1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-18 03:19:31 +02:00
FFmpeg/libavcodec/exrenc.c
Andreas Rheinhardt 20f9727018 avcodec/codec_internal: Add FFCodec, hide internal part of AVCodec
Up until now, codec.h contains both public and private parts
of AVCodec. This exposes the internals of AVCodec to users
and leads them into the temptation of actually using them
and forces us to forward-declare structures and types that
users can't use at all.

This commit changes this by adding a new structure FFCodec to
codec_internal.h that extends AVCodec, i.e. contains the public
AVCodec as first member; the private fields of AVCodec are moved
to this structure, leaving codec.h clean.

Reviewed-by: Anton Khirnov <anton@khirnov.net>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2022-03-21 01:33:09 +01:00

554 lines
18 KiB
C

/*
* Copyright (c) 2021 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* OpenEXR encoder
*/
#include <float.h>
#include <zlib.h>
#include "libavutil/avassert.h"
#include "libavutil/opt.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/imgutils.h"
#include "libavutil/pixdesc.h"
#include "avcodec.h"
#include "bytestream.h"
#include "codec_internal.h"
#include "encode.h"
#include "float2half.h"
enum ExrCompr {
EXR_RAW,
EXR_RLE,
EXR_ZIP1,
EXR_ZIP16,
EXR_NBCOMPR,
};
enum ExrPixelType {
EXR_UINT,
EXR_HALF,
EXR_FLOAT,
EXR_UNKNOWN,
};
static const char abgr_chlist[4] = { 'A', 'B', 'G', 'R' };
static const char bgr_chlist[4] = { 'B', 'G', 'R', 'A' };
static const uint8_t gbra_order[4] = { 3, 1, 0, 2 };
static const uint8_t gbr_order[4] = { 1, 0, 2, 0 };
typedef struct EXRScanlineData {
uint8_t *compressed_data;
unsigned int compressed_size;
uint8_t *uncompressed_data;
unsigned int uncompressed_size;
uint8_t *tmp;
unsigned int tmp_size;
int64_t actual_size;
} EXRScanlineData;
typedef struct EXRContext {
const AVClass *class;
int compression;
int pixel_type;
int planes;
int nb_scanlines;
int scanline_height;
float gamma;
const char *ch_names;
const uint8_t *ch_order;
PutByteContext pb;
EXRScanlineData *scanline;
uint16_t basetable[512];
uint8_t shifttable[512];
} EXRContext;
static int encode_init(AVCodecContext *avctx)
{
EXRContext *s = avctx->priv_data;
float2half_tables(s->basetable, s->shifttable);
switch (avctx->pix_fmt) {
case AV_PIX_FMT_GBRPF32:
s->planes = 3;
s->ch_names = bgr_chlist;
s->ch_order = gbr_order;
break;
case AV_PIX_FMT_GBRAPF32:
s->planes = 4;
s->ch_names = abgr_chlist;
s->ch_order = gbra_order;
break;
default:
av_assert0(0);
}
switch (s->compression) {
case EXR_RAW:
case EXR_RLE:
case EXR_ZIP1:
s->scanline_height = 1;
s->nb_scanlines = avctx->height;
break;
case EXR_ZIP16:
s->scanline_height = 16;
s->nb_scanlines = (avctx->height + s->scanline_height - 1) / s->scanline_height;
break;
default:
av_assert0(0);
}
s->scanline = av_calloc(s->nb_scanlines, sizeof(*s->scanline));
if (!s->scanline)
return AVERROR(ENOMEM);
return 0;
}
static int encode_close(AVCodecContext *avctx)
{
EXRContext *s = avctx->priv_data;
for (int y = 0; y < s->nb_scanlines && s->scanline; y++) {
EXRScanlineData *scanline = &s->scanline[y];
av_freep(&scanline->tmp);
av_freep(&scanline->compressed_data);
av_freep(&scanline->uncompressed_data);
}
av_freep(&s->scanline);
return 0;
}
static void reorder_pixels(uint8_t *dst, const uint8_t *src, ptrdiff_t size)
{
const ptrdiff_t half_size = (size + 1) / 2;
uint8_t *t1 = dst;
uint8_t *t2 = dst + half_size;
for (ptrdiff_t i = 0; i < half_size; i++) {
t1[i] = *(src++);
t2[i] = *(src++);
}
}
static void predictor(uint8_t *src, ptrdiff_t size)
{
int p = src[0];
for (ptrdiff_t i = 1; i < size; i++) {
int d = src[i] - p + 384;
p = src[i];
src[i] = d;
}
}
static int64_t rle_compress(uint8_t *out, int64_t out_size,
const uint8_t *in, int64_t in_size)
{
int64_t i = 0, o = 0, run = 1, copy = 0;
while (i < in_size) {
while (i + run < in_size && in[i] == in[i + run] && run < 128)
run++;
if (run >= 3) {
if (o + 2 >= out_size)
return -1;
out[o++] = run - 1;
out[o++] = in[i];
i += run;
} else {
if (i + run < in_size)
copy += run;
while (i + copy < in_size && copy < 127 && in[i + copy] != in[i + copy - 1])
copy++;
if (o + 1 + copy >= out_size)
return -1;
out[o++] = -copy;
for (int x = 0; x < copy; x++)
out[o + x] = in[i + x];
o += copy;
i += copy;
copy = 0;
}
run = 1;
}
return o;
}
static int encode_scanline_rle(EXRContext *s, const AVFrame *frame)
{
const int64_t element_size = s->pixel_type == EXR_HALF ? 2LL : 4LL;
for (int y = 0; y < frame->height; y++) {
EXRScanlineData *scanline = &s->scanline[y];
int64_t tmp_size = element_size * s->planes * frame->width;
int64_t max_compressed_size = tmp_size * 3 / 2;
av_fast_padded_malloc(&scanline->uncompressed_data, &scanline->uncompressed_size, tmp_size);
if (!scanline->uncompressed_data)
return AVERROR(ENOMEM);
av_fast_padded_malloc(&scanline->tmp, &scanline->tmp_size, tmp_size);
if (!scanline->tmp)
return AVERROR(ENOMEM);
av_fast_padded_malloc(&scanline->compressed_data, &scanline->compressed_size, max_compressed_size);
if (!scanline->compressed_data)
return AVERROR(ENOMEM);
switch (s->pixel_type) {
case EXR_FLOAT:
for (int p = 0; p < s->planes; p++) {
int ch = s->ch_order[p];
memcpy(scanline->uncompressed_data + frame->width * 4 * p,
frame->data[ch] + y * frame->linesize[ch], frame->width * 4);
}
break;
case EXR_HALF:
for (int p = 0; p < s->planes; p++) {
int ch = s->ch_order[p];
uint16_t *dst = (uint16_t *)(scanline->uncompressed_data + frame->width * 2 * p);
uint32_t *src = (uint32_t *)(frame->data[ch] + y * frame->linesize[ch]);
for (int x = 0; x < frame->width; x++)
dst[x] = float2half(src[x], s->basetable, s->shifttable);
}
break;
}
reorder_pixels(scanline->tmp, scanline->uncompressed_data, tmp_size);
predictor(scanline->tmp, tmp_size);
scanline->actual_size = rle_compress(scanline->compressed_data,
max_compressed_size,
scanline->tmp, tmp_size);
if (scanline->actual_size <= 0 || scanline->actual_size >= tmp_size) {
FFSWAP(uint8_t *, scanline->uncompressed_data, scanline->compressed_data);
FFSWAP(int, scanline->uncompressed_size, scanline->compressed_size);
scanline->actual_size = tmp_size;
}
}
return 0;
}
static int encode_scanline_zip(EXRContext *s, const AVFrame *frame)
{
const int64_t element_size = s->pixel_type == EXR_HALF ? 2LL : 4LL;
for (int y = 0; y < s->nb_scanlines; y++) {
EXRScanlineData *scanline = &s->scanline[y];
const int scanline_height = FFMIN(s->scanline_height, frame->height - y * s->scanline_height);
int64_t tmp_size = element_size * s->planes * frame->width * scanline_height;
int64_t max_compressed_size = tmp_size * 3 / 2;
unsigned long actual_size, source_size;
av_fast_padded_malloc(&scanline->uncompressed_data, &scanline->uncompressed_size, tmp_size);
if (!scanline->uncompressed_data)
return AVERROR(ENOMEM);
av_fast_padded_malloc(&scanline->tmp, &scanline->tmp_size, tmp_size);
if (!scanline->tmp)
return AVERROR(ENOMEM);
av_fast_padded_malloc(&scanline->compressed_data, &scanline->compressed_size, max_compressed_size);
if (!scanline->compressed_data)
return AVERROR(ENOMEM);
switch (s->pixel_type) {
case EXR_FLOAT:
for (int l = 0; l < scanline_height; l++) {
const int scanline_size = frame->width * 4 * s->planes;
for (int p = 0; p < s->planes; p++) {
int ch = s->ch_order[p];
memcpy(scanline->uncompressed_data + scanline_size * l + p * frame->width * 4,
frame->data[ch] + (y * s->scanline_height + l) * frame->linesize[ch],
frame->width * 4);
}
}
break;
case EXR_HALF:
for (int l = 0; l < scanline_height; l++) {
const int scanline_size = frame->width * 2 * s->planes;
for (int p = 0; p < s->planes; p++) {
int ch = s->ch_order[p];
uint16_t *dst = (uint16_t *)(scanline->uncompressed_data + scanline_size * l + p * frame->width * 2);
uint32_t *src = (uint32_t *)(frame->data[ch] + (y * s->scanline_height + l) * frame->linesize[ch]);
for (int x = 0; x < frame->width; x++)
dst[x] = float2half(src[x], s->basetable, s->shifttable);
}
}
break;
}
reorder_pixels(scanline->tmp, scanline->uncompressed_data, tmp_size);
predictor(scanline->tmp, tmp_size);
source_size = tmp_size;
actual_size = max_compressed_size;
compress(scanline->compressed_data, &actual_size,
scanline->tmp, source_size);
scanline->actual_size = actual_size;
if (scanline->actual_size >= tmp_size) {
FFSWAP(uint8_t *, scanline->uncompressed_data, scanline->compressed_data);
FFSWAP(int, scanline->uncompressed_size, scanline->compressed_size);
scanline->actual_size = tmp_size;
}
}
return 0;
}
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *frame, int *got_packet)
{
EXRContext *s = avctx->priv_data;
PutByteContext *pb = &s->pb;
int64_t offset;
int ret;
int64_t out_size = 2048LL + avctx->height * 16LL +
av_image_get_buffer_size(avctx->pix_fmt,
avctx->width,
avctx->height, 64) * 3LL / 2;
if ((ret = ff_get_encode_buffer(avctx, pkt, out_size, 0)) < 0)
return ret;
bytestream2_init_writer(pb, pkt->data, pkt->size);
bytestream2_put_le32(pb, 20000630);
bytestream2_put_byte(pb, 2);
bytestream2_put_le24(pb, 0);
bytestream2_put_buffer(pb, "channels\0chlist\0", 16);
bytestream2_put_le32(pb, s->planes * 18 + 1);
for (int p = 0; p < s->planes; p++) {
bytestream2_put_byte(pb, s->ch_names[p]);
bytestream2_put_byte(pb, 0);
bytestream2_put_le32(pb, s->pixel_type);
bytestream2_put_le32(pb, 0);
bytestream2_put_le32(pb, 1);
bytestream2_put_le32(pb, 1);
}
bytestream2_put_byte(pb, 0);
bytestream2_put_buffer(pb, "compression\0compression\0", 24);
bytestream2_put_le32(pb, 1);
bytestream2_put_byte(pb, s->compression);
bytestream2_put_buffer(pb, "dataWindow\0box2i\0", 17);
bytestream2_put_le32(pb, 16);
bytestream2_put_le32(pb, 0);
bytestream2_put_le32(pb, 0);
bytestream2_put_le32(pb, avctx->width - 1);
bytestream2_put_le32(pb, avctx->height - 1);
bytestream2_put_buffer(pb, "displayWindow\0box2i\0", 20);
bytestream2_put_le32(pb, 16);
bytestream2_put_le32(pb, 0);
bytestream2_put_le32(pb, 0);
bytestream2_put_le32(pb, avctx->width - 1);
bytestream2_put_le32(pb, avctx->height - 1);
bytestream2_put_buffer(pb, "lineOrder\0lineOrder\0", 20);
bytestream2_put_le32(pb, 1);
bytestream2_put_byte(pb, 0);
bytestream2_put_buffer(pb, "screenWindowCenter\0v2f\0", 23);
bytestream2_put_le32(pb, 8);
bytestream2_put_le64(pb, 0);
bytestream2_put_buffer(pb, "screenWindowWidth\0float\0", 24);
bytestream2_put_le32(pb, 4);
bytestream2_put_le32(pb, av_float2int(1.f));
if (avctx->sample_aspect_ratio.num && avctx->sample_aspect_ratio.den) {
bytestream2_put_buffer(pb, "pixelAspectRatio\0float\0", 23);
bytestream2_put_le32(pb, 4);
bytestream2_put_le32(pb, av_float2int(av_q2d(avctx->sample_aspect_ratio)));
}
if (avctx->framerate.num && avctx->framerate.den) {
bytestream2_put_buffer(pb, "framesPerSecond\0rational\0", 25);
bytestream2_put_le32(pb, 8);
bytestream2_put_le32(pb, avctx->framerate.num);
bytestream2_put_le32(pb, avctx->framerate.den);
}
bytestream2_put_buffer(pb, "gamma\0float\0", 12);
bytestream2_put_le32(pb, 4);
bytestream2_put_le32(pb, av_float2int(s->gamma));
bytestream2_put_buffer(pb, "writer\0string\0", 14);
bytestream2_put_le32(pb, 4);
bytestream2_put_buffer(pb, "lavc", 4);
bytestream2_put_byte(pb, 0);
switch (s->compression) {
case EXR_RAW:
/* nothing to do */
break;
case EXR_RLE:
encode_scanline_rle(s, frame);
break;
case EXR_ZIP16:
case EXR_ZIP1:
encode_scanline_zip(s, frame);
break;
default:
av_assert0(0);
}
switch (s->compression) {
case EXR_RAW:
offset = bytestream2_tell_p(pb) + avctx->height * 8LL;
if (s->pixel_type == EXR_FLOAT) {
for (int y = 0; y < avctx->height; y++) {
bytestream2_put_le64(pb, offset);
offset += avctx->width * s->planes * 4 + 8;
}
for (int y = 0; y < avctx->height; y++) {
bytestream2_put_le32(pb, y);
bytestream2_put_le32(pb, s->planes * avctx->width * 4);
for (int p = 0; p < s->planes; p++) {
int ch = s->ch_order[p];
bytestream2_put_buffer(pb, frame->data[ch] + y * frame->linesize[ch],
avctx->width * 4);
}
}
} else {
for (int y = 0; y < avctx->height; y++) {
bytestream2_put_le64(pb, offset);
offset += avctx->width * s->planes * 2 + 8;
}
for (int y = 0; y < avctx->height; y++) {
bytestream2_put_le32(pb, y);
bytestream2_put_le32(pb, s->planes * avctx->width * 2);
for (int p = 0; p < s->planes; p++) {
int ch = s->ch_order[p];
uint32_t *src = (uint32_t *)(frame->data[ch] + y * frame->linesize[ch]);
for (int x = 0; x < frame->width; x++)
bytestream2_put_le16(pb, float2half(src[x], s->basetable, s->shifttable));
}
}
}
break;
case EXR_ZIP16:
case EXR_ZIP1:
case EXR_RLE:
offset = bytestream2_tell_p(pb) + s->nb_scanlines * 8LL;
for (int y = 0; y < s->nb_scanlines; y++) {
EXRScanlineData *scanline = &s->scanline[y];
bytestream2_put_le64(pb, offset);
offset += scanline->actual_size + 8;
}
for (int y = 0; y < s->nb_scanlines; y++) {
EXRScanlineData *scanline = &s->scanline[y];
bytestream2_put_le32(pb, y * s->scanline_height);
bytestream2_put_le32(pb, scanline->actual_size);
bytestream2_put_buffer(pb, scanline->compressed_data,
scanline->actual_size);
}
break;
default:
av_assert0(0);
}
av_shrink_packet(pkt, bytestream2_tell_p(pb));
*got_packet = 1;
return 0;
}
#define OFFSET(x) offsetof(EXRContext, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "compression", "set compression type", OFFSET(compression), AV_OPT_TYPE_INT, {.i64=0}, 0, EXR_NBCOMPR-1, VE, "compr" },
{ "none", "none", 0, AV_OPT_TYPE_CONST, {.i64=EXR_RAW}, 0, 0, VE, "compr" },
{ "rle" , "RLE", 0, AV_OPT_TYPE_CONST, {.i64=EXR_RLE}, 0, 0, VE, "compr" },
{ "zip1", "ZIP1", 0, AV_OPT_TYPE_CONST, {.i64=EXR_ZIP1}, 0, 0, VE, "compr" },
{ "zip16", "ZIP16", 0, AV_OPT_TYPE_CONST, {.i64=EXR_ZIP16}, 0, 0, VE, "compr" },
{ "format", "set pixel type", OFFSET(pixel_type), AV_OPT_TYPE_INT, {.i64=EXR_FLOAT}, EXR_HALF, EXR_UNKNOWN-1, VE, "pixel" },
{ "half" , NULL, 0, AV_OPT_TYPE_CONST, {.i64=EXR_HALF}, 0, 0, VE, "pixel" },
{ "float", NULL, 0, AV_OPT_TYPE_CONST, {.i64=EXR_FLOAT}, 0, 0, VE, "pixel" },
{ "gamma", "set gamma", OFFSET(gamma), AV_OPT_TYPE_FLOAT, {.dbl=1.f}, 0.001, FLT_MAX, VE },
{ NULL},
};
static const AVClass exr_class = {
.class_name = "exr",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
const FFCodec ff_exr_encoder = {
.p.name = "exr",
.p.long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
.priv_data_size = sizeof(EXRContext),
.p.priv_class = &exr_class,
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_EXR,
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
.init = encode_init,
.encode2 = encode_frame,
.close = encode_close,
.p.pix_fmts = (const enum AVPixelFormat[]) {
AV_PIX_FMT_GBRPF32,
AV_PIX_FMT_GBRAPF32,
AV_PIX_FMT_NONE },
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
};