot", "output cubemap face rotation",OFFSET(out_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, .unit = "out_frot"},
{ "in_pad", "percent input cubemap pads", OFFSET(in_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 0.1,TFLAGS, .unit = "in_pad"},
{ "out_pad", "percent output cubemap pads", OFFSET(out_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 0.1,TFLAGS, .unit = "out_pad"},
{ "fin_pad", "fixed input cubemap pads", OFFSET(fin_pad), AV_OPT_TYPE_INT, {.i64=0}, 0, 100,TFLAGS, .unit = "fin_pad"},
{ "fout_pad", "fixed output cubemap pads", OFFSET(fout_pad), AV_OPT_TYPE_INT, {.i64=0}, 0, 100,TFLAGS, .unit = "fout_pad"},
{ "yaw", "yaw rotation", OFFSET(yaw), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,TFLAGS, .unit = "yaw"},
{ "pitch", "pitch rotation", OFFSET(pitch), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,TFLAGS, .unit = "pitch"},
{ "roll", "roll rotation", OFFSET(roll), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,TFLAGS, .unit = "roll"},
{ "rorder", "rotation order", OFFSET(rorder), AV_OPT_TYPE_STRING, {.str="ypr"}, 0, 0,TFLAGS, .unit = "rorder"},
{ "h_fov", "output horizontal field of view",OFFSET(h_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "h_fov"},
{ "v_fov", "output vertical field of view", OFFSET(v_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "v_fov"},
{ "d_fov", "output diagonal field of view", OFFSET(d_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "d_fov"},
{ "h_flip", "flip out video horizontally", OFFSET(h_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, .unit = "h_flip"},
{ "v_flip", "flip out video vertically", OFFSET(v_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, .unit = "v_flip"},
{ "d_flip", "flip out video indepth", OFFSET(d_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, .unit = "d_flip"},
{ "ih_flip", "flip in video horizontally", OFFSET(ih_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, .unit = "ih_flip"},
{ "iv_flip", "flip in video vertically", OFFSET(iv_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1,TFLAGS, .unit = "iv_flip"},
{ "in_trans", "transpose video input", OFFSET(in_transpose), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, .unit = "in_transpose"},
{ "out_trans", "transpose video output", OFFSET(out_transpose), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, .unit = "out_transpose"},
{ "ih_fov", "input horizontal field of view",OFFSET(ih_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "ih_fov"},
{ "iv_fov", "input vertical field of view", OFFSET(iv_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "iv_fov"},
{ "id_fov", "input diagonal field of view", OFFSET(id_fov), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 360.f,TFLAGS, .unit = "id_fov"},
{ "h_offset", "output horizontal off-axis offset",OFFSET(h_offset), AV_OPT_TYPE_FLOAT,{.dbl=0.f}, -1.f, 1.f,TFLAGS, .unit = "h_offset"},
{ "v_offset", "output vertical off-axis offset", OFFSET(v_offset), AV_OPT_TYPE_FLOAT,{.dbl=0.f}, -1.f, 1.f,TFLAGS, .unit = "v_offset"},
{"alpha_mask", "build mask in alpha plane", OFFSET(alpha), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, .unit = "alpha"},
{ "reset_rot", "reset rotation", OFFSET(reset_rot), AV_OPT_TYPE_BOOL, {.i64=0}, -1, 1,TFLAGS, .unit = "reset_rot"},
{ NULL }
};
AVFILTER_DEFINE_CLASS(v360);
static int query_formats(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
static const enum AVPixelFormat pix_fmts[] = {
// YUVA444
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9,
AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12,
AV_PIX_FMT_YUVA444P16,
// YUVA422
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA422P9,
AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12,
AV_PIX_FMT_YUVA422P16,
// YUVA420
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA420P9,
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
// YUVJ
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P,
// YUV444
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12,
AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
// YUV440
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV440P10,
AV_PIX_FMT_YUV440P12,
// YUV422
AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV422P9,
AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12,
AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16,
// YUV420
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV420P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12,
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16,
// YUV411
AV_PIX_FMT_YUV411P,
// YUV410
AV_PIX_FMT_YUV410P,
// GBR
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9,
AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
// GBRA
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10,
AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
// GRAY
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat alpha_pix_fmts[] = {
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9,
AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12,
AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA422P9,
AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12,
AV_PIX_FMT_YUVA422P16,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA420P9,
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10,
AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_NONE
};
return ff_set_common_formats_from_list(ctx, s->alpha ? alpha_pix_fmts : pix_fmts);
}
#define DEFINE_REMAP1_LINE(bits, div) \
static void remap1_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *const src, \
ptrdiff_t in_linesize, \
const int16_t *const u, const int16_t *const v, \
const int16_t *const ker) \
{ \
const uint##bits##_t *const s = (const uint##bits##_t *const)src; \
uint##bits##_t *d = (uint##bits##_t *)dst; \
\
in_linesize /= div; \
\
for (int x = 0; x < width; x++) \
d[x] = s[v[x] * in_linesize + u[x]]; \
}
DEFINE_REMAP1_LINE( 8, 1)
DEFINE_REMAP1_LINE(16, 2)
/**
* Generate remapping function with a given window size and pixel depth.
*
* @param ws size of interpolation window
* @param bits number of bits per pixel
*/
#define DEFINE_REMAP(ws, bits) \
static int remap##ws##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
{ \
ThreadData *td = arg; \
const V360Context *s = ctx->priv; \
const SliceXYRemap *r = &s->slice_remap[jobnr]; \
const AVFrame *in = td->in; \
AVFrame *out = td->out; \
\
av_assert1(s->nb_planes <= AV_VIDEO_MAX_PLANES); \
\
for (int stereo = 0; stereo < 1 + s->out_stereo > STEREO_2D; stereo++) { \
for (int plane = 0; plane < s->nb_planes; plane++) { \
const unsigned map = s->map[plane]; \
const int in_linesize = in->linesize[plane]; \
const int out_linesize = out->linesize[plane]; \
const int uv_linesize = s->uv_linesize[plane]; \
const int in_offset_w = stereo ? s->in_offset_w[plane] : 0; \
const int in_offset_h = stereo ? s->in_offset_h[plane] : 0; \
const int out_offset_w = stereo ? s->out_offset_w[plane] : 0; \
const int out_offset_h = stereo ? s->out_offset_h[plane] : 0; \
const uint8_t *const src = in->data[plane] + \
in_offset_h * in_linesize + in_offset_w * (bits >> 3); \
uint8_t *dst = out->data[plane] + out_offset_h * out_linesize + out_offset_w * (bits >> 3); \
const uint8_t *mask = plane == 3 ? r->mask : NULL; \
const int width = s->pr_width[plane]; \
const int height = s->pr_height[plane]; \
\
const int slice_start = (height * jobnr ) / nb_jobs; \
const int slice_end = (height * (jobnr + 1)) / nb_jobs; \
\
for (int y = slice_start; y < slice_end && !mask; y++) { \
const int16_t *const u = r->u[map] + (y - slice_start) * uv_linesize * ws * ws; \
const int16_t *const v = r->v[map] + (y - slice_start) * uv_linesize * ws * ws; \
const int16_t *const ker = r->ker[map] + (y - slice_start) * uv_linesize * ws * ws; \
\
s->remap_line(dst + y * out_linesize, width, src, in_linesize, u, v, ker); \
} \
\
for (int y = slice_start; y < slice_end && mask; y++) { \
memcpy(dst + y * out_linesize, mask + \
(y - slice_start) * width * (bits >> 3), width * (bits >> 3)); \
} \
} \
} \
\
return 0; \
}
DEFINE_REMAP(1, 8)
DEFINE_REMAP(2, 8)
DEFINE_REMAP(3, 8)
DEFINE_REMAP(4, 8)
DEFINE_REMAP(1, 16)
DEFINE_REMAP(2, 16)
DEFINE_REMAP(3, 16)
DEFINE_REMAP(4, 16)
#define DEFINE_REMAP_LINE(ws, bits, div) \
static void remap##ws##_##bits##bit_line_c(uint8_t *dst, int width, const uint8_t *const src, \
ptrdiff_t in_linesize, \
const int16_t *const u, const int16_t *const v, \
const int16_t *const ker) \
{ \
const uint##bits##_t *const s = (const uint##bits##_t *const)src; \
uint##bits##_t *d = (uint##bits##_t *)dst; \
\
in_linesize /= div; \
\
for (int x = 0; x < width; x++) { \
const int16_t *const uu = u + x * ws * ws; \
const int16_t *const vv = v + x * ws * ws; \
const int16_t *const kker = ker + x * ws * ws; \
int tmp = 0; \
\
for (int i = 0; i < ws; i++) { \
const int iws = i * ws; \
for (int j = 0; j < ws; j++) { \
tmp += kker[iws + j] * s[vv[iws + j] * in_linesize + uu[iws + j]]; \
} \
} \
\
d[x] = av_clip_uint##bits(tmp >> 14); \
} \
}
DEFINE_REMAP_LINE(2, 8, 1)
DEFINE_REMAP_LINE(3, 8, 1)
DEFINE_REMAP_LINE(4, 8, 1)
DEFINE_REMAP_LINE(2, 16, 2)
DEFINE_REMAP_LINE(3, 16, 2)
DEFINE_REMAP_LINE(4, 16, 2)
void ff_v360_init(V360Context *s, int depth)
{
switch (s->interp) {
case NEAREST:
s->remap_line = depth <= 8 ? remap1_8bit_line_c : remap1_16bit_line_c;
break;
case BILINEAR:
s->remap_line = depth <= 8 ? remap2_8bit_line_c : remap2_16bit_line_c;
break;
case LAGRANGE9:
s->remap_line = depth <= 8 ? remap3_8bit_line_c : remap3_16bit_line_c;
break;
case BICUBIC:
case LANCZOS:
case SPLINE16:
case GAUSSIAN:
case MITCHELL:
s->remap_line = depth <= 8 ? remap4_8bit_line_c : remap4_16bit_line_c;
break;
}
#if ARCH_X86
ff_v360_init_x86(s, depth);
#endif
}
/**
* Save nearest pixel coordinates for remapping.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param rmap calculated 4x4 window
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void nearest_kernel(float du, float dv, const XYRemap *rmap,
int16_t *u, int16_t *v, int16_t *ker)
{
const int i = lrintf(dv) + 1;
const int j = lrintf(du) + 1;
u[0] = rmap->u[i][j];
v[0] = rmap->v[i][j];
}
/**
* Calculate kernel for bilinear interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param rmap calculated 4x4 window
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void bilinear_kernel(float du, float dv, const XYRemap *rmap,
int16_t *u, int16_t *v, int16_t *ker)
{
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
u[i * 2 + j] = rmap->u[i + 1][j + 1];
v[i * 2 + j] = rmap->v[i + 1][j + 1];
}
}
ker[0] = lrintf((1.f - du) * (1.f - dv) * 16385.f);
ker[1] = lrintf( du * (1.f - dv) * 16385.f);
ker[2] = lrintf((1.f - du) * dv * 16385.f);
ker[3] = lrintf( du * dv * 16385.f);
}
/**
* Calculate 1-dimensional lagrange coefficients.
*
* @param t relative coordinate
* @param coeffs coefficients
*/
static inline void calculate_lagrange_coeffs(float t, float *coeffs)
{
coeffs[0] = (t - 1.f) * (t - 2.f) * 0.5f;
coeffs[1] = -t * (t - 2.f);
coeffs[2] = t * (t - 1.f) * 0.5f;
}
/**
* Calculate kernel for lagrange interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param rmap calculated 4x4 window
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void lagrange_kernel(float du, float dv, const XYRemap *rmap,
int16_t *u, int16_t *v, int16_t *ker)
{
float du_coeffs[3];
float dv_coeffs[3];
calculate_lagrange_coeffs(du, du_coeffs);
calculate_lagrange_coeffs(dv, dv_coeffs);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
u[i * 3 + j] = rmap->u[i + 1][j + 1];
v[i * 3 + j] = rmap->v[i + 1][j + 1];
ker[i * 3 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
}
}
}
/**
* Calculate 1-dimensional cubic coefficients.
*
* @param t relative coordinate
* @param coeffs coefficients
*/
static inline void calculate_bicubic_coeffs(float t, float *coeffs)
{
const float tt = t * t;
const float ttt = t * t * t;
coeffs[0] = - t / 3.f + tt / 2.f - ttt / 6.f;
coeffs[1] = 1.f - t / 2.f - tt + ttt / 2.f;
coeffs[2] = t + tt / 2.f - ttt / 2.f;
coeffs[3] = - t / 6.f + ttt / 6.f;
}
/**
* Calculate kernel for bicubic interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param rmap calculated 4x4 window
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void bicubic_kernel(float du, float dv, const XYRemap *rmap,
int16_t *u, int16_t *v, int16_t *ker)
{
float du_coeffs[4];
float dv_coeffs[4];
calculate_bicubic_coeffs(du, du_coeffs);
calculate_bicubic_coeffs(dv, dv_coeffs);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
u[i * 4 + j] = rmap->u[i][j];
v[i * 4 + j] = rmap->v[i][j];
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
}
}
}
/**
* Calculate 1-dimensional lanczos coefficients.
*
* @param t relative coordinate
* @param coeffs coefficients
*/
static inline void calculate_lanczos_coeffs(float t, float *coeffs)
{
float sum = 0.f;
for (int i = 0; i < 4; i++) {
const float x = M_PI * (t - i + 1);
if (x == 0.f) {
coeffs[i] = 1.f;
} else {
coeffs[i] = sinf(x) * sinf(x / 2.f) / (x * x / 2.f);
}
sum += coeffs[i];
}
for (int i = 0; i < 4; i++) {
coeffs[i] /= sum;
}
}
/**
* Calculate kernel for lanczos interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param rmap calculated 4x4 window
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void lanczos_kernel(float du, float dv, const XYRemap *rmap,
int16_t *u, int16_t *v, int16_t *ker)
{
float du_coeffs[4];
float dv_coeffs[4];
calculate_lanczos_coeffs(du, du_coeffs);
calculate_lanczos_coeffs(dv, dv_coeffs);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
u[i * 4 + j] = rmap->u[i][j];
v[i * 4 + j] = rmap->v[i][j];
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
}
}
}
/**
* Calculate 1-dimensional spline16 coefficients.
*
* @param t relative coordinate
* @param coeffs coefficients
*/
static void calculate_spline16_coeffs(float t, float *coeffs)
{
coeffs[0] = ((-1.f / 3.f * t + 0.8f) * t - 7.f / 15.f) * t;
coeffs[1] = ((t - 9.f / 5.f) * t - 0.2f) * t + 1.f;
coeffs[2] = ((6.f / 5.f - t) * t + 0.8f) * t;
coeffs[3] = ((1.f / 3.f * t - 0.2f) * t - 2.f / 15.f) * t;
}
/**
* Calculate kernel for spline16 interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param rmap calculated 4x4 window
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void spline16_kernel(float du, float dv, const XYRemap *rmap,
int16_t *u, int16_t *v, int16_t *ker)
{
float du_coeffs[4];
float dv_coeffs[4];
calculate_spline16_coeffs(du, du_coeffs);
calculate_spline16_coeffs(dv, dv_coeffs);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
u[i * 4 + j] = rmap->u[i][j];
v[i * 4 + j] = rmap->v[i][j];
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
}
}
}
/**
* Calculate 1-dimensional gaussian coefficients.
*
* @param t relative coordinate
* @param coeffs coefficients
*/
static void calculate_gaussian_coeffs(float t, float *coeffs)
{
float sum = 0.f;
for (int i = 0; i < 4; i++) {
const float x = t - (i - 1);
if (x == 0.f) {
coeffs[i] = 1.f;
} else {
coeffs[i] = expf(-2.f * x * x) * expf(-x * x / 2.f);
}
sum += coeffs[i];
}
for (int i = 0; i < 4; i++) {
coeffs[i] /= sum;
}
}
/**
* Calculate kernel for gaussian interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param rmap calculated 4x4 window
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void gaussian_kernel(float du, float dv, const XYRemap *rmap,
int16_t *u, int16_t *v, int16_t *ker)
{
float du_coeffs[4];
float dv_coeffs[4];
calculate_gaussian_coeffs(du, du_coeffs);
calculate_gaussian_coeffs(dv, dv_coeffs);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
u[i * 4 + j] = rmap->u[i][j];
v[i * 4 + j] = rmap->v[i][j];
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
}
}
}
/**
* Calculate 1-dimensional cubic_bc_spline coefficients.
*
* @param t relative coordinate
* @param coeffs coefficients
*/
static void calculate_cubic_bc_coeffs(float t, float *coeffs,
float b, float c)
{
float sum = 0.f;
float p0 = (6.f - 2.f * b) / 6.f,
p2 = (-18.f + 12.f * b + 6.f * c) / 6.f,
p3 = (12.f - 9.f * b - 6.f * c) / 6.f,
q0 = (8.f * b + 24.f * c) / 6.f,
q1 = (-12.f * b - 48.f * c) / 6.f,
q2 = (6.f * b + 30.f * c) / 6.f,
q3 = (-b - 6.f * c) / 6.f;
for (int i = 0; i < 4; i++) {
const float x = fabsf(t - i + 1.f);
if (x < 1.f) {
coeffs[i] = (p0 + x * x * (p2 + x * p3)) *
(p0 + x * x * (p2 + x * p3 / 2.f) / 4.f);
} else if (x < 2.f) {
coeffs[i] = (q0 + x * (q1 + x * (q2 + x * q3))) *
(q0 + x * (q1 + x * (q2 + x / 2.f * q3) / 2.f) / 2.f);
} else {
coeffs[i] = 0.f;
}
sum += coeffs[i];
}
for (int i = 0; i < 4; i++) {
coeffs[i] /= sum;
}
}
/**
* Calculate kernel for mitchell interpolation.
*
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
* @param rmap calculated 4x4 window
* @param u u remap data
* @param v v remap data
* @param ker ker remap data
*/
static void mitchell_kernel(float du, float dv, const XYRemap *rmap,
int16_t *u, int16_t *v, int16_t *ker)
{
float du_coeffs[4];
float dv_coeffs[4];
calculate_cubic_bc_coeffs(du, du_coeffs, 1.f / 3.f, 1.f / 3.f);
calculate_cubic_bc_coeffs(dv, dv_coeffs, 1.f / 3.f, 1.f / 3.f);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
u[i * 4 + j] = rmap->u[i][j];
v[i * 4 + j] = rmap->v[i][j];
ker[i * 4 + j] = lrintf(du_coeffs[j] * dv_coeffs[i] * 16385.f);
}
}
}
/**
* Modulo operation with only positive remainders.
*
* @param a dividend
* @param b divisor
*
* @return positive remainder of (a / b)
*/
static inline int mod(int a, int b)
{
const int res = a % b;
if (res < 0) {
return res + b;
} else {
return res;
}
}
/**
* Reflect y operation.
*
* @param y input vertical position
* @param h input height
*/
static inline int reflecty(int y, int h)
{
if (y < 0) {
y = -y;
} else if (y >= h) {
y = 2 * h - 1 - y;
}
return av_clip(y, 0, h - 1);
}
/**
* Reflect x operation for equirect.
*
* @param x input horizontal position
* @param y input vertical position
* @param w input width
* @param h input height
*/
static inline int ereflectx(int x, int y, int w, int h)
{
if (y < 0 || y >= h)
x += w / 2;
return mod(x, w);
}
/**
* Reflect x operation.
*
* @param x input horizontal position
* @param y input vertical position
* @param w input width
* @param h input height
*/
static inline int reflectx(int x, int y, int w, int h)
{
if (y < 0 || y >= h)
return w - 1 - x;
return mod(x, w);
}
/**
* Convert char to corresponding direction.
* Used for cubemap options.
*/
static int get_direction(char c)
{
switch (c) {
case 'r':
return RIGHT;
case 'l':
return LEFT;
case 'u':
return UP;
case 'd':
return DOWN;
case 'f':
return FRONT;
case 'b':
return BACK;
default:
return -1;
}
}
/**
* Convert char to corresponding rotation angle.
* Used for cubemap options.
*/
static int get_rotation(char c)
{
switch (c) {
case '0':
return ROT_0;
case '1':
return ROT_90;
case '2':
return ROT_180;
case '3':
return ROT_270;
default:
return -1;
}
}
/**
* Convert char to corresponding rotation order.
*/
static int get_rorder(char c)
{
switch (c) {
case 'Y':
case 'y':
return YAW;
case 'P':
case 'p':
return PITCH;
case 'R':
case 'r':
return ROLL;
default:
return -1;
}
}
/**
* Prepare data for processing cubemap input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_cube_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
for (int face = 0; face < NB_FACES; face++) {
const char c = s->in_forder[face];
int direction;
if (c == '\0') {
av_log(ctx, AV_LOG_ERROR,
"Incomplete in_forder option. Direction for all 6 faces should be specified.\n");
return AVERROR(EINVAL);
}
direction = get_direction(c);
if (direction == -1) {
av_log(ctx, AV_LOG_ERROR,
"Incorrect direction symbol '%c' in in_forder option.\n", c);
return AVERROR(EINVAL);
}
s->in_cubemap_face_order[direction] = face;
}
for (int face = 0; face < NB_FACES; face++) {
const char c = s->in_frot[face];
int rotation;
if (c == '\0') {
av_log(ctx, AV_LOG_ERROR,
"Incomplete in_frot option. Rotation for all 6 faces should be specified.\n");
return AVERROR(EINVAL);
}
rotation = get_rotation(c);
if (rotation == -1) {
av_log(ctx, AV_LOG_ERROR,
"Incorrect rotation symbol '%c' in in_frot option.\n", c);
return AVERROR(EINVAL);
}
s->in_cubemap_face_rotation[face] = rotation;
}
return 0;
}
/**
* Prepare data for processing cubemap output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_cube_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
for (int face = 0; face < NB_FACES; face++) {
const char c = s->out_forder[face];
int direction;
if (c == '\0') {
av_log(ctx, AV_LOG_ERROR,
"Incomplete out_forder option. Direction for all 6 faces should be specified.\n");
return AVERROR(EINVAL);
}
direction = get_direction(c);
if (direction == -1) {
av_log(ctx, AV_LOG_ERROR,
"Incorrect direction symbol '%c' in out_forder option.\n", c);
return AVERROR(EINVAL);
}
s->out_cubemap_direction_order[face] = direction;
}
for (int face = 0; face < NB_FACES; face++) {
const char c = s->out_frot[face];
int rotation;
if (c == '\0') {
av_log(ctx, AV_LOG_ERROR,
"Incomplete out_frot option. Rotation for all 6 faces should be specified.\n");
return AVERROR(EINVAL);
}
rotation = get_rotation(c);
if (rotation == -1) {
av_log(ctx, AV_LOG_ERROR,
"Incorrect rotation symbol '%c' in out_frot option.\n", c);
return AVERROR(EINVAL);
}
s->out_cubemap_face_rotation[face] = rotation;
}
return 0;
}
static inline void rotate_cube_face(float *uf, float *vf, int rotation)
{
float tmp;
switch (rotation) {
case ROT_0:
break;
case ROT_90:
tmp = *uf;
*uf = -*vf;
*vf = tmp;
break;
case ROT_180:
*uf = -*uf;
*vf = -*vf;
break;
case ROT_270:
tmp = -*uf;
*uf = *vf;
*vf = tmp;
break;
default:
av_assert0(0);
}
}
static inline void rotate_cube_face_inverse(float *uf, float *vf, int rotation)
{
float tmp;
switch (rotation) {
case ROT_0:
break;
case ROT_90:
tmp = -*uf;
*uf = *vf;
*vf = tmp;
break;
case ROT_180:
*uf = -*uf;
*vf = -*vf;
break;
case ROT_270:
tmp = *uf;
*uf = -*vf;
*vf = tmp;
break;
default:
av_assert0(0);
}
}
/**
* Offset vector.
*
* @param vec vector
*/
static void offset_vector(float *vec, float h_offset, float v_offset)
{
vec[0] += h_offset;
vec[1] += v_offset;
}
/**
* Normalize vector.
*
* @param vec vector
*/
static void normalize_vector(float *vec)
{
const float norm = sqrtf(vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]);
vec[0] /= norm;
vec[1] /= norm;
vec[2] /= norm;
}
/**
* Calculate 3D coordinates on sphere for corresponding cubemap position.
* Common operation for every cubemap.
*
* @param s filter private context
* @param uf horizontal cubemap coordinate [0, 1)
* @param vf vertical cubemap coordinate [0, 1)
* @param face face of cubemap
* @param vec coordinates on sphere
* @param scalew scale for uf
* @param scaleh scale for vf
*/
static void cube_to_xyz(const V360Context *s,
float uf, float vf, int face,
float *vec, float scalew, float scaleh)
{
const int direction = s->out_cubemap_direction_order[face];
float l_x, l_y, l_z;
uf /= scalew;
vf /= scaleh;
rotate_cube_face_inverse(&uf, &vf, s->out_cubemap_face_rotation[face]);
switch (direction) {
case RIGHT:
l_x = 1.f;
l_y = vf;
l_z = -uf;
break;
case LEFT:
l_x = -1.f;
l_y = vf;
l_z = uf;
break;
case UP:
l_x = uf;
l_y = -1.f;
l_z = vf;
break;
case DOWN:
l_x = uf;
l_y = 1.f;
l_z = -vf;
break;
case FRONT:
l_x = uf;
l_y = vf;
l_z = 1.f;
break;
case BACK:
l_x = -uf;
l_y = vf;
l_z = -1.f;
break;
default:
av_assert0(0);
}
vec[0] = l_x;
vec[1] = l_y;
vec[2] = l_z;
}
/**
* Calculate cubemap position for corresponding 3D coordinates on sphere.
* Common operation for every cubemap.
*
* @param s filter private context
* @param vec coordinated on sphere
* @param uf horizontal cubemap coordinate [0, 1)
* @param vf vertical cubemap coordinate [0, 1)
* @param direction direction of view
*/
static void xyz_to_cube(const V360Context *s,
const float *vec,
float *uf, float *vf, int *direction)
{
const float phi = atan2f(vec[0], vec[2]);
const float theta = asinf(vec[1]);
float phi_norm, theta_threshold;
int face;
if (phi >= -M_PI_4 && phi < M_PI_4) {
*direction = FRONT;
phi_norm = phi;
} else if (phi >= -(M_PI_2 + M_PI_4) && phi < -M_PI_4) {
*direction = LEFT;
phi_norm = phi + M_PI_2;
} else if (phi >= M_PI_4 && phi < M_PI_2 + M_PI_4) {
*direction = RIGHT;
phi_norm = phi - M_PI_2;
} else {
*direction = BACK;
phi_norm = phi + ((phi > 0.f) ? -M_PI : M_PI);
}
theta_threshold = atanf(cosf(phi_norm));
if (theta > theta_threshold) {
*direction = DOWN;
} else if (theta < -theta_threshold) {
*direction = UP;
}
switch (*direction) {
case RIGHT:
*uf = -vec[2] / vec[0];
*vf = vec[1] / vec[0];
break;
case LEFT:
*uf = -vec[2] / vec[0];
*vf = -vec[1] / vec[0];
break;
case UP:
*uf = -vec[0] / vec[1];
*vf = -vec[2] / vec[1];
break;
case DOWN:
*uf = vec[0] / vec[1];
*vf = -vec[2] / vec[1];
break;
case FRONT:
*uf = vec[0] / vec[2];
*vf = vec[1] / vec[2];
break;
case BACK:
*uf = vec[0] / vec[2];
*vf = -vec[1] / vec[2];
break;
default:
av_assert0(0);
}
face = s->in_cubemap_face_order[*direction];
rotate_cube_face(uf, vf, s->in_cubemap_face_rotation[face]);
}
/**
* Find position on another cube face in case of overflow/underflow.
* Used for calculation of interpolation window.
*
* @param s filter private context
* @param uf horizontal cubemap coordinate
* @param vf vertical cubemap coordinate
* @param direction direction of view
* @param new_uf new horizontal cubemap coordinate
* @param new_vf new vertical cubemap coordinate
* @param face face position on cubemap
*/
static void process_cube_coordinates(const V360Context *s,
float uf, float vf, int direction,
float *new_uf, float *new_vf, int *face)
{
/*
* Cubemap orientation
*
* width
* <------->
* +-------+
* | | U
* | up | h ------->
* +-------+-------+-------+-------+ ^ e |
* | | | | | | i V |
* | left | front | right | back | | g |
* +-------+-------+-------+-------+ v h v
* | | t
* | down |
* +-------+
*/
*face = s->in_cubemap_face_order[direction];
rotate_cube_face_inverse(&uf, &vf, s->in_cubemap_face_rotation[*face]);
if ((uf < -1.f || uf >= 1.f) && (vf < -1.f || vf >= 1.f)) {
// There are no pixels to use in this case
*new_uf = uf;
*new_vf = vf;
} else if (uf < -1.f) {
uf += 2.f;
switch (direction) {
case RIGHT:
direction = FRONT;
*new_uf = uf;
*new_vf = vf;
break;
case LEFT:
direction = BACK;
*new_uf = uf;
*new_vf = vf;
break;
case UP:
direction = LEFT;
*new_uf = vf;
*new_vf = -uf;
break;
case DOWN:
direction = LEFT;
*new_uf = -vf;
*new_vf = uf;
break;
case FRONT:
direction = LEFT;
*new_uf = uf;
*new_vf = vf;
break;
case BACK:
direction = RIGHT;
*new_uf = uf;
*new_vf = vf;
break;
default:
av_assert0(0);
}
} else if (uf >= 1.f) {
uf -= 2.f;
switch (direction) {
case RIGHT:
direction = BACK;
*new_uf = uf;
*new_vf = vf;
break;
case LEFT:
direction = FRONT;
*new_uf = uf;
*new_vf = vf;
break;
case UP:
direction = RIGHT;
*new_uf = -vf;
*new_vf = uf;
break;
case DOWN:
direction = RIGHT;
*new_uf = vf;
*new_vf = -uf;
break;
case FRONT:
direction = RIGHT;
*new_uf = uf;
*new_vf = vf;
break;
case BACK:
direction = LEFT;
*new_uf = uf;
*new_vf = vf;
break;
default:
av_assert0(0);
}
} else if (vf < -1.f) {
vf += 2.f;
switch (direction) {
case RIGHT:
direction = UP;
*new_uf = vf;
*new_vf = -uf;
break;
case LEFT:
direction = UP;
*new_uf = -vf;
*new_vf = uf;
break;
case UP:
direction = BACK;
*new_uf = -uf;
*new_vf = -vf;
break;
case DOWN:
direction = FRONT;
*new_uf = uf;
*new_vf = vf;
break;
case FRONT:
direction = UP;
*new_uf = uf;
*new_vf = vf;
break;
case BACK:
direction = UP;
*new_uf = -uf;
*new_vf = -vf;
break;
default:
av_assert0(0);
}
} else if (vf >= 1.f) {
vf -= 2.f;
switch (direction) {
case RIGHT:
direction = DOWN;
*new_uf = -vf;
*new_vf = uf;
break;
case LEFT:
direction = DOWN;
*new_uf = vf;
*new_vf = -uf;
break;
case UP:
direction = FRONT;
*new_uf = uf;
*new_vf = vf;
break;
case DOWN:
direction = BACK;
*new_uf = -uf;
*new_vf = -vf;
break;
case FRONT:
direction = DOWN;
*new_uf = uf;
*new_vf = vf;
break;
case BACK:
direction = DOWN;
*new_uf = -uf;
*new_vf = -vf;
break;
default:
av_assert0(0);
}
} else {
// Inside cube face
*new_uf = uf;
*new_vf = vf;
}
*face = s->in_cubemap_face_order[direction];
rotate_cube_face(new_uf, new_vf, s->in_cubemap_face_rotation[*face]);
}
static av_always_inline float scale(float x, float s)
{
return (0.5f * x + 0.5f) * (s - 1.f);
}
static av_always_inline float rescale(int x, float s)
{
return (2.f * x + 1.f) / s - 1.f;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in cubemap3x2 format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int cube3x2_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 3.f) : 1.f - s->out_pad;
const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 2.f) : 1.f - s->out_pad;
const float ew = width / 3.f;
const float eh = height / 2.f;
const int u_face = floorf(i / ew);
const int v_face = floorf(j / eh);
const int face = u_face + 3 * v_face;
const int u_shift = ceilf(ew * u_face);
const int v_shift = ceilf(eh * v_face);
const int ewi = ceilf(ew * (u_face + 1)) - u_shift;
const int ehi = ceilf(eh * (v_face + 1)) - v_shift;
const float uf = rescale(i - u_shift, ewi);
const float vf = rescale(j - v_shift, ehi);
cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
return 1;
}
/**
* Calculate frame position in cubemap3x2 format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_cube3x2(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width / 3.f) : 1.f - s->in_pad;
const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 2.f) : 1.f - s->in_pad;
const float ew = width / 3.f;
const float eh = height / 2.f;
float uf, vf;
int ui, vi;
int ewi, ehi;
int direction, face;
int u_face, v_face;
xyz_to_cube(s, vec, &uf, &vf, &direction);
uf *= scalew;
vf *= scaleh;
face = s->in_cubemap_face_order[direction];
u_face = face % 3;
v_face = face / 3;
ewi = ceilf(ew * (u_face + 1)) - ceilf(ew * u_face);
ehi = ceilf(eh * (v_face + 1)) - ceilf(eh * v_face);
uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
int new_ui = ui + j - 1;
int new_vi = vi + i - 1;
int u_shift, v_shift;
int new_ewi, new_ehi;
if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
face = s->in_cubemap_face_order[direction];
u_face = face % 3;
v_face = face / 3;
u_shift = ceilf(ew * u_face);
v_shift = ceilf(eh * v_face);
} else {
uf = 2.f * new_ui / ewi - 1.f;
vf = 2.f * new_vi / ehi - 1.f;
uf /= scalew;
vf /= scaleh;
process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
uf *= scalew;
vf *= scaleh;
u_face = face % 3;
v_face = face / 3;
u_shift = ceilf(ew * u_face);
v_shift = ceilf(eh * v_face);
new_ewi = ceilf(ew * (u_face + 1)) - u_shift;
new_ehi = ceilf(eh * (v_face + 1)) - v_shift;
new_ui = av_clip(lrintf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
new_vi = av_clip(lrintf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
}
us[i][j] = u_shift + new_ui;
vs[i][j] = v_shift + new_vi;
}
}
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in cubemap1x6 format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int cube1x6_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float scalew = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / width : 1.f - s->out_pad;
const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 6.f) : 1.f - s->out_pad;
const float ew = width;
const float eh = height / 6.f;
const int face = floorf(j / eh);
const int v_shift = ceilf(eh * face);
const int ehi = ceilf(eh * (face + 1)) - v_shift;
const float uf = rescale(i, ew);
const float vf = rescale(j - v_shift, ehi);
cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in cubemap6x1 format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int cube6x1_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 6.f) : 1.f - s->out_pad;
const float scaleh = s->fout_pad > 0 ? 1.f - (float)(s->fout_pad) / height : 1.f - s->out_pad;
const float ew = width / 6.f;
const float eh = height;
const int face = floorf(i / ew);
const int u_shift = ceilf(ew * face);
const int ewi = ceilf(ew * (face + 1)) - u_shift;
const float uf = rescale(i - u_shift, ewi);
const float vf = rescale(j, eh);
cube_to_xyz(s, uf, vf, face, vec, scalew, scaleh);
return 1;
}
/**
* Calculate frame position in cubemap1x6 format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_cube1x6(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float scalew = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / width : 1.f - s->in_pad;
const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 6.f) : 1.f - s->in_pad;
const float eh = height / 6.f;
const int ewi = width;
float uf, vf;
int ui, vi;
int ehi;
int direction, face;
xyz_to_cube(s, vec, &uf, &vf, &direction);
uf *= scalew;
vf *= scaleh;
face = s->in_cubemap_face_order[direction];
ehi = ceilf(eh * (face + 1)) - ceilf(eh * face);
uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
int new_ui = ui + j - 1;
int new_vi = vi + i - 1;
int v_shift;
int new_ehi;
if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
face = s->in_cubemap_face_order[direction];
v_shift = ceilf(eh * face);
} else {
uf = 2.f * new_ui / ewi - 1.f;
vf = 2.f * new_vi / ehi - 1.f;
uf /= scalew;
vf /= scaleh;
process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
uf *= scalew;
vf *= scaleh;
v_shift = ceilf(eh * face);
new_ehi = ceilf(eh * (face + 1)) - v_shift;
new_ui = av_clip(lrintf(0.5f * ewi * (uf + 1.f)), 0, ewi - 1);
new_vi = av_clip(lrintf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
}
us[i][j] = new_ui;
vs[i][j] = v_shift + new_vi;
}
}
return 1;
}
/**
* Calculate frame position in cubemap6x1 format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_cube6x1(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width / 6.f) : 1.f - s->in_pad;
const float scaleh = s->fin_pad > 0 ? 1.f - (float)(s->fin_pad) / height : 1.f - s->in_pad;
const float ew = width / 6.f;
const int ehi = height;
float uf, vf;
int ui, vi;
int ewi;
int direction, face;
xyz_to_cube(s, vec, &uf, &vf, &direction);
uf *= scalew;
vf *= scaleh;
face = s->in_cubemap_face_order[direction];
ewi = ceilf(ew * (face + 1)) - ceilf(ew * face);
uf = 0.5f * ewi * (uf + 1.f) - 0.5f;
vf = 0.5f * ehi * (vf + 1.f) - 0.5f;
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
int new_ui = ui + j - 1;
int new_vi = vi + i - 1;
int u_shift;
int new_ewi;
if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
face = s->in_cubemap_face_order[direction];
u_shift = ceilf(ew * face);
} else {
uf = 2.f * new_ui / ewi - 1.f;
vf = 2.f * new_vi / ehi - 1.f;
uf /= scalew;
vf /= scaleh;
process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
uf *= scalew;
vf *= scaleh;
u_shift = ceilf(ew * face);
new_ewi = ceilf(ew * (face + 1)) - u_shift;
new_ui = av_clip(lrintf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
new_vi = av_clip(lrintf(0.5f * ehi * (vf + 1.f)), 0, ehi - 1);
}
us[i][j] = u_shift + new_ui;
vs[i][j] = new_vi;
}
}
return 1;
}
/**
* Prepare data for processing equirectangular output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_equirect_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->flat_range[0] = s->h_fov * M_PI / 360.f;
s->flat_range[1] = s->v_fov * M_PI / 360.f;
return 0;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in equirectangular format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int equirect_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float phi = rescale(i, width) * s->flat_range[0];
const float theta = rescale(j, height) * s->flat_range[1];
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * sin_phi;
vec[1] = sin_theta;
vec[2] = cos_theta * cos_phi;
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in half equirectangular format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int hequirect_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float phi = rescale(i, width) * M_PI_2;
const float theta = rescale(j, height) * M_PI_2;
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * sin_phi;
vec[1] = sin_theta;
vec[2] = cos_theta * cos_phi;
return 1;
}
/**
* Prepare data for processing stereographic output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_stereographic_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->flat_range[0] = tanf(FFMIN(s->h_fov, 359.f) * M_PI / 720.f);
s->flat_range[1] = tanf(FFMIN(s->v_fov, 359.f) * M_PI / 720.f);
return 0;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in stereographic format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int stereographic_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float x = rescale(i, width) * s->flat_range[0];
const float y = rescale(j, height) * s->flat_range[1];
const float r = hypotf(x, y);
const float theta = atanf(r) * 2.f;
const float sin_theta = sinf(theta);
vec[0] = x / r * sin_theta;
vec[1] = y / r * sin_theta;
vec[2] = cosf(theta);
return 1;
}
/**
* Prepare data for processing stereographic input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_stereographic_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->iflat_range[0] = tanf(FFMIN(s->ih_fov, 359.f) * M_PI / 720.f);
s->iflat_range[1] = tanf(FFMIN(s->iv_fov, 359.f) * M_PI / 720.f);
return 0;
}
/**
* Calculate frame position in stereographic format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_stereographic(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float theta = acosf(vec[2]);
const float r = tanf(theta * 0.5f);
const float c = r / hypotf(vec[0], vec[1]);
const float x = vec[0] * c / s->iflat_range[0];
const float y = vec[1] * c / s->iflat_range[1];
const float uf = scale(x, width);
const float vf = scale(y, height);
const int ui = floorf(uf);
const int vi = floorf(vf);
const int visible = isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width;
*du = visible ? uf - ui : 0.f;
*dv = visible ? vf - vi : 0.f;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
}
}
return visible;
}
/**
* Prepare data for processing equisolid output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_equisolid_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->flat_range[0] = sinf(s->h_fov * M_PI / 720.f);
s->flat_range[1] = sinf(s->v_fov * M_PI / 720.f);
return 0;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in equisolid format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int equisolid_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float x = rescale(i, width) * s->flat_range[0];
const float y = rescale(j, height) * s->flat_range[1];
const float r = hypotf(x, y);
const float theta = asinf(r) * 2.f;
const float sin_theta = sinf(theta);
vec[0] = x / r * sin_theta;
vec[1] = y / r * sin_theta;
vec[2] = cosf(theta);
return 1;
}
/**
* Prepare data for processing equisolid input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_equisolid_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->iflat_range[0] = sinf(FFMIN(s->ih_fov, 359.f) * M_PI / 720.f);
s->iflat_range[1] = sinf(FFMIN(s->iv_fov, 359.f) * M_PI / 720.f);
return 0;
}
/**
* Calculate frame position in equisolid format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_equisolid(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float theta = acosf(vec[2]);
const float r = sinf(theta * 0.5f);
const float c = r / hypotf(vec[0], vec[1]);
const float x = vec[0] * c / s->iflat_range[0];
const float y = vec[1] * c / s->iflat_range[1];
const float uf = scale(x, width);
const float vf = scale(y, height);
const int ui = floorf(uf);
const int vi = floorf(vf);
const int visible = isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width;
*du = visible ? uf - ui : 0.f;
*dv = visible ? vf - vi : 0.f;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
}
}
return visible;
}
/**
* Prepare data for processing orthographic output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_orthographic_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->flat_range[0] = sinf(FFMIN(s->h_fov, 180.f) * M_PI / 360.f);
s->flat_range[1] = sinf(FFMIN(s->v_fov, 180.f) * M_PI / 360.f);
return 0;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in orthographic format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int orthographic_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float x = rescale(i, width) * s->flat_range[0];
const float y = rescale(j, height) * s->flat_range[1];
const float r = hypotf(x, y);
const float theta = asinf(r);
vec[2] = cosf(theta);
if (vec[2] > 0) {
vec[0] = x;
vec[1] = y;
return 1;
} else {
vec[0] = 0.f;
vec[1] = 0.f;
vec[2] = 1.f;
return 0;
}
}
/**
* Prepare data for processing orthographic input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_orthographic_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->iflat_range[0] = sinf(FFMIN(s->ih_fov, 180.f) * M_PI / 360.f);
s->iflat_range[1] = sinf(FFMIN(s->iv_fov, 180.f) * M_PI / 360.f);
return 0;
}
/**
* Calculate frame position in orthographic format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_orthographic(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float theta = acosf(vec[2]);
const float r = sinf(theta);
const float c = r / hypotf(vec[0], vec[1]);
const float x = vec[0] * c / s->iflat_range[0];
const float y = vec[1] * c / s->iflat_range[1];
const float uf = scale(x, width);
const float vf = scale(y, height);
const int ui = floorf(uf);
const int vi = floorf(vf);
const int visible = vec[2] >= 0.f && isfinite(x) && isfinite(y) && vi >= 0 && vi < height && ui >= 0 && ui < width;
*du = visible ? uf - ui : 0.f;
*dv = visible ? vf - vi : 0.f;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
}
}
return visible;
}
/**
* Prepare data for processing equirectangular input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_equirect_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->iflat_range[0] = s->ih_fov * M_PI / 360.f;
s->iflat_range[1] = s->iv_fov * M_PI / 360.f;
return 0;
}
/**
* Calculate frame position in equirectangular format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_equirect(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float phi = atan2f(vec[0], vec[2]) / s->iflat_range[0];
const float theta = asinf(vec[1]) / s->iflat_range[1];
const float uf = scale(phi, width);
const float vf = scale(theta, height);
const int ui = floorf(uf);
const int vi = floorf(vf);
int visible;
*du = uf - ui;
*dv = vf - vi;
visible = vi >= 0 && vi < height && ui >= 0 && ui < width;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = ereflectx(ui + j - 1, vi + i - 1, width, height);
vs[i][j] = reflecty(vi + i - 1, height);
}
}
return visible;
}
/**
* Calculate frame position in half equirectangular format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_hequirect(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float phi = atan2f(vec[0], vec[2]) / M_PI_2;
const float theta = asinf(vec[1]) / M_PI_2;
const float uf = scale(phi, width);
const float vf = scale(theta, height);
const int ui = floorf(uf);
const int vi = floorf(vf);
const int visible = phi >= -M_PI_2 && phi <= M_PI_2;
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
}
}
return visible;
}
/**
* Prepare data for processing flat input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_flat_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->iflat_range[0] = tanf(0.5f * s->ih_fov * M_PI / 180.f);
s->iflat_range[1] = tanf(0.5f * s->iv_fov * M_PI / 180.f);
return 0;
}
/**
* Calculate frame position in flat format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_flat(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float theta = acosf(vec[2]);
const float r = tanf(theta);
const float rr = fabsf(r) < 1e+6f ? r : hypotf(width, height);
const float zf = vec[2];
const float h = hypotf(vec[0], vec[1]);
const float c = h <= 1e-6f ? 1.f : rr / h;
float uf = vec[0] * c / s->iflat_range[0];
float vf = vec[1] * c / s->iflat_range[1];
int visible, ui, vi;
uf = zf >= 0.f ? scale(uf, width) : 0.f;
vf = zf >= 0.f ? scale(vf, height) : 0.f;
ui = floorf(uf);
vi = floorf(vf);
visible = vi >= 0 && vi < height && ui >= 0 && ui < width && zf >= 0.f;
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
}
}
return visible;
}
/**
* Calculate frame position in mercator format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_mercator(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float phi = atan2f(vec[0], vec[2]) / M_PI;
const float theta = av_clipf(logf((1.f + vec[1]) / (1.f - vec[1])) / (2.f * M_PI), -1.f, 1.f);
const float uf = scale(phi, width);
const float vf = scale(theta, height);
const int ui = floorf(uf);
const int vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
}
}
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in mercator format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int mercator_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float phi = rescale(i, width) * M_PI + M_PI_2;
const float y = rescale(j, height) * M_PI;
const float div = expf(2.f * y) + 1.f;
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
const float sin_theta = 2.f * expf(y) / div;
const float cos_theta = (expf(2.f * y) - 1.f) / div;
vec[0] = -sin_theta * cos_phi;
vec[1] = cos_theta;
vec[2] = sin_theta * sin_phi;
return 1;
}
/**
* Calculate frame position in ball format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_ball(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float l = hypotf(vec[0], vec[1]);
const float r = sqrtf(1.f - vec[2]) / M_SQRT2;
const float d = l > 0.f ? l : 1.f;
const float uf = scale(r * vec[0] / d, width);
const float vf = scale(r * vec[1] / d, height);
const int ui = floorf(uf);
const int vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
}
}
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in ball format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int ball_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float x = rescale(i, width);
const float y = rescale(j, height);
const float l = hypotf(x, y);
if (l <= 1.f) {
const float z = 2.f * l * sqrtf(1.f - l * l);
vec[0] = z * x / (l > 0.f ? l : 1.f);
vec[1] = z * y / (l > 0.f ? l : 1.f);
vec[2] = 1.f - 2.f * l * l;
} else {
vec[0] = 0.f;
vec[1] = 1.f;
vec[2] = 0.f;
return 0;
}
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in hammer format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int hammer_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float x = rescale(i, width);
const float y = rescale(j, height);
const float xx = x * x;
const float yy = y * y;
const float z = sqrtf(1.f - xx * 0.5f - yy * 0.5f);
const float a = M_SQRT2 * x * z;
const float b = 2.f * z * z - 1.f;
const float aa = a * a;
const float bb = b * b;
const float w = sqrtf(1.f - 2.f * yy * z * z);
vec[0] = w * 2.f * a * b / (aa + bb);
vec[1] = M_SQRT2 * y * z;
vec[2] = w * (bb - aa) / (aa + bb);
return 1;
}
/**
* Calculate frame position in hammer format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_hammer(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float theta = atan2f(vec[0], vec[2]);
const float z = sqrtf(1.f + sqrtf(1.f - vec[1] * vec[1]) * cosf(theta * 0.5f));
const float x = sqrtf(1.f - vec[1] * vec[1]) * sinf(theta * 0.5f) / z;
const float y = vec[1] / z;
const float uf = (x + 1.f) * width / 2.f;
const float vf = (y + 1.f) * height / 2.f;
const int ui = floorf(uf);
const int vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
}
}
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in sinusoidal format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int sinusoidal_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float theta = rescale(j, height) * M_PI_2;
const float phi = rescale(i, width) * M_PI / cosf(theta);
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * sin_phi;
vec[1] = sin_theta;
vec[2] = cos_theta * cos_phi;
return 1;
}
/**
* Calculate frame position in sinusoidal format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_sinusoidal(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float theta = asinf(vec[1]);
const float phi = atan2f(vec[0], vec[2]) * cosf(theta);
const float uf = scale(phi / M_PI, width);
const float vf = scale(theta / M_PI_2, height);
const int ui = floorf(uf);
const int vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
}
}
return 1;
}
/**
* Prepare data for processing equi-angular cubemap input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_eac_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->in_cubemap_face_order[RIGHT] = TOP_RIGHT;
s->in_cubemap_face_order[LEFT] = TOP_LEFT;
s->in_cubemap_face_order[UP] = BOTTOM_RIGHT;
s->in_cubemap_face_order[DOWN] = BOTTOM_LEFT;
s->in_cubemap_face_order[FRONT] = TOP_MIDDLE;
s->in_cubemap_face_order[BACK] = BOTTOM_MIDDLE;
s->in_cubemap_face_rotation[TOP_LEFT] = ROT_0;
s->in_cubemap_face_rotation[TOP_MIDDLE] = ROT_0;
s->in_cubemap_face_rotation[TOP_RIGHT] = ROT_0;
s->in_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270;
s->in_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90;
s->in_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270;
return 0;
}
/**
* Prepare data for processing equi-angular cubemap output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_eac_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->out_cubemap_direction_order[TOP_LEFT] = LEFT;
s->out_cubemap_direction_order[TOP_MIDDLE] = FRONT;
s->out_cubemap_direction_order[TOP_RIGHT] = RIGHT;
s->out_cubemap_direction_order[BOTTOM_LEFT] = DOWN;
s->out_cubemap_direction_order[BOTTOM_MIDDLE] = BACK;
s->out_cubemap_direction_order[BOTTOM_RIGHT] = UP;
s->out_cubemap_face_rotation[TOP_LEFT] = ROT_0;
s->out_cubemap_face_rotation[TOP_MIDDLE] = ROT_0;
s->out_cubemap_face_rotation[TOP_RIGHT] = ROT_0;
s->out_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270;
s->out_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90;
s->out_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270;
return 0;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in equi-angular cubemap format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int eac_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float pixel_pad = 2;
const float u_pad = pixel_pad / width;
const float v_pad = pixel_pad / height;
int u_face, v_face, face;
float l_x, l_y, l_z;
float uf = (i + 0.5f) / width;
float vf = (j + 0.5f) / height;
// EAC has 2-pixel padding on faces except between faces on the same row
// Padding pixels seems not to be stretched with tangent as regular pixels
// Formulas below approximate original padding as close as I could get experimentally
// Horizontal padding
uf = 3.f * (uf - u_pad) / (1.f - 2.f * u_pad);
if (uf < 0.f) {
u_face = 0;
uf -= 0.5f;
} else if (uf >= 3.f) {
u_face = 2;
uf -= 2.5f;
} else {
u_face = floorf(uf);
uf = fmodf(uf, 1.f) - 0.5f;
}
// Vertical padding
v_face = floorf(vf * 2.f);
vf = (vf - v_pad - 0.5f * v_face) / (0.5f - 2.f * v_pad) - 0.5f;
if (uf >= -0.5f && uf < 0.5f) {
uf = tanf(M_PI_2 * uf);
} else {
uf = 2.f * uf;
}
if (vf >= -0.5f && vf < 0.5f) {
vf = tanf(M_PI_2 * vf);
} else {
vf = 2.f * vf;
}
face = u_face + 3 * v_face;
switch (face) {
case TOP_LEFT:
l_x = -1.f;
l_y = vf;
l_z = uf;
break;
case TOP_MIDDLE:
l_x = uf;
l_y = vf;
l_z = 1.f;
break;
case TOP_RIGHT:
l_x = 1.f;
l_y = vf;
l_z = -uf;
break;
case BOTTOM_LEFT:
l_x = -vf;
l_y = 1.f;
l_z = -uf;
break;
case BOTTOM_MIDDLE:
l_x = -vf;
l_y = -uf;
l_z = -1.f;
break;
case BOTTOM_RIGHT:
l_x = -vf;
l_y = -1.f;
l_z = uf;
break;
default:
av_assert0(0);
}
vec[0] = l_x;
vec[1] = l_y;
vec[2] = l_z;
return 1;
}
/**
* Calculate frame position in equi-angular cubemap format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_eac(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float pixel_pad = 2;
const float u_pad = pixel_pad / width;
const float v_pad = pixel_pad / height;
float uf, vf;
int ui, vi;
int direction, face;
int u_face, v_face;
xyz_to_cube(s, vec, &uf, &vf, &direction);
face = s->in_cubemap_face_order[direction];
u_face = face % 3;
v_face = face / 3;
uf = M_2_PI * atanf(uf) + 0.5f;
vf = M_2_PI * atanf(vf) + 0.5f;
// These formulas are inversed from eac_to_xyz ones
uf = (uf + u_face) * (1.f - 2.f * u_pad) / 3.f + u_pad;
vf = vf * (0.5f - 2.f * v_pad) + v_pad + 0.5f * v_face;
uf *= width;
vf *= height;
uf -= 0.5f;
vf -= 0.5f;
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
}
}
return 1;
}
/**
* Prepare data for processing flat output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_flat_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->flat_range[0] = tanf(0.5f * s->h_fov * M_PI / 180.f);
s->flat_range[1] = tanf(0.5f * s->v_fov * M_PI / 180.f);
return 0;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in flat format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int flat_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float l_x = s->flat_range[0] * rescale(i, width);
const float l_y = s->flat_range[1] * rescale(j, height);
vec[0] = l_x;
vec[1] = l_y;
vec[2] = 1.f;
return 1;
}
/**
* Prepare data for processing fisheye output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_fisheye_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->flat_range[0] = s->h_fov / 180.f;
s->flat_range[1] = s->v_fov / 180.f;
return 0;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in fisheye format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int fisheye_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float uf = s->flat_range[0] * rescale(i, width);
const float vf = s->flat_range[1] * rescale(j, height);
const float phi = atan2f(vf, uf);
const float theta = M_PI_2 * (1.f - hypotf(uf, vf));
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * cos_phi;
vec[1] = cos_theta * sin_phi;
vec[2] = sin_theta;
return 1;
}
/**
* Prepare data for processing fisheye input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_fisheye_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->iflat_range[0] = s->ih_fov / 180.f;
s->iflat_range[1] = s->iv_fov / 180.f;
return 0;
}
/**
* Calculate frame position in fisheye format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_fisheye(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float h = hypotf(vec[0], vec[1]);
const float lh = h > 0.f ? h : 1.f;
const float phi = atan2f(h, vec[2]) / M_PI;
float uf = vec[0] / lh * phi / s->iflat_range[0];
float vf = vec[1] / lh * phi / s->iflat_range[1];
const int visible = -0.5f < uf && uf < 0.5f && -0.5f < vf && vf < 0.5f;
int ui, vi;
uf = scale(uf * 2.f, width);
vf = scale(vf * 2.f, height);
ui = floorf(uf);
vi = floorf(vf);
*du = visible ? uf - ui : 0.f;
*dv = visible ? vf - vi : 0.f;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
}
}
return visible;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in pannini format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int pannini_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float uf = rescale(i, width);
const float vf = rescale(j, height);
const float d = s->h_fov;
const float k = uf * uf / ((d + 1.f) * (d + 1.f));
const float dscr = k * k * d * d - (k + 1.f) * (k * d * d - 1.f);
const float clon = (-k * d + sqrtf(dscr)) / (k + 1.f);
const float S = (d + 1.f) / (d + clon);
const float lon = atan2f(uf, S * clon);
const float lat = atan2f(vf, S);
vec[0] = sinf(lon) * cosf(lat);
vec[1] = sinf(lat);
vec[2] = cosf(lon) * cosf(lat);
return 1;
}
/**
* Calculate frame position in pannini format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_pannini(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float phi = atan2f(vec[0], vec[2]);
const float theta = asinf(vec[1]);
const float d = s->ih_fov;
const float S = (d + 1.f) / (d + cosf(phi));
const float x = S * sinf(phi);
const float y = S * tanf(theta);
const float uf = scale(x, width);
const float vf = scale(y, height);
const int ui = floorf(uf);
const int vi = floorf(vf);
const int visible = vi >= 0 && vi < height && ui >= 0 && ui < width && vec[2] >= 0.f;
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
}
}
return visible;
}
/**
* Prepare data for processing cylindrical output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_cylindrical_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->flat_range[0] = M_PI * s->h_fov / 360.f;
s->flat_range[1] = tanf(0.5f * s->v_fov * M_PI / 180.f);
return 0;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in cylindrical format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int cylindrical_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float uf = s->flat_range[0] * rescale(i, width);
const float vf = s->flat_range[1] * rescale(j, height);
const float phi = uf;
const float theta = atanf(vf);
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * sin_phi;
vec[1] = sin_theta;
vec[2] = cos_theta * cos_phi;
return 1;
}
/**
* Prepare data for processing cylindrical input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_cylindrical_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->iflat_range[0] = M_PI * s->ih_fov / 360.f;
s->iflat_range[1] = tanf(0.5f * s->iv_fov * M_PI / 180.f);
return 0;
}
/**
* Calculate frame position in cylindrical format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_cylindrical(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float phi = atan2f(vec[0], vec[2]) / s->iflat_range[0];
const float theta = asinf(vec[1]);
const float uf = scale(phi, width);
const float vf = scale(tanf(theta) / s->iflat_range[1], height);
const int ui = floorf(uf);
const int vi = floorf(vf);
const int visible = vi >= 0 && vi < height && ui >= 0 && ui < width &&
theta <= M_PI * s->iv_fov / 180.f &&
theta >= -M_PI * s->iv_fov / 180.f;
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
}
}
return visible;
}
/**
* Prepare data for processing cylindrical equal area output format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_cylindricalea_out(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->flat_range[0] = s->h_fov * M_PI / 360.f;
s->flat_range[1] = s->v_fov / 180.f;
return 0;
}
/**
* Prepare data for processing cylindrical equal area input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_cylindricalea_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->iflat_range[0] = M_PI * s->ih_fov / 360.f;
s->iflat_range[1] = s->iv_fov / 180.f;
return 0;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in cylindrical equal area format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int cylindricalea_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float uf = s->flat_range[0] * rescale(i, width);
const float vf = s->flat_range[1] * rescale(j, height);
const float phi = uf;
const float theta = asinf(vf);
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * sin_phi;
vec[1] = sin_theta;
vec[2] = cos_theta * cos_phi;
return 1;
}
/**
* Calculate frame position in cylindrical equal area format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_cylindricalea(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float phi = atan2f(vec[0], vec[2]) / s->iflat_range[0];
const float theta = asinf(vec[1]);
const float uf = scale(phi, width);
const float vf = scale(sinf(theta) / s->iflat_range[1], height);
const int ui = floorf(uf);
const int vi = floorf(vf);
const int visible = vi >= 0 && vi < height && ui >= 0 && ui < width &&
theta <= M_PI * s->iv_fov / 180.f &&
theta >= -M_PI * s->iv_fov / 180.f;
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = visible ? av_clip(ui + j - 1, 0, width - 1) : 0;
vs[i][j] = visible ? av_clip(vi + i - 1, 0, height - 1) : 0;
}
}
return visible;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in perspective format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int perspective_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float uf = rescale(i, width);
const float vf = rescale(j, height);
const float rh = hypotf(uf, vf);
const float sinzz = 1.f - rh * rh;
const float h = 1.f + s->v_fov;
const float sinz = (h - sqrtf(sinzz)) / (h / rh + rh / h);
const float sinz2 = sinz * sinz;
if (sinz2 <= 1.f) {
const float cosz = sqrtf(1.f - sinz2);
const float theta = asinf(cosz);
const float phi = atan2f(uf, vf);
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * sin_phi;
vec[1] = cos_theta * cos_phi;
vec[2] = sin_theta;
} else {
vec[0] = 0.f;
vec[1] = 1.f;
vec[2] = 0.f;
return 0;
}
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in tetrahedron format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int tetrahedron_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float uf = ((float)i + 0.5f) / width;
const float vf = ((float)j + 0.5f) / height;
vec[0] = uf < 0.5f ? uf * 4.f - 1.f : 3.f - uf * 4.f;
vec[1] = 1.f - vf * 2.f;
vec[2] = 2.f * fabsf(1.f - fabsf(1.f - uf * 2.f + vf)) - 1.f;
return 1;
}
/**
* Calculate frame position in tetrahedron format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_tetrahedron(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float d0 = vec[0] * 1.f + vec[1] * 1.f + vec[2] *-1.f;
const float d1 = vec[0] *-1.f + vec[1] *-1.f + vec[2] *-1.f;
const float d2 = vec[0] * 1.f + vec[1] *-1.f + vec[2] * 1.f;
const float d3 = vec[0] *-1.f + vec[1] * 1.f + vec[2] * 1.f;
const float d = FFMAX(d0, FFMAX3(d1, d2, d3));
float uf, vf, x, y, z;
int ui, vi;
x = vec[0] / d;
y = vec[1] / d;
z = -vec[2] / d;
vf = 0.5f - y * 0.5f;
if ((x + y >= 0.f && y + z >= 0.f && -z - x <= 0.f) ||
(x + y <= 0.f && -y + z >= 0.f && z - x >= 0.f)) {
uf = 0.25f * x + 0.25f;
} else {
uf = 0.75f - 0.25f * x;
}
uf *= width;
vf *= height;
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = reflectx(ui + j - 1, vi + i - 1, width, height);
vs[i][j] = reflecty(vi + i - 1, height);
}
}
return 1;
}
/**
* Prepare data for processing double fisheye input format.
*
* @param ctx filter context
*
* @return error code
*/
static int prepare_dfisheye_in(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
s->iflat_range[0] = s->ih_fov / 360.f;
s->iflat_range[1] = s->iv_fov / 360.f;
return 0;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in dual fisheye format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int dfisheye_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float ew = width * 0.5f;
const float eh = height;
const int ei = i >= ew ? i - ew : i;
const float m = i >= ew ? 1.f : -1.f;
const float uf = s->flat_range[0] * rescale(ei, ew);
const float vf = s->flat_range[1] * rescale(j, eh);
const float h = hypotf(uf, vf);
const float lh = h > 0.f ? h : 1.f;
const float theta = m * M_PI_2 * (1.f - h);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
vec[0] = cos_theta * m * uf / lh;
vec[1] = cos_theta * vf / lh;
vec[2] = sin_theta;
return 1;
}
/**
* Calculate frame position in dual fisheye format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_dfisheye(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float ew = width * 0.5f;
const float eh = height;
const float h = hypotf(vec[0], vec[1]);
const float lh = h > 0.f ? h : 1.f;
const float theta = acosf(fabsf(vec[2])) / M_PI;
float uf = scale(theta * (vec[0] / lh) / s->iflat_range[0], ew);
float vf = scale(theta * (vec[1] / lh) / s->iflat_range[1], eh);
int ui, vi;
int u_shift;
if (vec[2] >= 0.f) {
u_shift = ceilf(ew);
} else {
u_shift = 0;
uf = ew - uf - 1.f;
}
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = u_shift + av_clip(ui + j - 1, 0, ew - 1);
vs[i][j] = av_clip( vi + i - 1, 0, height - 1);
}
}
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in barrel facebook's format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int barrel_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float scale = 0.99f;
float l_x, l_y, l_z;
if (i < 4 * width / 5) {
const float theta_range = M_PI_4;
const int ew = 4 * width / 5;
const int eh = height;
const float phi = rescale(i, ew) * M_PI / scale;
const float theta = rescale(j, eh) * theta_range / scale;
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
l_x = cos_theta * sin_phi;
l_y = sin_theta;
l_z = cos_theta * cos_phi;
} else {
const int ew = width / 5;
const int eh = height / 2;
float uf, vf;
if (j < eh) { // UP
uf = rescale(i - 4 * ew, ew);
vf = rescale(j, eh);
uf /= scale;
vf /= scale;
l_x = uf;
l_y = -1.f;
l_z = vf;
} else { // DOWN
uf = rescale(i - 4 * ew, ew);
vf = rescale(j - eh, eh);
uf /= scale;
vf /= scale;
l_x = uf;
l_y = 1.f;
l_z = -vf;
}
}
vec[0] = l_x;
vec[1] = l_y;
vec[2] = l_z;
return 1;
}
/**
* Calculate frame position in barrel facebook's format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_barrel(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float scale = 0.99f;
const float phi = atan2f(vec[0], vec[2]);
const float theta = asinf(vec[1]);
const float theta_range = M_PI_4;
int ew, eh;
int u_shift, v_shift;
float uf, vf;
int ui, vi;
if (theta > -theta_range && theta < theta_range) {
ew = 4 * width / 5;
eh = height;
u_shift = 0;
v_shift = 0;
uf = (phi / M_PI * scale + 1.f) * ew / 2.f;
vf = (theta / theta_range * scale + 1.f) * eh / 2.f;
} else {
ew = width / 5;
eh = height / 2;
u_shift = 4 * ew;
if (theta < 0.f) { // UP
uf = -vec[0] / vec[1];
vf = -vec[2] / vec[1];
v_shift = 0;
} else { // DOWN
uf = vec[0] / vec[1];
vf = -vec[2] / vec[1];
v_shift = eh;
}
uf = 0.5f * ew * (uf * scale + 1.f);
vf = 0.5f * eh * (vf * scale + 1.f);
}
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = u_shift + av_clip(ui + j - 1, 0, ew - 1);
vs[i][j] = v_shift + av_clip(vi + i - 1, 0, eh - 1);
}
}
return 1;
}
/**
* Calculate frame position in barrel split facebook's format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_barrelsplit(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
const float phi = atan2f(vec[0], vec[2]);
const float theta = asinf(vec[1]);
const float theta_range = M_PI_4;
int ew, eh;
int u_shift, v_shift;
float uf, vf;
int ui, vi;
if (theta >= -theta_range && theta <= theta_range) {
const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width * 2.f / 3.f) : 1.f - s->in_pad;
const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 2.f) : 1.f - s->in_pad;
ew = width / 3 * 2;
eh = height / 2;
u_shift = 0;
v_shift = phi >= M_PI_2 || phi < -M_PI_2 ? eh : 0;
uf = fmodf(phi, M_PI_2) / M_PI_2;
vf = theta / M_PI_4;
if (v_shift)
uf = uf >= 0.f ? fmodf(uf - 1.f, 1.f) : fmodf(uf + 1.f, 1.f);
uf = (uf * scalew + 1.f) * width / 3.f;
vf = (vf * scaleh + 1.f) * height / 4.f;
} else {
const float scalew = s->fin_pad > 0 ? 1.f - s->fin_pad / (width / 3.f) : 1.f - s->in_pad;
const float scaleh = s->fin_pad > 0 ? 1.f - s->fin_pad / (height / 4.f) : 1.f - s->in_pad;
ew = width / 3;
eh = height / 4;
u_shift = 2 * ew;
uf = vec[0] / vec[1] * scalew;
vf = vec[2] / vec[1] * scaleh;
if (theta <= 0.f && theta >= -M_PI_2 &&
phi <= M_PI_2 && phi >= -M_PI_2) {
// front top
uf *= -1.0f;
vf = -(vf + 1.f) * scaleh + 1.f;
v_shift = 0;
} else if (theta >= 0.f && theta <= M_PI_2 &&
phi <= M_PI_2 && phi >= -M_PI_2) {
// front bottom
vf = -(vf - 1.f) * scaleh;
v_shift = height * 0.25f;
} else if (theta <= 0.f && theta >= -M_PI_2) {
// back top
vf = (vf - 1.f) * scaleh + 1.f;
v_shift = height * 0.5f;
} else {
// back bottom
uf *= -1.0f;
vf = (vf + 1.f) * scaleh;
v_shift = height * 0.75f;
}
uf = 0.5f * width / 3.f * (uf + 1.f);
vf *= height * 0.25f;
}
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = u_shift + av_clip(ui + j - 1, 0, ew - 1);
vs[i][j] = v_shift + av_clip(vi + i - 1, 0, eh - 1);
}
}
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in barrel split facebook's format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int barrelsplit_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float x = (i + 0.5f) / width;
const float y = (j + 0.5f) / height;
float l_x, l_y, l_z;
int ret;
if (x < 2.f / 3.f) {
const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width * 2.f / 3.f) : 1.f - s->out_pad;
const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 2.f) : 1.f - s->out_pad;
const float back = floorf(y * 2.f);
const float phi = ((3.f / 2.f * x - 0.5f) / scalew - back) * M_PI;
const float theta = (y - 0.25f - 0.5f * back) / scaleh * M_PI;
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
l_x = cos_theta * sin_phi;
l_y = sin_theta;
l_z = cos_theta * cos_phi;
ret = 1;
} else {
const float scalew = s->fout_pad > 0 ? 1.f - s->fout_pad / (width / 3.f) : 1.f - s->out_pad;
const float scaleh = s->fout_pad > 0 ? 1.f - s->fout_pad / (height / 4.f) : 1.f - s->out_pad;
const float facef = floorf(y * 4.f);
const int face = facef;
const float dir_vert = (face == 1 || face == 3) ? 1.0f : -1.0f;
float uf, vf;
uf = x * 3.f - 2.f;
switch (face) {
case 0: // front top
case 1: // front bottom
uf = 1.f - uf;
vf = (0.5f - 2.f * y) / scaleh + facef;
break;
case 2: // back top
case 3: // back bottom
vf = (y * 2.f - 1.5f) / scaleh + 3.f - facef;
break;
}
l_x = (0.5f - uf) / scalew;
l_y = 0.5f * dir_vert;
l_z = (vf - 0.5f) * dir_vert / scaleh;
ret = (l_x * l_x * scalew * scalew + l_z * l_z * scaleh * scaleh) < 0.5f * 0.5f;
}
vec[0] = l_x;
vec[1] = l_y;
vec[2] = l_z;
return ret;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in tspyramid format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int tspyramid_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float x = (i + 0.5f) / width;
const float y = (j + 0.5f) / height;
if (x < 0.5f) {
vec[0] = x * 4.f - 1.f;
vec[1] = (y * 2.f - 1.f);
vec[2] = 1.f;
} else if (x >= 0.6875f && x < 0.8125f &&
y >= 0.375f && y < 0.625f) {
vec[0] = -(x - 0.6875f) * 16.f + 1.f;
vec[1] = (y - 0.375f) * 8.f - 1.f;
vec[2] = -1.f;
} else if (0.5f <= x && x < 0.6875f &&
((0.f <= y && y < 0.375f && y >= 2.f * (x - 0.5f)) ||
(0.375f <= y && y < 0.625f) ||
(0.625f <= y && y < 1.f && y <= 2.f * (1.f - x)))) {
vec[0] = 1.f;
vec[1] = 2.f * (y - 2.f * x + 1.f) / (3.f - 4.f * x) - 1.f;
vec[2] = -2.f * (x - 0.5f) / 0.1875f + 1.f;
} else if (0.8125f <= x && x < 1.f &&
((0.f <= y && y < 0.375f && x >= (1.f - y / 2.f)) ||
(0.375f <= y && y < 0.625f) ||
(0.625f <= y && y < 1.f && y <= (2.f * x - 1.f)))) {
vec[0] = -1.f;
vec[1] = 2.f * (y + 2.f * x - 2.f) / (4.f * x - 3.f) - 1.f;
vec[2] = 2.f * (x - 0.8125f) / 0.1875f - 1.f;
} else if (0.f <= y && y < 0.375f &&
((0.5f <= x && x < 0.8125f && y < 2.f * (x - 0.5f)) ||
(0.6875f <= x && x < 0.8125f) ||
(0.8125f <= x && x < 1.f && x < (1.f - y / 2.f)))) {
vec[0] = 2.f * (1.f - x - 0.5f * y) / (0.5f - y) - 1.f;
vec[1] = -1.f;
vec[2] = 2.f * (0.375f - y) / 0.375f - 1.f;
} else {
vec[0] = 2.f * (0.5f - x + 0.5f * y) / (y - 0.5f) - 1.f;
vec[1] = 1.f;
vec[2] = -2.f * (1.f - y) / 0.375f + 1.f;
}
return 1;
}
/**
* Calculate frame position in tspyramid format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_tspyramid(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
float uf, vf;
int ui, vi;
int face;
xyz_to_cube(s, vec, &uf, &vf, &face);
uf = (uf + 1.f) * 0.5f;
vf = (vf + 1.f) * 0.5f;
switch (face) {
case UP:
uf = 0.1875f * vf - 0.375f * uf * vf - 0.125f * uf + 0.8125f;
vf = 0.375f - 0.375f * vf;
break;
case FRONT:
uf = 0.5f * uf;
break;
case DOWN:
uf = 1.f - 0.1875f * vf - 0.5f * uf + 0.375f * uf * vf;
vf = 1.f - 0.375f * vf;
break;
case LEFT:
vf = 0.25f * vf + 0.75f * uf * vf - 0.375f * uf + 0.375f;
uf = 0.1875f * uf + 0.8125f;
break;
case RIGHT:
vf = 0.375f * uf - 0.75f * uf * vf + vf;
uf = 0.1875f * uf + 0.5f;
break;
case BACK:
uf = 0.125f * uf + 0.6875f;
vf = 0.25f * vf + 0.375f;
break;
}
uf *= width;
vf *= height;
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = reflectx(ui + j - 1, vi + i - 1, width, height);
vs[i][j] = reflecty(vi + i - 1, height);
}
}
return 1;
}
/**
* Calculate 3D coordinates on sphere for corresponding frame position in octahedron format.
*
* @param s filter private context
* @param i horizontal position on frame [0, width)
* @param j vertical position on frame [0, height)
* @param width frame width
* @param height frame height
* @param vec coordinates on sphere
*/
static int octahedron_to_xyz(const V360Context *s,
int i, int j, int width, int height,
float *vec)
{
const float x = rescale(i, width);
const float y = rescale(j, height);
const float ax = fabsf(x);
const float ay = fabsf(y);
vec[2] = 1.f - (ax + ay);
if (ax + ay > 1.f) {
vec[0] = (1.f - ay) * FFSIGN(x);
vec[1] = (1.f - ax) * FFSIGN(y);
} else {
vec[0] = x;
vec[1] = y;
}
return 1;
}
/**
* Calculate frame position in octahedron format for corresponding 3D coordinates on sphere.
*
* @param s filter private context
* @param vec coordinates on sphere
* @param width frame width
* @param height frame height
* @param us horizontal coordinates for interpolation window
* @param vs vertical coordinates for interpolation window
* @param du horizontal relative coordinate
* @param dv vertical relative coordinate
*/
static int xyz_to_octahedron(const V360Context *s,
const float *vec, int width, int height,
int16_t us[4][4], int16_t vs[4][4], float *du, float *dv)
{
float uf, vf, zf;
int ui, vi;
float div = fabsf(vec[0]) + fabsf(vec[1]) + fabsf(vec[2]);
uf = vec[0] / div;
vf = vec[1] / div;
zf = vec[2];
if (zf < 0.f) {
zf = vf;
vf = (1.f - fabsf(uf)) * FFSIGN(zf);
uf = (1.f - fabsf(zf)) * FFSIGN(uf);
}
uf = scale(uf, width);
vf = scale(vf, height);
ui = floorf(uf);
vi = floorf(vf);
*du = uf - ui;
*dv = vf - vi;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
us[i][j] = av_clip(ui + j - 1, 0, width - 1);
vs[i][j] = av_clip(vi + i - 1, 0, height - 1);
}
}
return 1;
}
static void multiply_quaternion(float c[4], const float a[4], const float b[4])
{
c[0] = a[0] * b[0] - a[1] * b[1] - a[2] * b[2] - a[3] * b[3];
c[1] = a[1] * b[0] + a[0] * b[1] + a[2] * b[3] - a[3] * b[2];
c[2] = a[2] * b[0] + a[0] * b[2] + a[3] * b[1] - a[1] * b[3];
c[3] = a[3] * b[0] + a[0] * b[3] + a[1] * b[2] - a[2] * b[1];
}
static void conjugate_quaternion(float d[4], const float q[4])
{
d[0] = q[0];
d[1] = -q[1];
d[2] = -q[2];
d[3] = -q[3];
}
/**
* Calculate rotation quaternion for yaw/pitch/roll angles.
*/
static inline void calculate_rotation(float yaw, float pitch, float roll,
float rot_quaternion[2][4],
const int rotation_order[3])
{
const float yaw_rad = yaw * M_PI / 180.f;
const float pitch_rad = pitch * M_PI / 180.f;
const float roll_rad = roll * M_PI / 180.f;
const float sin_yaw = sinf(yaw_rad * 0.5f);
const float cos_yaw = cosf(yaw_rad * 0.5f);
const float sin_pitch = sinf(pitch_rad * 0.5f);
const float cos_pitch = cosf(pitch_rad * 0.5f);
const float sin_roll = sinf(roll_rad * 0.5f);
const float cos_roll = cosf(roll_rad * 0.5f);
float m[3][4];
float tmp[2][4];
m[0][0] = cos_yaw; m[0][1] = 0.f; m[0][2] = sin_yaw; m[0][3] = 0.f;
m[1][0] = cos_pitch; m[1][1] = sin_pitch; m[1][2] = 0.f; m[1][3] = 0.f;
m[2][0] = cos_roll; m[2][1] = 0.f; m[2][2] = 0.f; m[2][3] = sin_roll;
multiply_quaternion(tmp[0], rot_quaternion[0], m[rotation_order[0]]);
multiply_quaternion(tmp[1], tmp[0], m[rotation_order[1]]);
multiply_quaternion(rot_quaternion[0], tmp[1], m[rotation_order[2]]);
conjugate_quaternion(rot_quaternion[1], rot_quaternion[0]);
}
/**
* Rotate vector with given rotation quaternion.
*
* @param rot_quaternion rotation quaternion
* @param vec vector
*/
static inline void rotate(const float rot_quaternion[2][4],
float *vec)
{
float qv[4], temp[4], rqv[4];
qv[0] = 0.f;
qv[1] = vec[0];
qv[2] = vec[1];
qv[3] = vec[2];
multiply_quaternion(temp, rot_quaternion[0], qv);
multiply_quaternion(rqv, temp, rot_quaternion[1]);
vec[0] = rqv[1];
vec[1] = rqv[2];
vec[2] = rqv[3];
}
static inline void set_mirror_modifier(int h_flip, int v_flip, int d_flip,
float *modifier)
{
modifier[0] = h_flip ? -1.f : 1.f;
modifier[1] = v_flip ? -1.f : 1.f;
modifier[2] = d_flip ? -1.f : 1.f;
}
static inline void mirror(const float *modifier, float *vec)
{
vec[0] *= modifier[0];
vec[1] *= modifier[1];
vec[2] *= modifier[2];
}
static inline void input_flip(int16_t u[4][4], int16_t v[4][4], int w, int h, int hflip, int vflip)
{
if (hflip) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++)
u[i][j] = w - 1 - u[i][j];
}
}
if (vflip) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++)
v[i][j] = h - 1 - v[i][j];
}
}
}
static int allocate_plane(V360Context *s, int sizeof_uv, int sizeof_ker, int sizeof_mask, int p)
{
const int pr_height = s->pr_height[p];
for (int n = 0; n < s->nb_threads; n++) {
SliceXYRemap *r = &s->slice_remap[n];
const int slice_start = (pr_height * n ) / s->nb_threads;
const int slice_end = (pr_height * (n + 1)) / s->nb_threads;
const int height = slice_end - slice_start;
if (!r->u[p])
r->u[p] = av_calloc(s->uv_linesize[p] * height, sizeof_uv);
if (!r->v[p])
r->v[p] = av_calloc(s->uv_linesize[p] * height, sizeof_uv);
if (!r->u[p] || !r->v[p])
return AVERROR(ENOMEM);
if (sizeof_ker) {
if (!r->ker[p])
r->ker[p] = av_calloc(s->uv_linesize[p] * height, sizeof_ker);
if (!r->ker[p])
return AVERROR(ENOMEM);
}
if (sizeof_mask && !p) {
if (!r->mask)
r->mask = av_calloc(s->pr_width[p] * height, sizeof_mask);
if (!r->mask)
return AVERROR(ENOMEM);
}
}
return 0;
}
static void fov_from_dfov(int format, float d_fov, float w, float h, float *h_fov, float *v_fov)
{
switch (format) {
case EQUIRECTANGULAR:
*h_fov = d_fov;
*v_fov = d_fov * 0.5f;
break;
case ORTHOGRAPHIC:
{
const float d = 0.5f * hypotf(w, h);
const float l = sinf(d_fov * M_PI / 360.f) / d;
*h_fov = asinf(w * 0.5f * l) * 360.f / M_PI;
*v_fov = asinf(h * 0.5f * l) * 360.f / M_PI;
if (d_fov > 180.f) {
*h_fov = 180.f - *h_fov;
*v_fov = 180.f - *v_fov;
}
}
break;
case EQUISOLID:
{
const float d = 0.5f * hypotf(w, h);
const float l = d / (sinf(d_fov * M_PI / 720.f));
*h_fov = 2.f * asinf(w * 0.5f / l) * 360.f / M_PI;
*v_fov = 2.f * asinf(h * 0.5f / l) * 360.f / M_PI;
}
break;
case STEREOGRAPHIC:
{
const float d = 0.5f * hypotf(w, h);
const float l = d / (tanf(d_fov * M_PI / 720.f));
*h_fov = 2.f * atan2f(w * 0.5f, l) * 360.f / M_PI;
*v_fov = 2.f * atan2f(h * 0.5f, l) * 360.f / M_PI;
}
break;
case DUAL_FISHEYE:
{
const float d = hypotf(w * 0.5f, h);
*h_fov = 0.5f * w / d * d_fov;
*v_fov = h / d * d_fov;
}
break;
case FISHEYE:
{
const float d = hypotf(w, h);
*h_fov = w / d * d_fov;
*v_fov = h / d * d_fov;
}
break;
case FLAT:
default:
{
const float da = tanf(0.5f * FFMIN(d_fov, 359.f) * M_PI / 180.f);
const float d = hypotf(w, h);
*h_fov = atan2f(da * w, d) * 360.f / M_PI;
*v_fov = atan2f(da * h, d) * 360.f / M_PI;
if (*h_fov < 0.f)
*h_fov += 360.f;
if (*v_fov < 0.f)
*v_fov += 360.f;
}
break;
}
}
static void set_dimensions(int *outw, int *outh, int w, int h, const AVPixFmtDescriptor *desc)
{
outw[1] = outw[2] = AV_CEIL_RSHIFT(w, desc->log2_chroma_w);
outw[0] = outw[3] = w;
outh[1] = outh[2] = AV_CEIL_RSHIFT(h, desc->log2_chroma_h);
outh[0] = outh[3] = h;
}
// Calculate remap data
static int v360_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
V360Context *s = ctx->priv;
SliceXYRemap *r = &s->slice_remap[jobnr];
for (int p = 0; p < s->nb_allocated; p++) {
const int max_value = s->max_value;
const int width = s->pr_width[p];
const int uv_linesize = s->uv_linesize[p];
const int height = s->pr_height[p];
const int in_width = s->inplanewidth[p];
const int in_height = s->inplaneheight[p];
const int slice_start = (height * jobnr ) / nb_jobs;
const int slice_end = (height * (jobnr + 1)) / nb_jobs;
const int elements = s->elements;
float du, dv;
float vec[3];
XYRemap rmap;
for (int j = slice_start; j < slice_end; j++) {
for (int i = 0; i < width; i++) {
int16_t *u = r->u[p] + ((j - slice_start) * uv_linesize + i) * elements;
int16_t *v = r->v[p] + ((j - slice_start) * uv_linesize + i) * elements;
int16_t *ker = r->ker[p] + ((j - slice_start) * uv_linesize + i) * elements;
uint8_t *mask8 = p ? NULL : r->mask + ((j - slice_start) * s->pr_width[0] + i);
uint16_t *mask16 = p ? NULL : (uint16_t *)r->mask + ((j - slice_start) * s->pr_width[0] + i);
int in_mask, out_mask;
if (s->out_transpose)
out_mask = s->out_transform(s, j, i, height, width, vec);
else
out_mask = s->out_transform(s, i, j, width, height, vec);
offset_vector(vec, s->h_offset, s->v_offset);
normalize_vector(vec);
av_assert1(!isnan(vec[0]) && !isnan(vec[1]) && !isnan(vec[2]));
rotate(s->rot_quaternion, vec);
av_assert1(!isnan(vec[0]) && !isnan(vec[1]) && !isnan(vec[2]));
normalize_vector(vec);
mirror(s->output_mirror_modifier, vec);
if (s->in_transpose)
in_mask = s->in_transform(s, vec, in_height, in_width, rmap.v, rmap.u, &du, &dv);
else
in_mask = s->in_transform(s, vec, in_width, in_height, rmap.u, rmap.v, &du, &dv);
input_flip(rmap.u, rmap.v, in_width, in_height, s->ih_flip, s->iv_flip);
av_assert1(!isnan(du) && !isnan(dv));
s->calculate_kernel(du, dv, &rmap, u, v, ker);
if (!p && r->mask) {
if (s->mask_size == 1) {
mask8[0] = 255 * (out_mask & in_mask);
} else {
mask16[0] = max_value * (out_mask & in_mask);
}
}
}
}
}
return 0;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
AVFilterLink *inlink = ctx->inputs[0];
V360Context *s = ctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
const int depth = desc->comp[0].depth;
const int sizeof_mask = s->mask_size = (depth + 7) >> 3;
float default_h_fov = 360.f;
float default_v_fov = 180.f;
float default_ih_fov = 360.f;
float default_iv_fov = 180.f;
int sizeof_uv;
int sizeof_ker;
int err;
int h, w;
int in_offset_h, in_offset_w;
int out_offset_h, out_offset_w;
float hf, wf;
int (*prepare_out)(AVFilterContext *ctx);
int have_alpha;
s->max_value = (1 << depth) - 1;
switch (s->interp) {
case NEAREST:
s->calculate_kernel = nearest_kernel;
s->remap_slice = depth <= 8 ? remap1_8bit_slice : remap1_16bit_slice;
s->elements = 1;
sizeof_uv = sizeof(int16_t) * s->elements;
sizeof_ker = 0;
break;
case BILINEAR:
s->calculate_kernel = bilinear_kernel;
s->remap_slice = depth <= 8 ? remap2_8bit_slice : remap2_16bit_slice;
s->elements = 2 * 2;
sizeof_uv = sizeof(int16_t) * s->elements;
sizeof_ker = sizeof(int16_t) * s->elements;
break;
case LAGRANGE9:
s->calculate_kernel = lagrange_kernel;
s->remap_slice = depth <= 8 ? remap3_8bit_slice : remap3_16bit_slice;
s->elements = 3 * 3;
sizeof_uv = sizeof(int16_t) * s->elements;
sizeof_ker = sizeof(int16_t) * s->elements;
break;
case BICUBIC:
s->calculate_kernel = bicubic_kernel;
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
s->elements = 4 * 4;
sizeof_uv = sizeof(int16_t) * s->elements;
sizeof_ker = sizeof(int16_t) * s->elements;
break;
case LANCZOS:
s->calculate_kernel = lanczos_kernel;
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
s->elements = 4 * 4;
sizeof_uv = sizeof(int16_t) * s->elements;
sizeof_ker = sizeof(int16_t) * s->elements;
break;
case SPLINE16:
s->calculate_kernel = spline16_kernel;
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
s->elements = 4 * 4;
sizeof_uv = sizeof(int16_t) * s->elements;
sizeof_ker = sizeof(int16_t) * s->elements;
break;
case GAUSSIAN:
s->calculate_kernel = gaussian_kernel;
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
s->elements = 4 * 4;
sizeof_uv = sizeof(int16_t) * s->elements;
sizeof_ker = sizeof(int16_t) * s->elements;
break;
case MITCHELL:
s->calculate_kernel = mitchell_kernel;
s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
s->elements = 4 * 4;
sizeof_uv = sizeof(int16_t) * s->elements;
sizeof_ker = sizeof(int16_t) * s->elements;
break;
default:
av_assert0(0);
}
ff_v360_init(s, depth);
for (int order = 0; order < NB_RORDERS; order++) {
const char c = s->rorder[order];
int rorder;
if (c == '\0') {
av_log(ctx, AV_LOG_WARNING,
"Incomplete rorder option. Direction for all 3 rotation orders should be specified. Switching to default rorder.\n");
s->rotation_order[0] = YAW;
s->rotation_order[1] = PITCH;
s->rotation_order[2] = ROLL;
break;
}
rorder = get_rorder(c);
if (rorder == -1) {
av_log(ctx, AV_LOG_WARNING,
"Incorrect rotation order symbol '%c' in rorder option. Switching to default rorder.\n", c);
s->rotation_order[0] = YAW;
s->rotation_order[1] = PITCH;
s->rotation_order[2] = ROLL;
break;
}
s->rotation_order[order] = rorder;
}
switch (s->in_stereo) {
case STEREO_2D:
w = inlink->w;
h = inlink->h;
in_offset_w = in_offset_h = 0;
break;
case STEREO_SBS:
w = inlink->w / 2;
h = inlink->h;
in_offset_w = w;
in_offset_h = 0;
break;
case STEREO_TB:
w = inlink->w;
h = inlink->h / 2;
in_offset_w = 0;
in_offset_h = h;
break;
default:
av_assert0(0);
}
set_dimensions(s->inplanewidth, s->inplaneheight, w, h, desc);
set_dimensions(s->in_offset_w, s->in_offset_h, in_offset_w, in_offset_h, desc);
s->in_width = s->inplanewidth[0];
s->in_height = s->inplaneheight[0];
switch (s->in) {
case CYLINDRICAL:
case FLAT:
default_ih_fov = 90.f;
default_iv_fov = 45.f;
break;
case EQUISOLID:
case ORTHOGRAPHIC:
case STEREOGRAPHIC:
case DUAL_FISHEYE:
case FISHEYE:
default_ih_fov = 180.f;
default_iv_fov = 180.f;
default:
break;
}
if (s->ih_fov == 0.f)
s->ih_fov = default_ih_fov;
if (s->iv_fov == 0.f)
s->iv_fov = default_iv_fov;
if (s->id_fov > 0.f)
fov_from_dfov(s->in, s->id_fov, w, h, &s->ih_fov, &s->iv_fov);
if (s->in_transpose)
FFSWAP(int, s->in_width, s->in_height);
switch (s->in) {
case EQUIRECTANGULAR:
s->in_transform = xyz_to_equirect;
err = prepare_equirect_in(ctx);
wf = w;
hf = h;
break;
case CUBEMAP_3_2:
s->in_transform = xyz_to_cube3x2;
err = prepare_cube_in(ctx);
wf = w / 3.f * 4.f;
hf = h;
break;
case CUBEMAP_1_6:
s->in_transform = xyz_to_cube1x6;
err = prepare_cube_in(ctx);
wf = w * 4.f;
hf = h / 3.f;
break;
case CUBEMAP_6_1:
s->in_transform = xyz_to_cube6x1;
err = prepare_cube_in(ctx);
wf = w / 3.f * 2.f;
hf = h * 2.f;
break;
case EQUIANGULAR:
s->in_transform = xyz_to_eac;
err = prepare_eac_in(ctx);
wf = w;
hf = h / 9.f * 8.f;
break;
case FLAT:
s->in_transform = xyz_to_flat;
err = prepare_flat_in(ctx);
wf = w;
hf = h;
break;
case PERSPECTIVE:
av_log(ctx, AV_LOG_ERROR, "Supplied format is not accepted as input.\n");
return AVERROR(EINVAL);
case DUAL_FISHEYE:
s->in_transform = xyz_to_dfisheye;
err = prepare_dfisheye_in(ctx);
wf = w;
hf = h;
break;
case BARREL:
s->in_transform = xyz_to_barrel;
err = 0;
wf = w / 5.f * 4.f;
hf = h;
break;
case STEREOGRAPHIC:
s->in_transform = xyz_to_stereographic;
err = prepare_stereographic_in(ctx);
wf = w;
hf = h / 2.f;
break;
case MERCATOR:
s->in_transform = xyz_to_mercator;
err = 0;
wf = w;
hf = h / 2.f;
break;
case BALL:
s->in_transform = xyz_to_ball;
err = 0;
wf = w;
hf = h / 2.f;
break;
case HAMMER:
s->in_transform = xyz_to_hammer;
err = 0;
wf = w;
hf = h;
break;
case SINUSOIDAL:
s->in_transform = xyz_to_sinusoidal;
err = 0;
wf = w;
hf = h;
break;
case FISHEYE:
s->in_transform = xyz_to_fisheye;
err = prepare_fisheye_in(ctx);
wf = w * 2;
hf = h;
break;
case PANNINI:
s->in_transform = xyz_to_pannini;
err = 0;
wf = w;
hf = h;
break;
case CYLINDRICAL:
s->in_transform = xyz_to_cylindrical;
err = prepare_cylindrical_in(ctx);
wf = w;
hf = h * 2.f;
break;
case CYLINDRICALEA:
s->in_transform = xyz_to_cylindricalea;
err = prepare_cylindricalea_in(ctx);
wf = w;
hf = h;
break;
case TETRAHEDRON:
s->in_transform = xyz_to_tetrahedron;
err = 0;
wf = w;
hf = h;
break;
case BARREL_SPLIT:
s->in_transform = xyz_to_barrelsplit;
err = 0;
wf = w * 4.f / 3.f;
hf = h;
break;
case TSPYRAMID:
s->in_transform = xyz_to_tspyramid;
err = 0;
wf = w;
hf = h;
break;
case HEQUIRECTANGULAR:
s->in_transform = xyz_to_hequirect;
err = 0;
wf = w * 2.f;
hf = h;
break;
case EQUISOLID:
s->in_transform = xyz_to_equisolid;
err = prepare_equisolid_in(ctx);
wf = w;
hf = h / 2.f;
break;
case ORTHOGRAPHIC:
s->in_transform = xyz_to_orthographic;
err = prepare_orthographic_in(ctx);
wf = w;
hf = h / 2.f;
break;
case OCTAHEDRON:
s->in_transform = xyz_to_octahedron;
err = 0;
wf = w;
hf = h / 2.f;
break;
default:
av_log(ctx, AV_LOG_ERROR, "Specified input format is not handled.\n");
return AVERROR_BUG;
}
if (err != 0) {
return err;
}
switch (s->out) {
case EQUIRECTANGULAR:
s->out_transform = equirect_to_xyz;
prepare_out = prepare_equirect_out;
w = lrintf(wf);
h = lrintf(hf);
break;
case CUBEMAP_3_2:
s->out_transform = cube3x2_to_xyz;
prepare_out = prepare_cube_out;
w = lrintf(wf / 4.f * 3.f);
h = lrintf(hf);
break;
case CUBEMAP_1_6:
s->out_transform = cube1x6_to_xyz;
prepare_out = prepare_cube_out;
w = lrintf(wf / 4.f);
h = lrintf(hf * 3.f);
break;
case CUBEMAP_6_1:
s->out_transform = cube6x1_to_xyz;
prepare_out = prepare_cube_out;
w = lrintf(wf / 2.f * 3.f);
h = lrintf(hf / 2.f);
break;
case EQUIANGULAR:
s->out_transform = eac_to_xyz;
prepare_out = prepare_eac_out;
w = lrintf(wf);
h = lrintf(hf / 8.f * 9.f);
break;
case FLAT:
s->out_transform = flat_to_xyz;
prepare_out = prepare_flat_out;
w = lrintf(wf);
h = lrintf(hf);
break;
case DUAL_FISHEYE:
s->out_transform = dfisheye_to_xyz;
prepare_out = prepare_fisheye_out;
w = lrintf(wf);
h = lrintf(hf);
break;
case BARREL:
s->out_transform = barrel_to_xyz;
prepare_out = NULL;
w = lrintf(wf / 4.f * 5.f);
h = lrintf(hf);
break;
case STEREOGRAPHIC:
s->out_transform = stereographic_to_xyz;
prepare_out = prepare_stereographic_out;
w = lrintf(wf);
h = lrintf(hf * 2.f);
break;
case MERCATOR:
s->out_transform = mercator_to_xyz;
prepare_out = NULL;
w = lrintf(wf);
h = lrintf(hf * 2.f);
break;
case BALL:
s->out_transform = ball_to_xyz;
prepare_out = NULL;
w = lrintf(wf);
h = lrintf(hf * 2.f);
break;
case HAMMER:
s->out_transform = hammer_to_xyz;
prepare_out = NULL;
w = lrintf(wf);
h = lrintf(hf);
break;
case SINUSOIDAL:
s->out_transform = sinusoidal_to_xyz;
prepare_out = NULL;
w = lrintf(wf);
h = lrintf(hf);
break;
case FISHEYE:
s->out_transform = fisheye_to_xyz;
prepare_out = prepare_fisheye_out;
w = lrintf(wf * 0.5f);
h = lrintf(hf);
break;
case PANNINI:
s->out_transform = pannini_to_xyz;
prepare_out = NULL;
w = lrintf(wf);
h = lrintf(hf);
break;
case CYLINDRICAL:
s->out_transform = cylindrical_to_xyz;
prepare_out = prepare_cylindrical_out;
w = lrintf(wf);
h = lrintf(hf * 0.5f);
break;
case CYLINDRICALEA:
s->out_transform = cylindricalea_to_xyz;
prepare_out = prepare_cylindricalea_out;
w = lrintf(wf);
h = lrintf(hf);
break;
case PERSPECTIVE:
s->out_transform = perspective_to_xyz;
prepare_out = NULL;
w = lrintf(wf / 2.f);
h = lrintf(hf);
break;
case TETRAHEDRON:
s->out_transform = tetrahedron_to_xyz;
prepare_out = NULL;
w = lrintf(wf);
h = lrintf(hf);
break;
case BARREL_SPLIT:
s->out_transform = barrelsplit_to_xyz;
prepare_out = NULL;
w = lrintf(wf / 4.f * 3.f);
h = lrintf(hf);
break;
case TSPYRAMID:
s->out_transform = tspyramid_to_xyz;
prepare_out = NULL;
w = lrintf(wf);
h = lrintf(hf);
break;
case HEQUIRECTANGULAR:
s->out_transform = hequirect_to_xyz;
prepare_out = NULL;
w = lrintf(wf / 2.f);
h = lrintf(hf);
break;
case EQUISOLID:
s->out_transform = equisolid_to_xyz;
prepare_out = prepare_equisolid_out;
w = lrintf(wf);
h = lrintf(hf * 2.f);
break;
case ORTHOGRAPHIC:
s->out_transform = orthographic_to_xyz;
prepare_out = prepare_orthographic_out;
w = lrintf(wf);
h = lrintf(hf * 2.f);
break;
case OCTAHEDRON:
s->out_transform = octahedron_to_xyz;
prepare_out = NULL;
w = lrintf(wf);
h = lrintf(hf * 2.f);
break;
default:
av_log(ctx, AV_LOG_ERROR, "Specified output format is not handled.\n");
return AVERROR_BUG;
}
// Override resolution with user values if specified
if (s->width > 0 && s->height <= 0 && s->h_fov > 0.f && s->v_fov > 0.f &&
s->out == FLAT && s->d_fov == 0.f) {
w = s->width;
h = w / tanf(s->h_fov * M_PI / 360.f) * tanf(s->v_fov * M_PI / 360.f);
} else if (s->width <= 0 && s->height > 0 && s->h_fov > 0.f && s->v_fov > 0.f &&
s->out == FLAT && s->d_fov == 0.f) {
h = s->height;
w = h / tanf(s->v_fov * M_PI / 360.f) * tanf(s->h_fov * M_PI / 360.f);
} else if (s->width > 0 && s->height > 0) {
w = s->width;
h = s->height;
} else if (s->width > 0 || s->height > 0) {
av_log(ctx, AV_LOG_ERROR, "Both width and height values should be specified.\n");
return AVERROR(EINVAL);
} else {
if (s->out_transpose)
FFSWAP(int, w, h);
if (s->in_transpose)
FFSWAP(int, w, h);
}
s->width = w;
s->height = h;
switch (s->out) {
case CYLINDRICAL:
case FLAT:
default_h_fov = 90.f;
default_v_fov = 45.f;
break;
case EQUISOLID:
case ORTHOGRAPHIC:
case STEREOGRAPHIC:
case DUAL_FISHEYE:
case FISHEYE:
default_h_fov = 180.f;
default_v_fov = 180.f;
break;
default:
break;
}
if (s->h_fov == 0.f)
s->h_fov = default_h_fov;
if (s->v_fov == 0.f)
s->v_fov = default_v_fov;
if (s->d_fov > 0.f)
fov_from_dfov(s->out, s->d_fov, w, h, &s->h_fov, &s->v_fov);
if (prepare_out) {
err = prepare_out(ctx);
if (err != 0)
return err;
}
set_dimensions(s->pr_width, s->pr_height, w, h, desc);
switch (s->out_stereo) {
case STEREO_2D:
out_offset_w = out_offset_h = 0;
break;
case STEREO_SBS:
out_offset_w = w;
out_offset_h = 0;
w *= 2;
break;
case STEREO_TB:
out_offset_w = 0;
out_offset_h = h;
h *= 2;
break;
default:
av_assert0(0);
}
set_dimensions(s->out_offset_w, s->out_offset_h, out_offset_w, out_offset_h, desc);
set_dimensions(s->planewidth, s->planeheight, w, h, desc);
for (int i = 0; i < 4; i++)
s->uv_linesize[i] = FFALIGN(s->pr_width[i], 8);
outlink->h = h;
outlink->w = w;
s->nb_threads = FFMIN(outlink->h, ff_filter_get_nb_threads(ctx));
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
have_alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
if (desc->log2_chroma_h == desc->log2_chroma_w && desc->log2_chroma_h == 0) {
s->nb_allocated = 1;
s->map[0] = s->map[1] = s->map[2] = s->map[3] = 0;
} else {
s->nb_allocated = 2;
s->map[0] = s->map[3] = 0;
s->map[1] = s->map[2] = 1;
}
if (!s->slice_remap)
s->slice_remap = av_calloc(s->nb_threads, sizeof(*s->slice_remap));
if (!s->slice_remap)
return AVERROR(ENOMEM);
for (int i = 0; i < s->nb_allocated; i++) {
err = allocate_plane(s, sizeof_uv, sizeof_ker, sizeof_mask * have_alpha * s->alpha, i);
if (err < 0)
return err;
}
calculate_rotation(s->yaw, s->pitch, s->roll,
s->rot_quaternion, s->rotation_order);
set_mirror_modifier(s->h_flip, s->v_flip, s->d_flip, s->output_mirror_modifier);
ff_filter_execute(ctx, v360_slice, NULL, NULL, s->nb_threads);
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = ctx->outputs[0];
V360Context *s = ctx->priv;
AVFrame *out;
ThreadData td;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
td.in = in;
td.out = out;
ff_filter_execute(ctx, s->remap_slice, &td, NULL, s->nb_threads);
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static void reset_rot(V360Context *s)
{
s->rot_quaternion[0][0] = 1.f;
s->rot_quaternion[0][1] = s->rot_quaternion[0][2] = s->rot_quaternion[0][3] = 0.f;
}
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
char *res, int res_len, int flags)
{
V360Context *s = ctx->priv;
int ret;
if (s->reset_rot <= 0)
s->yaw = s->pitch = s->roll = 0.f;
if (s->reset_rot < 0)
s->reset_rot = 0;
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
if (ret < 0)
return ret;
if (s->reset_rot)
reset_rot(s);
return config_output(ctx->outputs[0]);
}
static av_cold int init(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
reset_rot(s);
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
V360Context *s = ctx->priv;
for (int n = 0; n < s->nb_threads && s->slice_remap; n++) {
SliceXYRemap *r = &s->slice_remap[n];
for (int p = 0; p < s->nb_allocated; p++) {
av_freep(&r->u[p]);
av_freep(&r->v[p]);
av_freep(&r->ker[p]);
}
av_freep(&r->mask);
}
av_freep(&s->slice_remap);
}
static const AVFilterPad inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
},
};
static const AVFilterPad outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
};
const AVFilter ff_vf_v360 = {
.name = "v360",
.description = NULL_IF_CONFIG_SMALL("Convert 360 projection of video."),
.priv_size = sizeof(V360Context),
.init = init,
.uninit = uninit,
FILTER_INPUTS(inputs),
FILTER_OUTPUTS(outputs),
FILTER_QUERY_FUNC(query_formats),
.priv_class = &v360_class,
.flags = AVFILTER_FLAG_SLICE_THREADS,
.process_command = process_command,
};