1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavfilter/vf_xpsnr.c
James Almer 362586fcad avfilter/vf_xpsnr: remove duplicated DSP infranstructure
Fully reuse the existing one from vf_psnr, instead of halfways.

Signed-off-by: James Almer <jamrial@gmail.com>
2024-10-07 09:33:52 -03:00

744 lines
31 KiB
C

/*
* Copyright (c) 2024 Christian R. Helmrich
* Copyright (c) 2024 Christian Lehmann
* Copyright (c) 2024 Christian Stoffers
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Calculate the extended perceptually weighted PSNR (XPSNR) between two input videos.
*
* Authors: Christian Helmrich, Lehmann, and Stoffers, Fraunhofer HHI, Berlin, Germany
*/
#include "libavutil/avstring.h"
#include "libavutil/file_open.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "drawutils.h"
#include "filters.h"
#include "framesync.h"
#include "psnr.h"
#include "xpsnr.h"
/* XPSNR structure definition */
typedef struct XPSNRContext {
/* required basic variables */
const AVClass *class;
int bpp; /* unpacked */
int depth; /* packed */
char comps[4];
int num_comps;
uint64_t num_frames_64;
unsigned frame_rate;
FFFrameSync fs;
int line_sizes[4];
int plane_height[4];
int plane_width[4];
uint8_t rgba_map[4];
FILE *stats_file;
char *stats_file_str;
/* XPSNR specific variables */
double *sse_luma;
double *weights;
AVBufferRef *buf_org [3];
AVBufferRef *buf_org_m1[3];
AVBufferRef *buf_org_m2[3];
AVBufferRef *buf_rec [3];
uint64_t max_error_64;
double sum_wdist [3];
double sum_xpsnr [3];
int and_is_inf[3];
int is_rgb;
XPSNRDSPContext dsp;
PSNRDSPContext pdsp;
} XPSNRContext;
/* required macro definitions */
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
#define OFFSET(x) offsetof(XPSNRContext, x)
#define XPSNR_GAMMA 2
static const AVOption xpsnr_options[] = {
{"stats_file", "Set file where to store per-frame XPSNR information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS},
{"f", "Set file where to store per-frame XPSNR information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS},
{ NULL }
};
FRAMESYNC_DEFINE_CLASS(xpsnr, XPSNRContext, fs);
/* XPSNR function definitions */
static uint64_t highds(const int x_act, const int y_act, const int w_act, const int h_act, const int16_t *o_m0, const int o)
{
uint64_t sa_act = 0;
for (int y = y_act; y < h_act; y += 2) {
for (int x = x_act; x < w_act; x += 2) {
const int f = 12 * ((int)o_m0[ y *o + x ] + (int)o_m0[ y *o + x+1] + (int)o_m0[(y+1)*o + x ] + (int)o_m0[(y+1)*o + x+1])
- 3 * ((int)o_m0[(y-1)*o + x ] + (int)o_m0[(y-1)*o + x+1] + (int)o_m0[(y+2)*o + x ] + (int)o_m0[(y+2)*o + x+1])
- 3 * ((int)o_m0[ y *o + x-1] + (int)o_m0[ y *o + x+2] + (int)o_m0[(y+1)*o + x-1] + (int)o_m0[(y+1)*o + x+2])
- 2 * ((int)o_m0[(y-1)*o + x-1] + (int)o_m0[(y-1)*o + x+2] + (int)o_m0[(y+2)*o + x-1] + (int)o_m0[(y+2)*o + x+2])
- ((int)o_m0[(y-2)*o + x-1] + (int)o_m0[(y-2)*o + x ] + (int)o_m0[(y-2)*o + x+1] + (int)o_m0[(y-2)*o + x+2]
+ (int)o_m0[(y+3)*o + x-1] + (int)o_m0[(y+3)*o + x ] + (int)o_m0[(y+3)*o + x+1] + (int)o_m0[(y+3)*o + x+2]
+ (int)o_m0[(y-1)*o + x-2] + (int)o_m0[ y *o + x-2] + (int)o_m0[(y+1)*o + x-2] + (int)o_m0[(y+2)*o + x-2]
+ (int)o_m0[(y-1)*o + x+3] + (int)o_m0[ y *o + x+3] + (int)o_m0[(y+1)*o + x+3] + (int)o_m0[(y+2)*o + x+3]);
sa_act += (uint64_t) abs(f);
}
}
return sa_act;
}
static uint64_t diff1st(const uint32_t w_act, const uint32_t h_act, const int16_t *o_m0, int16_t *o_m1, const int o)
{
uint64_t ta_act = 0;
for (uint32_t y = 0; y < h_act; y += 2) {
for (uint32_t x = 0; x < w_act; x += 2) {
const int t = (int)o_m0[y*o + x] + (int)o_m0[y*o + x+1] + (int)o_m0[(y+1)*o + x] + (int)o_m0[(y+1)*o + x+1]
- ((int)o_m1[y*o + x] + (int)o_m1[y*o + x+1] + (int)o_m1[(y+1)*o + x] + (int)o_m1[(y+1)*o + x+1]);
ta_act += (uint64_t) abs(t);
o_m1[y*o + x ] = o_m0[y*o + x ]; o_m1[(y+1)*o + x ] = o_m0[(y+1)*o + x ];
o_m1[y*o + x+1] = o_m0[y*o + x+1]; o_m1[(y+1)*o + x+1] = o_m0[(y+1)*o + x+1];
}
}
return (ta_act * XPSNR_GAMMA);
}
static uint64_t diff2nd(const uint32_t w_act, const uint32_t h_act, const int16_t *o_m0, int16_t *o_m1, int16_t *o_m2, const int o)
{
uint64_t ta_act = 0;
for (uint32_t y = 0; y < h_act; y += 2) {
for (uint32_t x = 0; x < w_act; x += 2) {
const int t = (int)o_m0[y*o + x] + (int)o_m0[y*o + x+1] + (int)o_m0[(y+1)*o + x] + (int)o_m0[(y+1)*o + x+1]
- 2 * ((int)o_m1[y*o + x] + (int)o_m1[y*o + x+1] + (int)o_m1[(y+1)*o + x] + (int)o_m1[(y+1)*o + x+1])
+ (int)o_m2[y*o + x] + (int)o_m2[y*o + x+1] + (int)o_m2[(y+1)*o + x] + (int)o_m2[(y+1)*o + x+1];
ta_act += (uint64_t) abs(t);
o_m2[y*o + x ] = o_m1[y*o + x ]; o_m2[(y+1)*o + x ] = o_m1[(y+1)*o + x ];
o_m2[y*o + x+1] = o_m1[y*o + x+1]; o_m2[(y+1)*o + x+1] = o_m1[(y+1)*o + x+1];
o_m1[y*o + x ] = o_m0[y*o + x ]; o_m1[(y+1)*o + x ] = o_m0[(y+1)*o + x ];
o_m1[y*o + x+1] = o_m0[y*o + x+1]; o_m1[(y+1)*o + x+1] = o_m0[(y+1)*o + x+1];
}
}
return (ta_act * XPSNR_GAMMA);
}
static inline uint64_t calc_squared_error(XPSNRContext const *s,
const int16_t *blk_org, const uint32_t stride_org,
const int16_t *blk_rec, const uint32_t stride_rec,
const uint32_t block_width, const uint32_t block_height)
{
uint64_t sse = 0; /* sum of squared errors */
for (uint32_t y = 0; y < block_height; y++) {
sse += s->pdsp.sse_line((const uint8_t *) blk_org, (const uint8_t *) blk_rec, (int) block_width);
blk_org += stride_org;
blk_rec += stride_rec;
}
/* return nonweighted sum of squared errors */
return sse;
}
static inline double calc_squared_error_and_weight (XPSNRContext const *s,
const int16_t *pic_org, const uint32_t stride_org,
int16_t *pic_org_m1, int16_t *pic_org_m2,
const int16_t *pic_rec, const uint32_t stride_rec,
const uint32_t offset_x, const uint32_t offset_y,
const uint32_t block_width, const uint32_t block_height,
const uint32_t bit_depth, const uint32_t int_frame_rate, double *ms_act)
{
const int o = (int) stride_org;
const int r = (int) stride_rec;
const int16_t *o_m0 = pic_org + offset_y * o + offset_x;
int16_t *o_m1 = pic_org_m1 + offset_y * o + offset_x;
int16_t *o_m2 = pic_org_m2 + offset_y * o + offset_x;
const int16_t *r_m0 = pic_rec + offset_y * r + offset_x;
const int b_val = (s->plane_width[0] * s->plane_height[0] > 2048 * 1152 ? 2 : 1); /* threshold is a bit more than HD resolution */
const int x_act = (offset_x > 0 ? 0 : b_val);
const int y_act = (offset_y > 0 ? 0 : b_val);
const int w_act = (offset_x + block_width < (uint32_t) s->plane_width [0] ? (int) block_width : (int) block_width - b_val);
const int h_act = (offset_y + block_height < (uint32_t) s->plane_height[0] ? (int) block_height : (int) block_height - b_val);
const double sse = (double) calc_squared_error (s, o_m0, stride_org,
r_m0, stride_rec,
block_width, block_height);
uint64_t sa_act = 0; /* spatial abs. activity */
uint64_t ta_act = 0; /* temporal abs. activity */
if (w_act <= x_act || h_act <= y_act) /* small */
return sse;
if (b_val > 1) { /* highpass with downsampling */
if (w_act > 12)
sa_act = s->dsp.highds_func(x_act, y_act, w_act, h_act, o_m0, o);
else
highds(x_act, y_act, w_act, h_act, o_m0, o);
} else { /* <=HD highpass without downsampling */
for (int y = y_act; y < h_act; y++) {
for (int x = x_act; x < w_act; x++) {
const int f = 12 * (int)o_m0[y*o + x] - 2 * ((int)o_m0[y*o + x-1] + (int)o_m0[y*o + x+1] + (int)o_m0[(y-1)*o + x] + (int)o_m0[(y+1)*o + x])
- ((int)o_m0[(y-1)*o + x-1] + (int)o_m0[(y-1)*o + x+1] + (int)o_m0[(y+1)*o + x-1] + (int)o_m0[(y+1)*o + x+1]);
sa_act += (uint64_t) abs(f);
}
}
}
/* calculate weight (average squared activity) */
*ms_act = (double) sa_act / ((double) (w_act - x_act) * (double) (h_act - y_act));
if (b_val > 1) { /* highpass with downsampling */
if (int_frame_rate < 32) /* 1st-order diff */
ta_act = s->dsp.diff1st_func(block_width, block_height, o_m0, o_m1, o);
else /* 2nd-order diff (diff of two diffs) */
ta_act = s->dsp.diff2nd_func(block_width, block_height, o_m0, o_m1, o_m2, o);
} else { /* <=HD highpass without downsampling */
if (int_frame_rate < 32) { /* 1st-order diff */
for (uint32_t y = 0; y < block_height; y++) {
for (uint32_t x = 0; x < block_width; x++) {
const int t = (int)o_m0[y * o + x] - (int)o_m1[y * o + x];
ta_act += XPSNR_GAMMA * (uint64_t) abs(t);
o_m1[y * o + x] = o_m0[y * o + x];
}
}
} else { /* 2nd-order diff (diff of 2 diffs) */
for (uint32_t y = 0; y < block_height; y++) {
for (uint32_t x = 0; x < block_width; x++) {
const int t = (int)o_m0[y * o + x] - 2 * (int)o_m1[y * o + x] + (int)o_m2[y * o + x];
ta_act += XPSNR_GAMMA * (uint64_t) abs(t);
o_m2[y * o + x] = o_m1[y * o + x];
o_m1[y * o + x] = o_m0[y * o + x];
}
}
}
}
/* weight += mean squared temporal activity */
*ms_act += (double) ta_act / ((double) block_width * (double) block_height);
/* lower limit, accounts for high-pass gain */
if (*ms_act < (double) (1 << (bit_depth - 6)))
*ms_act = (double) (1 << (bit_depth - 6));
*ms_act *= *ms_act; /* since SSE is squared */
/* return nonweighted sum of squared errors */
return sse;
}
static inline double get_avg_xpsnr (const double sqrt_wsse_val, const double sum_xpsnr_val,
const uint32_t image_width, const uint32_t image_height,
const uint64_t max_error_64, const uint64_t num_frames_64)
{
if (num_frames_64 == 0)
return INFINITY;
if (sqrt_wsse_val >= (double) num_frames_64) { /* square-mean-root average */
const double avg_dist = sqrt_wsse_val / (double) num_frames_64;
const uint64_t num64 = (uint64_t) image_width * (uint64_t) image_height * max_error_64;
return 10.0 * log10((double) num64 / ((double) avg_dist * (double) avg_dist));
}
return sum_xpsnr_val / (double) num_frames_64; /* older log-domain average */
}
static int get_wsse(AVFilterContext *ctx, int16_t **org, int16_t **org_m1, int16_t **org_m2, int16_t **rec,
uint64_t *const wsse64)
{
XPSNRContext *const s = ctx->priv;
const uint32_t w = s->plane_width [0]; /* luma image width in pixels */
const uint32_t h = s->plane_height[0];/* luma image height in pixels */
const double r = (double)(w * h) / (3840.0 * 2160.0); /* UHD ratio */
const uint32_t b = FFMAX(0, 4 * (int32_t) (32.0 * sqrt(r) +
0.5)); /* block size, integer multiple of 4 for SIMD */
const uint32_t w_blk = (w + b - 1) / b; /* luma width in units of blocks */
const double avg_act = sqrt(16.0 * (double) (1 << (2 * s->depth - 9)) / sqrt(FFMAX(0.00001,
r))); /* the sqrt(a_pic) */
const int *stride_org = (s->bpp == 1 ? s->plane_width : s->line_sizes);
uint32_t x, y, idx_blk = 0; /* the "16.0" above is due to fixed-point code */
double *const sse_luma = s->sse_luma;
double *const weights = s->weights;
int c;
if (!wsse64 || (s->depth < 6) || (s->depth > 16) || (s->num_comps <= 0) ||
(s->num_comps > 3) || (w == 0) || (h == 0)) {
av_log(ctx, AV_LOG_ERROR, "Error in XPSNR routine: invalid argument(s).\n");
return AVERROR(EINVAL);
}
if (!weights || (b >= 4 && !sse_luma)) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate temporary block memory.\n");
return AVERROR(ENOMEM);
}
if (b >= 4) {
const int16_t *p_org = org[0];
const uint32_t s_org = stride_org[0] / s->bpp;
const int16_t *p_rec = rec[0];
const uint32_t s_rec = s->plane_width[0];
int16_t *p_org_m1 = org_m1[0]; /* pixel */
int16_t *p_org_m2 = org_m2[0]; /* memory */
double wsse_luma = 0.0;
for (y = 0; y < h; y += b) { /* calculate block SSE and perceptual weights */
const uint32_t block_height = (y + b > h ? h - y : b);
for (x = 0; x < w; x += b, idx_blk++) {
const uint32_t block_width = (x + b > w ? w - x : b);
double ms_act = 1.0, ms_act_prev = 0.0;
sse_luma[idx_blk] = calc_squared_error_and_weight(s, p_org, s_org,
p_org_m1, p_org_m2,
p_rec, s_rec,
x, y,
block_width, block_height,
s->depth, s->frame_rate, &ms_act);
weights[idx_blk] = 1.0 / sqrt(ms_act);
if (w * h <= 640 * 480) { /* in-line "min-smoothing" as in paper */
if (x == 0) /* first column */
ms_act_prev = (idx_blk > 1 ? weights[idx_blk - 2] : 0);
else /* after first column */
ms_act_prev = (x > b ? FFMAX(weights[idx_blk - 2], weights[idx_blk]) : weights[idx_blk]);
if (idx_blk > w_blk) /* after the first row and first column */
ms_act_prev = FFMAX(ms_act_prev, weights[idx_blk - 1 - w_blk]); /* min (L, T) */
if ((idx_blk > 0) && (weights[idx_blk - 1] > ms_act_prev))
weights[idx_blk - 1] = ms_act_prev;
if ((x + b >= w) && (y + b >= h) && (idx_blk > w_blk)) { /* last block in picture */
ms_act_prev = FFMAX(weights[idx_blk - 1], weights[idx_blk - w_blk]);
if (weights[idx_blk] > ms_act_prev)
weights[idx_blk] = ms_act_prev;
}
}
} /* for x */
} /* for y */
for (y = idx_blk = 0; y < h; y += b) { /* calculate sum for luma (Y) XPSNR */
for (x = 0; x < w; x += b, idx_blk++) {
wsse_luma += sse_luma[idx_blk] * weights[idx_blk];
}
}
wsse64[0] = (wsse_luma <= 0.0 ? 0 : (uint64_t) (wsse_luma * avg_act + 0.5));
} /* b >= 4 */
for (c = 0; c < s->num_comps; c++) { /* finalize WSSE value for each component */
const int16_t *p_org = org[c];
const uint32_t s_org = stride_org[c] / s->bpp;
const int16_t *p_rec = rec[c];
const uint32_t s_rec = s->plane_width[c];
const uint32_t w_pln = s->plane_width[c];
const uint32_t h_pln = s->plane_height[c];
if (b < 4) /* picture is too small for XPSNR, calculate nonweighted PSNR */
wsse64[c] = calc_squared_error (s, p_org, s_org,
p_rec, s_rec,
w_pln, h_pln);
else if (c > 0) { /* b >= 4 so Y XPSNR has already been calculated above */
const uint32_t bx = (b * w_pln) / w;
const uint32_t by = (b * h_pln) / h; /* up to chroma downsampling by 4 */
double wsse_chroma = 0.0;
for (y = idx_blk = 0; y < h_pln; y += by) { /* calc chroma (Cb/Cr) XPSNR */
const uint32_t block_height = (y + by > h_pln ? h_pln - y : by);
for (x = 0; x < w_pln; x += bx, idx_blk++) {
const uint32_t block_width = (x + bx > w_pln ? w_pln - x : bx);
wsse_chroma += (double) calc_squared_error (s, p_org + y * s_org + x, s_org,
p_rec + y * s_rec + x, s_rec,
block_width, block_height) * weights[idx_blk];
}
}
wsse64[c] = (wsse_chroma <= 0.0 ? 0 : (uint64_t) (wsse_chroma * avg_act + 0.5));
}
} /* for c */
return 0;
}
static void set_meta(AVDictionary **metadata, const char *key, char comp, float d)
{
char value[128];
snprintf(value, sizeof(value), "%f", d);
if (comp) {
char key2[128];
snprintf(key2, sizeof(key2), "%s%c", key, comp);
av_dict_set(metadata, key2, value, 0);
} else {
av_dict_set(metadata, key, value, 0);
}
}
static int do_xpsnr(FFFrameSync *fs)
{
AVFilterContext *ctx = fs->parent;
XPSNRContext *const s = ctx->priv;
const uint32_t w = s->plane_width [0]; /* luma image width in pixels */
const uint32_t h = s->plane_height[0]; /* luma image height in pixels */
const uint32_t b = FFMAX(0, 4 * (int32_t) (32.0 * sqrt((double) (w * h) / (3840.0 * 2160.0)) + 0.5)); /* block size */
const uint32_t w_blk = (w + b - 1) / b; /* luma width in units of blocks */
const uint32_t h_blk = (h + b - 1) / b; /* luma height in units of blocks */
AVFrame *master, *ref = NULL;
int16_t *porg [3];
int16_t *porg_m1[3];
int16_t *porg_m2[3];
int16_t *prec [3];
uint64_t wsse64 [3] = {0, 0, 0};
double cur_xpsnr[3] = {INFINITY, INFINITY, INFINITY};
int c, ret_value;
AVDictionary **metadata;
if ((ret_value = ff_framesync_dualinput_get(fs, &master, &ref)) < 0)
return ret_value;
if (ctx->is_disabled || !ref)
return ff_filter_frame(ctx->outputs[0], master);
metadata = &master->metadata;
/* prepare XPSNR calculations: allocate temporary picture and block memory */
if (!s->sse_luma)
s->sse_luma = av_malloc_array(w_blk * h_blk, sizeof(double));
if (!s->weights)
s->weights = av_malloc_array(w_blk * h_blk, sizeof(double));
for (c = 0; c < s->num_comps; c++) { /* create temporal org buffer memory */
s->line_sizes[c] = master->linesize[c];
if (c == 0) { /* luma ch. */
const int stride_org_bpp = (s->bpp == 1 ? s->plane_width[c] : s->line_sizes[c] / s->bpp);
if (!s->buf_org_m1[c])
s->buf_org_m1[c] = av_buffer_allocz(stride_org_bpp * s->plane_height[c] * sizeof(int16_t));
if (!s->buf_org_m2[c])
s->buf_org_m2[c] = av_buffer_allocz(stride_org_bpp * s->plane_height[c] * sizeof(int16_t));
porg_m1[c] = (int16_t *) s->buf_org_m1[c]->data;
porg_m2[c] = (int16_t *) s->buf_org_m2[c]->data;
}
}
if (s->bpp == 1) { /* 8 bit */
for (c = 0; c < s->num_comps; c++) { /* allocate org/rec buffer memory */
const int m = s->line_sizes[c]; /* master stride */
const int r = ref->linesize[c]; /* ref/c stride */
const int o = s->plane_width[c]; /* XPSNR stride */
if (!s->buf_org[c])
s->buf_org[c] = av_buffer_allocz(s->plane_width[c] * s->plane_height[c] * sizeof(int16_t));
if (!s->buf_rec[c])
s->buf_rec[c] = av_buffer_allocz(s->plane_width[c] * s->plane_height[c] * sizeof(int16_t));
porg[c] = (int16_t *) s->buf_org[c]->data;
prec[c] = (int16_t *) s->buf_rec[c]->data;
for (int y = 0; y < s->plane_height[c]; y++) {
for (int x = 0; x < s->plane_width[c]; x++) {
porg[c][y * o + x] = (int16_t) master->data[c][y * m + x];
prec[c][y * o + x] = (int16_t) ref->data[c][y * r + x];
}
}
}
} else { /* 10, 12, 14 bit */
for (c = 0; c < s->num_comps; c++) {
porg[c] = (int16_t *) master->data[c];
prec[c] = (int16_t *) ref->data[c];
}
}
/* extended perceptually weighted peak signal-to-noise ratio (XPSNR) value */
ret_value = get_wsse(ctx, (int16_t **) &porg, (int16_t **) &porg_m1, (int16_t **) &porg_m2,
(int16_t **) &prec, wsse64);
if ( ret_value < 0 )
return ret_value; /* an error here means something went wrong earlier! */
for (c = 0; c < s->num_comps; c++) {
const double sqrt_wsse = sqrt((double) wsse64[c]);
cur_xpsnr[c] = get_avg_xpsnr (sqrt_wsse, INFINITY,
s->plane_width[c], s->plane_height[c],
s->max_error_64, 1 /* single frame */);
s->sum_wdist[c] += sqrt_wsse;
s->sum_xpsnr[c] += cur_xpsnr[c];
s->and_is_inf[c] &= isinf(cur_xpsnr[c]);
}
s->num_frames_64++;
for (int j = 0; j < s->num_comps; j++) {
int c = s->is_rgb ? s->rgba_map[j] : j;
set_meta(metadata, "lavfi.xpsnr.xpsnr.", s->comps[j], cur_xpsnr[c]);
}
if (s->stats_file) { /* print out frame- and component-wise XPSNR averages */
fprintf(s->stats_file, "n: %4"PRId64"", s->num_frames_64);
for (c = 0; c < s->num_comps; c++)
fprintf(s->stats_file, " XPSNR %c: %3.4f", s->comps[c], cur_xpsnr[c]);
fprintf(s->stats_file, "\n");
}
return ff_filter_frame(ctx->outputs[0], master);
}
static av_cold int init(AVFilterContext *ctx)
{
XPSNRContext *const s = ctx->priv;
int c;
if (s->stats_file_str) {
if (!strcmp(s->stats_file_str, "-")) /* no stats file, so use stdout */
s->stats_file = stdout;
else {
s->stats_file = avpriv_fopen_utf8(s->stats_file_str, "w");
if (!s->stats_file) {
const int err = AVERROR(errno);
char buf[128];
av_strerror(err, buf, sizeof(buf));
av_log(ctx, AV_LOG_ERROR, "Could not open statistics file %s: %s\n", s->stats_file_str, buf);
return err;
}
}
}
s->sse_luma = NULL;
s->weights = NULL;
for (c = 0; c < 3; c++) { /* initialize XPSNR data of each color component */
s->buf_org [c] = NULL;
s->buf_org_m1[c] = NULL;
s->buf_org_m2[c] = NULL;
s->buf_rec [c] = NULL;
s->sum_wdist [c] = 0.0;
s->sum_xpsnr [c] = 0.0;
s->and_is_inf[c] = 1;
}
s->fs.on_event = do_xpsnr;
return 0;
}
static const enum AVPixelFormat xpsnr_formats[] = {
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
#define PF_NOALPHA(suf) AV_PIX_FMT_YUV420##suf, AV_PIX_FMT_YUV422##suf, AV_PIX_FMT_YUV444##suf
#define PF_ALPHA(suf) AV_PIX_FMT_YUVA420##suf, AV_PIX_FMT_YUVA422##suf, AV_PIX_FMT_YUVA444##suf
#define PF(suf) PF_NOALPHA(suf), PF_ALPHA(suf)
PF(P), PF(P9), PF(P10), PF_NOALPHA(P12), PF_NOALPHA(P14), PF(P16),
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_NONE
};
static int config_input_ref(AVFilterLink *inlink)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
AVFilterContext *ctx = inlink->dst;
XPSNRContext *const s = ctx->priv;
FilterLink *il = ff_filter_link(inlink);
if ((ctx->inputs[0]->w != ctx->inputs[1]->w) ||
(ctx->inputs[0]->h != ctx->inputs[1]->h)) {
av_log(ctx, AV_LOG_ERROR, "Width and height of the input videos must match.\n");
return AVERROR(EINVAL);
}
if (ctx->inputs[0]->format != ctx->inputs[1]->format) {
av_log(ctx, AV_LOG_ERROR, "The input videos must be of the same pixel format.\n");
return AVERROR(EINVAL);
}
s->bpp = (desc->comp[0].depth <= 8 ? 1 : 2);
s->depth = desc->comp[0].depth;
s->max_error_64 = (1 << s->depth) - 1; /* conventional limit */
s->max_error_64 *= s->max_error_64;
s->frame_rate = il->frame_rate.num / il->frame_rate.den;
s->num_comps = (desc->nb_components > 3 ? 3 : desc->nb_components);
s->is_rgb = (ff_fill_rgba_map(s->rgba_map, inlink->format) >= 0);
s->comps[0] = (s->is_rgb ? 'r' : 'y');
s->comps[1] = (s->is_rgb ? 'g' : 'u');
s->comps[2] = (s->is_rgb ? 'b' : 'v');
s->comps[3] = 'a';
s->plane_width [1] = s->plane_width [2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->plane_width [0] = s->plane_width [3] = inlink->w;
s->plane_height[1] = s->plane_height[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->plane_height[0] = s->plane_height[3] = inlink->h;
/* XPSNR always operates with 16-bit internal precision */
ff_psnr_init(&s->pdsp, 15);
s->dsp.highds_func = highds; /* initialize filtering methods */
s->dsp.diff1st_func = diff1st;
s->dsp.diff2nd_func = diff2nd;
return 0;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
XPSNRContext *s = ctx->priv;
AVFilterLink *mainlink = ctx->inputs[0];
FilterLink *il = ff_filter_link(mainlink);
FilterLink *ol = ff_filter_link(outlink);
int ret;
if ((ret = ff_framesync_init_dualinput(&s->fs, ctx)) < 0)
return ret;
outlink->w = mainlink->w;
outlink->h = mainlink->h;
outlink->time_base = mainlink->time_base;
outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio;
ol->frame_rate = il->frame_rate;
if ((ret = ff_framesync_configure(&s->fs)) < 0)
return ret;
outlink->time_base = s->fs.time_base;
if (av_cmp_q(mainlink->time_base, outlink->time_base) ||
av_cmp_q(ctx->inputs[1]->time_base, outlink->time_base))
av_log(ctx, AV_LOG_WARNING, "not matching timebases found between first input: %d/%d and second input %d/%d, results may be incorrect!\n",
mainlink->time_base.num, mainlink->time_base.den,
ctx->inputs[1]->time_base.num, ctx->inputs[1]->time_base.den);
return 0;
}
static int activate(AVFilterContext *ctx)
{
XPSNRContext *s = ctx->priv;
return ff_framesync_activate(&s->fs);
}
static av_cold void uninit(AVFilterContext *ctx)
{
XPSNRContext *const s = ctx->priv;
int c;
if (s->num_frames_64 > 0) { /* print out overall component-wise mean XPSNR */
const double xpsnr_luma = get_avg_xpsnr(s->sum_wdist[0], s->sum_xpsnr[0],
s->plane_width[0], s->plane_height[0],
s->max_error_64, s->num_frames_64);
double xpsnr_min = xpsnr_luma;
/* luma */
av_log(ctx, AV_LOG_INFO, "XPSNR %c: %3.4f", s->comps[0], xpsnr_luma);
if (s->stats_file) {
fprintf(s->stats_file, "\nXPSNR average, %"PRId64" frames", s->num_frames_64);
fprintf(s->stats_file, " %c: %3.4f", s->comps[0], xpsnr_luma);
}
/* chroma */
for (c = 1; c < s->num_comps; c++) {
const double xpsnr_chroma = get_avg_xpsnr(s->sum_wdist[c], s->sum_xpsnr[c],
s->plane_width[c], s->plane_height[c],
s->max_error_64, s->num_frames_64);
if (xpsnr_min > xpsnr_chroma)
xpsnr_min = xpsnr_chroma;
av_log(ctx, AV_LOG_INFO, " %c: %3.4f", s->comps[c], xpsnr_chroma);
if (s->stats_file && s->stats_file != stdout)
fprintf(s->stats_file, " %c: %3.4f", s->comps[c], xpsnr_chroma);
}
/* print out line break, and minimum XPSNR across the color components */
if (s->num_comps > 1) {
av_log(ctx, AV_LOG_INFO, " (minimum: %3.4f)\n", xpsnr_min);
if (s->stats_file && s->stats_file != stdout)
fprintf(s->stats_file, " (minimum: %3.4f)\n", xpsnr_min);
} else {
av_log(ctx, AV_LOG_INFO, "\n");
if (s->stats_file && s->stats_file != stdout)
fprintf(s->stats_file, "\n");
}
}
ff_framesync_uninit(&s->fs); /* free temporary picture or block buf memory */
if (s->stats_file && s->stats_file != stdout)
fclose(s->stats_file);
av_freep(&s->sse_luma);
av_freep(&s->weights );
for (c = 0; c < s->num_comps; c++) { /* free extra temporal org buf memory */
if(s->buf_org_m1[c])
av_freep(s->buf_org_m1[c]);
if(s->buf_org_m2[c])
av_freep(s->buf_org_m2[c]);
}
if (s->bpp == 1) { /* 8 bit */
for (c = 0; c < s->num_comps; c++) { /* and org/rec picture buf memory */
if(s->buf_org_m2[c])
av_freep(s->buf_org[c]);
if(s->buf_rec[c])
av_freep(s->buf_rec[c]);
}
}
}
static const AVFilterPad xpsnr_inputs[] = {
{
.name = "main",
.type = AVMEDIA_TYPE_VIDEO,
}, {
.name = "reference",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input_ref,
}
};
static const AVFilterPad xpsnr_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
}
};
const AVFilter ff_vf_xpsnr = {
.name = "xpsnr",
.description = NULL_IF_CONFIG_SMALL("Calculate the extended perceptually weighted peak signal-to-noise ratio (XPSNR) between two video streams."),
.preinit = xpsnr_framesync_preinit,
.init = init,
.uninit = uninit,
.activate = activate,
.priv_size = sizeof(XPSNRContext),
.priv_class = &xpsnr_class,
FILTER_INPUTS (xpsnr_inputs),
FILTER_OUTPUTS(xpsnr_outputs),
FILTER_PIXFMTS_ARRAY(xpsnr_formats),
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_METADATA_ONLY
};