1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00
FFmpeg/libavfilter/vf_bilateral.c
Paul B Mahol fa8345cf05 avfilter/vf_bilateral: simplify code a little
Make alpha_ calculation faster.
2020-07-18 10:22:12 +02:00

367 lines
21 KiB
C

/*
* Copyright (c) 2017 Ming Yang
* Copyright (c) 2019 Paul B Mahol
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
typedef struct BilateralContext {
const AVClass *class;
float sigmaS;
float sigmaR;
int planes;
int nb_planes;
int depth;
int planewidth[4];
int planeheight[4];
float alpha;
float range_table[65536];
float *img_out_f;
float *img_temp;
float *map_factor_a;
float *map_factor_b;
float *slice_factor_a;
float *slice_factor_b;
float *line_factor_a;
float *line_factor_b;
} BilateralContext;
#define OFFSET(x) offsetof(BilateralContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
static const AVOption bilateral_options[] = {
{ "sigmaS", "set spatial sigma", OFFSET(sigmaS), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.0, 512, FLAGS },
{ "sigmaR", "set range sigma", OFFSET(sigmaR), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.0, 1, FLAGS },
{ "planes", "set planes to filter", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=1}, 0, 0xF, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(bilateral);
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9,
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10,
AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_NONE
};
return ff_set_common_formats(ctx, ff_make_format_list(pix_fmts));
}
static int config_input(AVFilterLink *inlink)
{
BilateralContext *s = inlink->dst->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
float inv_sigma_range;
s->depth = desc->comp[0].depth;
inv_sigma_range = 1.0f / (s->sigmaR * ((1 << s->depth) - 1));
s->alpha = expf(-sqrtf(2.f) / s->sigmaS);
//compute a lookup table
for (int i = 0; i < (1 << s->depth); i++)
s->range_table[i] = s->alpha * expf(-i * inv_sigma_range);
s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->planewidth[0] = s->planewidth[3] = inlink->w;
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planeheight[0] = s->planeheight[3] = inlink->h;
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
s->img_out_f = av_calloc(inlink->w * inlink->h, sizeof(float));
s->img_temp = av_calloc(inlink->w * inlink->h, sizeof(float));
s->map_factor_a = av_calloc(inlink->w * inlink->h, sizeof(float));
s->map_factor_b = av_calloc(inlink->w * inlink->h, sizeof(float));
s->slice_factor_a = av_calloc(inlink->w, sizeof(float));
s->slice_factor_b = av_calloc(inlink->w, sizeof(float));
s->line_factor_a = av_calloc(inlink->w, sizeof(float));
s->line_factor_b = av_calloc(inlink->w, sizeof(float));
if (!s->img_out_f ||
!s->img_temp ||
!s->map_factor_a ||
!s->map_factor_b ||
!s->slice_factor_a ||
!s->slice_factor_a ||
!s->line_factor_a ||
!s->line_factor_a)
return AVERROR(ENOMEM);
return 0;
}
#define BILATERAL(type, name) \
static void bilateral_##name(BilateralContext *s, const uint8_t *ssrc, uint8_t *ddst, \
float sigma_spatial, float sigma_range, \
int width, int height, int src_linesize, int dst_linesize) \
{ \
type *dst = (type *)ddst; \
const type *src = (const type *)ssrc; \
float *img_out_f = s->img_out_f, *img_temp = s->img_temp; \
float *map_factor_a = s->map_factor_a, *map_factor_b = s->map_factor_b; \
float *slice_factor_a = s->slice_factor_a, *slice_factor_b = s->slice_factor_b; \
float *line_factor_a = s->line_factor_a, *line_factor_b = s->line_factor_b; \
const float *range_table = s->range_table; \
const float alpha = s->alpha; \
float ypr, ycr, *ycy, *ypy, *xcy, fp, fc; \
const float inv_alpha_ = 1.f - alpha; \
float *ycf, *ypf, *xcf, *in_factor; \
const type *tcy, *tpy; \
int h1; \
\
for (int y = 0; y < height; y++) { \
float *temp_factor_x, *temp_x = &img_temp[y * width]; \
const type *in_x = &src[y * src_linesize]; \
const type *texture_x = &src[y * src_linesize]; \
type tpr; \
\
*temp_x++ = ypr = *in_x++; \
tpr = *texture_x++; \
\
temp_factor_x = &map_factor_a[y * width]; \
*temp_factor_x++ = fp = 1; \
\
for (int x = 1; x < width; x++) { \
float alpha_; \
int range_dist; \
type tcr = *texture_x++; \
type dr = abs(tcr - tpr); \
\
range_dist = dr; \
alpha_ = range_table[range_dist]; \
*temp_x++ = ycr = inv_alpha_*(*in_x++) + alpha_*ypr; \
tpr = tcr; \
ypr = ycr; \
*temp_factor_x++ = fc = inv_alpha_ + alpha_ * fp; \
fp = fc; \
} \
--temp_x; *temp_x = 0.5f*((*temp_x) + (*--in_x)); \
tpr = *--texture_x; \
ypr = *in_x; \
\
--temp_factor_x; *temp_factor_x = 0.5f*((*temp_factor_x) + 1); \
fp = 1; \
\
for (int x = width - 2; x >= 0; x--) { \
type tcr = *--texture_x; \
type dr = abs(tcr - tpr); \
int range_dist = dr; \
float alpha_ = range_table[range_dist]; \
\
ycr = inv_alpha_ * (*--in_x) + alpha_ * ypr; \
--temp_x; *temp_x = 0.5f*((*temp_x) + ycr); \
tpr = tcr; \
ypr = ycr; \
\
fc = inv_alpha_ + alpha_*fp; \
--temp_factor_x; \
*temp_factor_x = 0.5f*((*temp_factor_x) + fc); \
fp = fc; \
} \
} \
memcpy(img_out_f, img_temp, sizeof(float) * width); \
\
in_factor = map_factor_a; \
memcpy(map_factor_b, in_factor, sizeof(float) * width); \
for (int y = 1; y < height; y++) { \
tpy = &src[(y - 1) * src_linesize]; \
tcy = &src[y * src_linesize]; \
xcy = &img_temp[y * width]; \
ypy = &img_out_f[(y - 1) * width]; \
ycy = &img_out_f[y * width]; \
\
xcf = &in_factor[y * width]; \
ypf = &map_factor_b[(y - 1) * width]; \
ycf = &map_factor_b[y * width]; \
for (int x = 0; x < width; x++) { \
type dr = abs((*tcy++) - (*tpy++)); \
int range_dist = dr; \
float alpha_ = range_table[range_dist]; \
\
*ycy++ = inv_alpha_*(*xcy++) + alpha_*(*ypy++); \
*ycf++ = inv_alpha_*(*xcf++) + alpha_*(*ypf++); \
} \
} \
h1 = height - 1; \
ycf = line_factor_a; \
ypf = line_factor_b; \
memcpy(ypf, &in_factor[h1 * width], sizeof(float) * width); \
for (int x = 0; x < width; x++) \
map_factor_b[h1 * width + x] = 0.5f*(map_factor_b[h1 * width + x] + ypf[x]); \
\
ycy = slice_factor_a; \
ypy = slice_factor_b; \
memcpy(ypy, &img_temp[h1 * width], sizeof(float) * width); \
for (int x = 0, k = 0; x < width; x++) { \
int idx = h1 * width + x; \
img_out_f[idx] = 0.5f*(img_out_f[idx] + ypy[k++]) / map_factor_b[h1 * width + x]; \
} \
\
for (int y = h1 - 1; y >= 0; y--) { \
float *ycf_, *ypf_, *factor_; \
float *ycy_, *ypy_, *out_; \
\
tpy = &src[(y + 1) * src_linesize]; \
tcy = &src[y * src_linesize]; \
xcy = &img_temp[y * width]; \
ycy_ = ycy; \
ypy_ = ypy; \
out_ = &img_out_f[y * width]; \
\
xcf = &in_factor[y * width]; \
ycf_ = ycf; \
ypf_ = ypf; \
factor_ = &map_factor_b[y * width]; \
for (int x = 0; x < width; x++) { \
type dr = abs((*tcy++) - (*tpy++)); \
int range_dist = dr; \
float alpha_ = range_table[range_dist]; \
float ycc, fcc = inv_alpha_*(*xcf++) + alpha_*(*ypf_++); \
\
*ycf_++ = fcc; \
*factor_ = 0.5f * (*factor_ + fcc); \
\
ycc = inv_alpha_*(*xcy++) + alpha_*(*ypy_++); \
*ycy_++ = ycc; \
*out_ = 0.5f * (*out_ + ycc) / (*factor_); \
out_++; \
factor_++; \
} \
\
ypy = ycy; \
ypf = ycf; \
} \
\
for (int i = 0; i < height; i++) \
for (int j = 0; j < width; j++) \
dst[j + i * dst_linesize] = img_out_f[i * width + j]; \
}
BILATERAL(uint8_t, byte)
BILATERAL(uint16_t, word)
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
BilateralContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
for (int plane = 0; plane < s->nb_planes; plane++) {
if (!(s->planes & (1 << plane))) {
av_image_copy_plane(out->data[plane], out->linesize[plane],
in->data[plane], in->linesize[plane],
s->planewidth[plane] * ((s->depth + 7) / 8), s->planeheight[plane]);
continue;
}
if (s->depth <= 8)
bilateral_byte(s, in->data[plane], out->data[plane], s->sigmaS, s->sigmaR,
s->planewidth[plane], s->planeheight[plane],
in->linesize[plane], out->linesize[plane]);
else
bilateral_word(s, in->data[plane], out->data[plane], s->sigmaS, s->sigmaR,
s->planewidth[plane], s->planeheight[plane],
in->linesize[plane] / 2, out->linesize[plane] / 2);
}
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static av_cold void uninit(AVFilterContext *ctx)
{
BilateralContext *s = ctx->priv;
av_freep(&s->img_out_f);
av_freep(&s->img_temp);
av_freep(&s->map_factor_a);
av_freep(&s->map_factor_b);
av_freep(&s->slice_factor_a);
av_freep(&s->slice_factor_b);
av_freep(&s->line_factor_a);
av_freep(&s->line_factor_b);
}
static const AVFilterPad bilateral_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad bilateral_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
AVFilter ff_vf_bilateral = {
.name = "bilateral",
.description = NULL_IF_CONFIG_SMALL("Apply Bilateral filter."),
.priv_size = sizeof(BilateralContext),
.priv_class = &bilateral_class,
.uninit = uninit,
.query_formats = query_formats,
.inputs = bilateral_inputs,
.outputs = bilateral_outputs,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC,
};