mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-02 03:06:28 +02:00
faa94a576f
Signed-off-by: Paul B Mahol <onemda@gmail.com>
1167 lines
40 KiB
C
1167 lines
40 KiB
C
/*
|
|
* Ut Video decoder
|
|
* Copyright (c) 2011 Konstantin Shishkov
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* Ut Video decoder
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "libavutil/intreadwrite.h"
|
|
#include "avcodec.h"
|
|
#include "bswapdsp.h"
|
|
#include "bytestream.h"
|
|
#include "get_bits.h"
|
|
#include "internal.h"
|
|
#include "thread.h"
|
|
#include "utvideo.h"
|
|
|
|
static int build_huff10(const uint8_t *src, VLC *vlc, int *fsym)
|
|
{
|
|
int i;
|
|
HuffEntry he[1024];
|
|
int last;
|
|
uint32_t codes[1024];
|
|
uint8_t bits[1024];
|
|
uint16_t syms[1024];
|
|
uint32_t code;
|
|
|
|
*fsym = -1;
|
|
for (i = 0; i < 1024; i++) {
|
|
he[i].sym = i;
|
|
he[i].len = *src++;
|
|
}
|
|
qsort(he, 1024, sizeof(*he), ff_ut10_huff_cmp_len);
|
|
|
|
if (!he[0].len) {
|
|
*fsym = he[0].sym;
|
|
return 0;
|
|
}
|
|
|
|
last = 1023;
|
|
while (he[last].len == 255 && last)
|
|
last--;
|
|
|
|
if (he[last].len > 32) {
|
|
return -1;
|
|
}
|
|
|
|
code = 1;
|
|
for (i = last; i >= 0; i--) {
|
|
codes[i] = code >> (32 - he[i].len);
|
|
bits[i] = he[i].len;
|
|
syms[i] = he[i].sym;
|
|
code += 0x80000000u >> (he[i].len - 1);
|
|
}
|
|
|
|
return ff_init_vlc_sparse(vlc, FFMIN(he[last].len, 11), last + 1,
|
|
bits, sizeof(*bits), sizeof(*bits),
|
|
codes, sizeof(*codes), sizeof(*codes),
|
|
syms, sizeof(*syms), sizeof(*syms), 0);
|
|
}
|
|
|
|
static int build_huff(const uint8_t *src, VLC *vlc, int *fsym)
|
|
{
|
|
int i;
|
|
HuffEntry he[256];
|
|
int last;
|
|
uint32_t codes[256];
|
|
uint8_t bits[256];
|
|
uint8_t syms[256];
|
|
uint32_t code;
|
|
|
|
*fsym = -1;
|
|
for (i = 0; i < 256; i++) {
|
|
he[i].sym = i;
|
|
he[i].len = *src++;
|
|
}
|
|
qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len);
|
|
|
|
if (!he[0].len) {
|
|
*fsym = he[0].sym;
|
|
return 0;
|
|
}
|
|
|
|
last = 255;
|
|
while (he[last].len == 255 && last)
|
|
last--;
|
|
|
|
if (he[last].len > 32)
|
|
return -1;
|
|
|
|
code = 1;
|
|
for (i = last; i >= 0; i--) {
|
|
codes[i] = code >> (32 - he[i].len);
|
|
bits[i] = he[i].len;
|
|
syms[i] = he[i].sym;
|
|
code += 0x80000000u >> (he[i].len - 1);
|
|
}
|
|
|
|
return ff_init_vlc_sparse(vlc, FFMIN(he[last].len, 11), last + 1,
|
|
bits, sizeof(*bits), sizeof(*bits),
|
|
codes, sizeof(*codes), sizeof(*codes),
|
|
syms, sizeof(*syms), sizeof(*syms), 0);
|
|
}
|
|
|
|
static int decode_plane10(UtvideoContext *c, int plane_no,
|
|
uint16_t *dst, int step, ptrdiff_t stride,
|
|
int width, int height,
|
|
const uint8_t *src, const uint8_t *huff,
|
|
int use_pred)
|
|
{
|
|
int i, j, slice, pix, ret;
|
|
int sstart, send;
|
|
VLC vlc;
|
|
GetBitContext gb;
|
|
int prev, fsym;
|
|
|
|
if ((ret = build_huff10(huff, &vlc, &fsym)) < 0) {
|
|
av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
|
|
return ret;
|
|
}
|
|
if (fsym >= 0) { // build_huff reported a symbol to fill slices with
|
|
send = 0;
|
|
for (slice = 0; slice < c->slices; slice++) {
|
|
uint16_t *dest;
|
|
|
|
sstart = send;
|
|
send = (height * (slice + 1) / c->slices);
|
|
dest = dst + sstart * stride;
|
|
|
|
prev = 0x200;
|
|
for (j = sstart; j < send; j++) {
|
|
for (i = 0; i < width * step; i += step) {
|
|
pix = fsym;
|
|
if (use_pred) {
|
|
prev += pix;
|
|
prev &= 0x3FF;
|
|
pix = prev;
|
|
}
|
|
dest[i] = pix;
|
|
}
|
|
dest += stride;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
send = 0;
|
|
for (slice = 0; slice < c->slices; slice++) {
|
|
uint16_t *dest;
|
|
int slice_data_start, slice_data_end, slice_size;
|
|
|
|
sstart = send;
|
|
send = (height * (slice + 1) / c->slices);
|
|
dest = dst + sstart * stride;
|
|
|
|
// slice offset and size validation was done earlier
|
|
slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
|
|
slice_data_end = AV_RL32(src + slice * 4);
|
|
slice_size = slice_data_end - slice_data_start;
|
|
|
|
if (!slice_size) {
|
|
av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
|
|
"yet a slice has a length of zero.\n");
|
|
goto fail;
|
|
}
|
|
|
|
memcpy(c->slice_bits, src + slice_data_start + c->slices * 4,
|
|
slice_size);
|
|
memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
|
|
c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
|
|
(uint32_t *) c->slice_bits,
|
|
(slice_data_end - slice_data_start + 3) >> 2);
|
|
init_get_bits(&gb, c->slice_bits, slice_size * 8);
|
|
|
|
prev = 0x200;
|
|
for (j = sstart; j < send; j++) {
|
|
for (i = 0; i < width * step; i += step) {
|
|
if (get_bits_left(&gb) <= 0) {
|
|
av_log(c->avctx, AV_LOG_ERROR,
|
|
"Slice decoding ran out of bits\n");
|
|
goto fail;
|
|
}
|
|
pix = get_vlc2(&gb, vlc.table, vlc.bits, 3);
|
|
if (pix < 0) {
|
|
av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
|
|
goto fail;
|
|
}
|
|
if (use_pred) {
|
|
prev += pix;
|
|
prev &= 0x3FF;
|
|
pix = prev;
|
|
}
|
|
dest[i] = pix;
|
|
}
|
|
dest += stride;
|
|
}
|
|
if (get_bits_left(&gb) > 32)
|
|
av_log(c->avctx, AV_LOG_WARNING,
|
|
"%d bits left after decoding slice\n", get_bits_left(&gb));
|
|
}
|
|
|
|
ff_free_vlc(&vlc);
|
|
|
|
return 0;
|
|
fail:
|
|
ff_free_vlc(&vlc);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
static int decode_plane(UtvideoContext *c, int plane_no,
|
|
uint8_t *dst, int step, ptrdiff_t stride,
|
|
int width, int height,
|
|
const uint8_t *src, int use_pred)
|
|
{
|
|
int i, j, slice, pix;
|
|
int sstart, send;
|
|
VLC vlc;
|
|
GetBitContext gb;
|
|
int prev, fsym;
|
|
const int cmask = ~(!plane_no && c->avctx->pix_fmt == AV_PIX_FMT_YUV420P);
|
|
|
|
if (build_huff(src, &vlc, &fsym)) {
|
|
av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if (fsym >= 0) { // build_huff reported a symbol to fill slices with
|
|
send = 0;
|
|
for (slice = 0; slice < c->slices; slice++) {
|
|
uint8_t *dest;
|
|
|
|
sstart = send;
|
|
send = (height * (slice + 1) / c->slices) & cmask;
|
|
dest = dst + sstart * stride;
|
|
|
|
prev = 0x80;
|
|
for (j = sstart; j < send; j++) {
|
|
for (i = 0; i < width * step; i += step) {
|
|
pix = fsym;
|
|
if (use_pred) {
|
|
prev += pix;
|
|
pix = prev;
|
|
}
|
|
dest[i] = pix;
|
|
}
|
|
dest += stride;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
src += 256;
|
|
|
|
send = 0;
|
|
for (slice = 0; slice < c->slices; slice++) {
|
|
uint8_t *dest;
|
|
int slice_data_start, slice_data_end, slice_size;
|
|
|
|
sstart = send;
|
|
send = (height * (slice + 1) / c->slices) & cmask;
|
|
dest = dst + sstart * stride;
|
|
|
|
// slice offset and size validation was done earlier
|
|
slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
|
|
slice_data_end = AV_RL32(src + slice * 4);
|
|
slice_size = slice_data_end - slice_data_start;
|
|
|
|
if (!slice_size) {
|
|
av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
|
|
"yet a slice has a length of zero.\n");
|
|
goto fail;
|
|
}
|
|
|
|
memcpy(c->slice_bits, src + slice_data_start + c->slices * 4,
|
|
slice_size);
|
|
memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
|
|
c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
|
|
(uint32_t *) c->slice_bits,
|
|
(slice_data_end - slice_data_start + 3) >> 2);
|
|
init_get_bits(&gb, c->slice_bits, slice_size * 8);
|
|
|
|
prev = 0x80;
|
|
for (j = sstart; j < send; j++) {
|
|
for (i = 0; i < width * step; i += step) {
|
|
if (get_bits_left(&gb) <= 0) {
|
|
av_log(c->avctx, AV_LOG_ERROR,
|
|
"Slice decoding ran out of bits\n");
|
|
goto fail;
|
|
}
|
|
pix = get_vlc2(&gb, vlc.table, vlc.bits, 3);
|
|
if (pix < 0) {
|
|
av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
|
|
goto fail;
|
|
}
|
|
if (use_pred) {
|
|
prev += pix;
|
|
pix = prev;
|
|
}
|
|
dest[i] = pix;
|
|
}
|
|
dest += stride;
|
|
}
|
|
if (get_bits_left(&gb) > 32)
|
|
av_log(c->avctx, AV_LOG_WARNING,
|
|
"%d bits left after decoding slice\n", get_bits_left(&gb));
|
|
}
|
|
|
|
ff_free_vlc(&vlc);
|
|
|
|
return 0;
|
|
fail:
|
|
ff_free_vlc(&vlc);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
static void restore_rgb_planes(uint8_t *src, int step, ptrdiff_t stride,
|
|
int width, int height)
|
|
{
|
|
int i, j;
|
|
uint8_t r, g, b;
|
|
|
|
for (j = 0; j < height; j++) {
|
|
for (i = 0; i < width * step; i += step) {
|
|
r = src[i];
|
|
g = src[i + 1];
|
|
b = src[i + 2];
|
|
src[i] = r + g - 0x80;
|
|
src[i + 2] = b + g - 0x80;
|
|
}
|
|
src += stride;
|
|
}
|
|
}
|
|
|
|
static void restore_rgb_planes10(AVFrame *frame, int width, int height)
|
|
{
|
|
uint16_t *src_r = (uint16_t *)frame->data[2];
|
|
uint16_t *src_g = (uint16_t *)frame->data[0];
|
|
uint16_t *src_b = (uint16_t *)frame->data[1];
|
|
int r, g, b;
|
|
int i, j;
|
|
|
|
for (j = 0; j < height; j++) {
|
|
for (i = 0; i < width; i++) {
|
|
r = src_r[i];
|
|
g = src_g[i];
|
|
b = src_b[i];
|
|
src_r[i] = (r + g - 0x200) & 0x3FF;
|
|
src_b[i] = (b + g - 0x200) & 0x3FF;
|
|
}
|
|
src_r += frame->linesize[2] / 2;
|
|
src_g += frame->linesize[0] / 2;
|
|
src_b += frame->linesize[1] / 2;
|
|
}
|
|
}
|
|
|
|
#undef A
|
|
#undef B
|
|
#undef C
|
|
|
|
static void restore_median_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
|
|
int width, int height, int slices, int rmode)
|
|
{
|
|
int i, j, slice;
|
|
int A, B, C;
|
|
uint8_t *bsrc;
|
|
int slice_start, slice_height;
|
|
const int cmask = ~rmode;
|
|
|
|
for (slice = 0; slice < slices; slice++) {
|
|
slice_start = ((slice * height) / slices) & cmask;
|
|
slice_height = ((((slice + 1) * height) / slices) & cmask) -
|
|
slice_start;
|
|
|
|
if (!slice_height)
|
|
continue;
|
|
bsrc = src + slice_start * stride;
|
|
|
|
// first line - left neighbour prediction
|
|
bsrc[0] += 0x80;
|
|
c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
|
|
bsrc += stride;
|
|
if (slice_height <= 1)
|
|
continue;
|
|
// second line - first element has top prediction, the rest uses median
|
|
C = bsrc[-stride];
|
|
bsrc[0] += C;
|
|
A = bsrc[0];
|
|
for (i = 1; i < width; i++) {
|
|
B = bsrc[i - stride];
|
|
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
|
|
C = B;
|
|
A = bsrc[i];
|
|
}
|
|
bsrc += stride;
|
|
// the rest of lines use continuous median prediction
|
|
for (j = 2; j < slice_height; j++) {
|
|
c->llviddsp.add_median_pred(bsrc, bsrc - stride,
|
|
bsrc, width, &A, &B);
|
|
bsrc += stride;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* UtVideo interlaced mode treats every two lines as a single one,
|
|
* so restoring function should take care of possible padding between
|
|
* two parts of the same "line".
|
|
*/
|
|
static void restore_median_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
|
|
int width, int height, int slices, int rmode)
|
|
{
|
|
int i, j, slice;
|
|
int A, B, C;
|
|
uint8_t *bsrc;
|
|
int slice_start, slice_height;
|
|
const int cmask = ~(rmode ? 3 : 1);
|
|
const ptrdiff_t stride2 = stride << 1;
|
|
|
|
for (slice = 0; slice < slices; slice++) {
|
|
slice_start = ((slice * height) / slices) & cmask;
|
|
slice_height = ((((slice + 1) * height) / slices) & cmask) -
|
|
slice_start;
|
|
slice_height >>= 1;
|
|
if (!slice_height)
|
|
continue;
|
|
|
|
bsrc = src + slice_start * stride;
|
|
|
|
// first line - left neighbour prediction
|
|
bsrc[0] += 0x80;
|
|
A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
|
|
c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A);
|
|
bsrc += stride2;
|
|
if (slice_height <= 1)
|
|
continue;
|
|
// second line - first element has top prediction, the rest uses median
|
|
C = bsrc[-stride2];
|
|
bsrc[0] += C;
|
|
A = bsrc[0];
|
|
for (i = 1; i < width; i++) {
|
|
B = bsrc[i - stride2];
|
|
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
|
|
C = B;
|
|
A = bsrc[i];
|
|
}
|
|
c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride,
|
|
bsrc + stride, width, &A, &B);
|
|
bsrc += stride2;
|
|
// the rest of lines use continuous median prediction
|
|
for (j = 2; j < slice_height; j++) {
|
|
c->llviddsp.add_median_pred(bsrc, bsrc - stride2,
|
|
bsrc, width, &A, &B);
|
|
c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride,
|
|
bsrc + stride, width, &A, &B);
|
|
bsrc += stride2;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void restore_median_packed(uint8_t *src, int step, ptrdiff_t stride,
|
|
int width, int height, int slices, int rmode)
|
|
{
|
|
int i, j, slice;
|
|
int A, B, C;
|
|
uint8_t *bsrc;
|
|
int slice_start, slice_height;
|
|
const int cmask = ~rmode;
|
|
|
|
for (slice = 0; slice < slices; slice++) {
|
|
slice_start = ((slice * height) / slices) & cmask;
|
|
slice_height = ((((slice + 1) * height) / slices) & cmask) -
|
|
slice_start;
|
|
|
|
if (!slice_height)
|
|
continue;
|
|
bsrc = src + slice_start * stride;
|
|
|
|
// first line - left neighbour prediction
|
|
bsrc[0] += 0x80;
|
|
A = bsrc[0];
|
|
for (i = step; i < width * step; i += step) {
|
|
bsrc[i] += A;
|
|
A = bsrc[i];
|
|
}
|
|
bsrc += stride;
|
|
if (slice_height <= 1)
|
|
continue;
|
|
// second line - first element has top prediction, the rest uses median
|
|
C = bsrc[-stride];
|
|
bsrc[0] += C;
|
|
A = bsrc[0];
|
|
for (i = step; i < width * step; i += step) {
|
|
B = bsrc[i - stride];
|
|
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
|
|
C = B;
|
|
A = bsrc[i];
|
|
}
|
|
bsrc += stride;
|
|
// the rest of lines use continuous median prediction
|
|
for (j = 2; j < slice_height; j++) {
|
|
for (i = 0; i < width * step; i += step) {
|
|
B = bsrc[i - stride];
|
|
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
|
|
C = B;
|
|
A = bsrc[i];
|
|
}
|
|
bsrc += stride;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* UtVideo interlaced mode treats every two lines as a single one,
|
|
* so restoring function should take care of possible padding between
|
|
* two parts of the same "line".
|
|
*/
|
|
static void restore_median_packed_il(uint8_t *src, int step, ptrdiff_t stride,
|
|
int width, int height, int slices, int rmode)
|
|
{
|
|
int i, j, slice;
|
|
int A, B, C;
|
|
uint8_t *bsrc;
|
|
int slice_start, slice_height;
|
|
const int cmask = ~(rmode ? 3 : 1);
|
|
const ptrdiff_t stride2 = stride << 1;
|
|
|
|
for (slice = 0; slice < slices; slice++) {
|
|
slice_start = ((slice * height) / slices) & cmask;
|
|
slice_height = ((((slice + 1) * height) / slices) & cmask) -
|
|
slice_start;
|
|
slice_height >>= 1;
|
|
if (!slice_height)
|
|
continue;
|
|
|
|
bsrc = src + slice_start * stride;
|
|
|
|
// first line - left neighbour prediction
|
|
bsrc[0] += 0x80;
|
|
A = bsrc[0];
|
|
for (i = step; i < width * step; i += step) {
|
|
bsrc[i] += A;
|
|
A = bsrc[i];
|
|
}
|
|
for (i = 0; i < width * step; i += step) {
|
|
bsrc[stride + i] += A;
|
|
A = bsrc[stride + i];
|
|
}
|
|
bsrc += stride2;
|
|
if (slice_height <= 1)
|
|
continue;
|
|
// second line - first element has top prediction, the rest uses median
|
|
C = bsrc[-stride2];
|
|
bsrc[0] += C;
|
|
A = bsrc[0];
|
|
for (i = step; i < width * step; i += step) {
|
|
B = bsrc[i - stride2];
|
|
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
|
|
C = B;
|
|
A = bsrc[i];
|
|
}
|
|
for (i = 0; i < width * step; i += step) {
|
|
B = bsrc[i - stride];
|
|
bsrc[stride + i] += mid_pred(A, B, (uint8_t)(A + B - C));
|
|
C = B;
|
|
A = bsrc[stride + i];
|
|
}
|
|
bsrc += stride2;
|
|
// the rest of lines use continuous median prediction
|
|
for (j = 2; j < slice_height; j++) {
|
|
for (i = 0; i < width * step; i += step) {
|
|
B = bsrc[i - stride2];
|
|
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
|
|
C = B;
|
|
A = bsrc[i];
|
|
}
|
|
for (i = 0; i < width * step; i += step) {
|
|
B = bsrc[i - stride];
|
|
bsrc[i + stride] += mid_pred(A, B, (uint8_t)(A + B - C));
|
|
C = B;
|
|
A = bsrc[i + stride];
|
|
}
|
|
bsrc += stride2;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void restore_gradient_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
|
|
int width, int height, int slices, int rmode)
|
|
{
|
|
int i, j, slice;
|
|
int A, B, C;
|
|
uint8_t *bsrc;
|
|
int slice_start, slice_height;
|
|
const int cmask = ~rmode;
|
|
|
|
for (slice = 0; slice < slices; slice++) {
|
|
slice_start = ((slice * height) / slices) & cmask;
|
|
slice_height = ((((slice + 1) * height) / slices) & cmask) -
|
|
slice_start;
|
|
|
|
if (!slice_height)
|
|
continue;
|
|
bsrc = src + slice_start * stride;
|
|
|
|
// first line - left neighbour prediction
|
|
bsrc[0] += 0x80;
|
|
c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
|
|
bsrc += stride;
|
|
if (slice_height <= 1)
|
|
continue;
|
|
for (j = 1; j < slice_height; j++) {
|
|
// second line - first element has top prediction, the rest uses gradient
|
|
bsrc[0] = (bsrc[0] + bsrc[-stride]) & 0xFF;
|
|
for (i = 1; i < width; i++) {
|
|
A = bsrc[i - stride];
|
|
B = bsrc[i - (stride + 1)];
|
|
C = bsrc[i - 1];
|
|
bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
|
|
}
|
|
bsrc += stride;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void restore_gradient_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
|
|
int width, int height, int slices, int rmode)
|
|
{
|
|
int i, j, slice;
|
|
int A, B, C;
|
|
uint8_t *bsrc;
|
|
int slice_start, slice_height;
|
|
const int cmask = ~(rmode ? 3 : 1);
|
|
const ptrdiff_t stride2 = stride << 1;
|
|
|
|
for (slice = 0; slice < slices; slice++) {
|
|
slice_start = ((slice * height) / slices) & cmask;
|
|
slice_height = ((((slice + 1) * height) / slices) & cmask) -
|
|
slice_start;
|
|
slice_height >>= 1;
|
|
if (!slice_height)
|
|
continue;
|
|
|
|
bsrc = src + slice_start * stride;
|
|
|
|
// first line - left neighbour prediction
|
|
bsrc[0] += 0x80;
|
|
A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
|
|
c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A);
|
|
bsrc += stride2;
|
|
if (slice_height <= 1)
|
|
continue;
|
|
for (j = 1; j < slice_height; j++) {
|
|
// second line - first element has top prediction, the rest uses gradient
|
|
bsrc[0] = (bsrc[0] + bsrc[-stride2]) & 0xFF;
|
|
for (i = 1; i < width; i++) {
|
|
A = bsrc[i - stride2];
|
|
B = bsrc[i - (stride2 + 1)];
|
|
C = bsrc[i - 1];
|
|
bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
|
|
}
|
|
for (i = 0; i < width; i++) {
|
|
A = bsrc[i - stride];
|
|
B = bsrc[i - (1 + stride)];
|
|
C = bsrc[i - 1 + stride];
|
|
bsrc[i + stride] = (A - B + C + bsrc[i + stride]) & 0xFF;
|
|
}
|
|
bsrc += stride2;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void restore_gradient_packed(uint8_t *src, int step, ptrdiff_t stride,
|
|
int width, int height, int slices, int rmode)
|
|
{
|
|
int i, j, slice;
|
|
int A, B, C;
|
|
uint8_t *bsrc;
|
|
int slice_start, slice_height;
|
|
const int cmask = ~rmode;
|
|
|
|
for (slice = 0; slice < slices; slice++) {
|
|
slice_start = ((slice * height) / slices) & cmask;
|
|
slice_height = ((((slice + 1) * height) / slices) & cmask) -
|
|
slice_start;
|
|
|
|
if (!slice_height)
|
|
continue;
|
|
bsrc = src + slice_start * stride;
|
|
|
|
// first line - left neighbour prediction
|
|
bsrc[0] += 0x80;
|
|
A = bsrc[0];
|
|
for (i = step; i < width * step; i += step) {
|
|
bsrc[i] += A;
|
|
A = bsrc[i];
|
|
}
|
|
bsrc += stride;
|
|
if (slice_height <= 1)
|
|
continue;
|
|
for (j = 1; j < slice_height; j++) {
|
|
// second line - first element has top prediction, the rest uses gradient
|
|
C = bsrc[-stride];
|
|
bsrc[0] += C;
|
|
for (i = step; i < width * step; i += step) {
|
|
A = bsrc[i - stride];
|
|
B = bsrc[i - (stride + step)];
|
|
C = bsrc[i - step];
|
|
bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
|
|
}
|
|
bsrc += stride;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void restore_gradient_packed_il(uint8_t *src, int step, ptrdiff_t stride,
|
|
int width, int height, int slices, int rmode)
|
|
{
|
|
int i, j, slice;
|
|
int A, B, C;
|
|
uint8_t *bsrc;
|
|
int slice_start, slice_height;
|
|
const int cmask = ~(rmode ? 3 : 1);
|
|
const ptrdiff_t stride2 = stride << 1;
|
|
|
|
for (slice = 0; slice < slices; slice++) {
|
|
slice_start = ((slice * height) / slices) & cmask;
|
|
slice_height = ((((slice + 1) * height) / slices) & cmask) -
|
|
slice_start;
|
|
slice_height >>= 1;
|
|
if (!slice_height)
|
|
continue;
|
|
|
|
bsrc = src + slice_start * stride;
|
|
|
|
// first line - left neighbour prediction
|
|
bsrc[0] += 0x80;
|
|
A = bsrc[0];
|
|
for (i = step; i < width * step; i += step) {
|
|
bsrc[i] += A;
|
|
A = bsrc[i];
|
|
}
|
|
for (i = 0; i < width * step; i += step) {
|
|
bsrc[stride + i] += A;
|
|
A = bsrc[stride + i];
|
|
}
|
|
bsrc += stride2;
|
|
if (slice_height <= 1)
|
|
continue;
|
|
for (j = 1; j < slice_height; j++) {
|
|
// second line - first element has top prediction, the rest uses gradient
|
|
C = bsrc[-stride2];
|
|
bsrc[0] += C;
|
|
for (i = step; i < width * step; i += step) {
|
|
A = bsrc[i - stride2];
|
|
B = bsrc[i - (stride2 + step)];
|
|
C = bsrc[i - step];
|
|
bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
|
|
}
|
|
for (i = 0; i < width * step; i += step) {
|
|
A = bsrc[i - stride];
|
|
B = bsrc[i - (step + stride)];
|
|
C = bsrc[i - step + stride];
|
|
bsrc[i + stride] = (A - B + C + bsrc[i + stride]) & 0xFF;
|
|
}
|
|
bsrc += stride2;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
|
|
AVPacket *avpkt)
|
|
{
|
|
const uint8_t *buf = avpkt->data;
|
|
int buf_size = avpkt->size;
|
|
UtvideoContext *c = avctx->priv_data;
|
|
int i, j;
|
|
const uint8_t *plane_start[5];
|
|
int plane_size, max_slice_size = 0, slice_start, slice_end, slice_size;
|
|
int ret;
|
|
GetByteContext gb;
|
|
ThreadFrame frame = { .f = data };
|
|
|
|
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
|
|
return ret;
|
|
|
|
/* parse plane structure to get frame flags and validate slice offsets */
|
|
bytestream2_init(&gb, buf, buf_size);
|
|
if (c->pro) {
|
|
if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
|
|
av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
c->frame_info = bytestream2_get_le32u(&gb);
|
|
c->slices = ((c->frame_info >> 16) & 0xff) + 1;
|
|
for (i = 0; i < c->planes; i++) {
|
|
plane_start[i] = gb.buffer;
|
|
if (bytestream2_get_bytes_left(&gb) < 1024 + 4 * c->slices) {
|
|
av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
slice_start = 0;
|
|
slice_end = 0;
|
|
for (j = 0; j < c->slices; j++) {
|
|
slice_end = bytestream2_get_le32u(&gb);
|
|
if (slice_end < 0 || slice_end < slice_start ||
|
|
bytestream2_get_bytes_left(&gb) < slice_end) {
|
|
av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
slice_size = slice_end - slice_start;
|
|
slice_start = slice_end;
|
|
max_slice_size = FFMAX(max_slice_size, slice_size);
|
|
}
|
|
plane_size = slice_end;
|
|
bytestream2_skipu(&gb, plane_size);
|
|
bytestream2_skipu(&gb, 1024);
|
|
}
|
|
plane_start[c->planes] = gb.buffer;
|
|
} else {
|
|
for (i = 0; i < c->planes; i++) {
|
|
plane_start[i] = gb.buffer;
|
|
if (bytestream2_get_bytes_left(&gb) < 256 + 4 * c->slices) {
|
|
av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
bytestream2_skipu(&gb, 256);
|
|
slice_start = 0;
|
|
slice_end = 0;
|
|
for (j = 0; j < c->slices; j++) {
|
|
slice_end = bytestream2_get_le32u(&gb);
|
|
if (slice_end < 0 || slice_end < slice_start ||
|
|
bytestream2_get_bytes_left(&gb) < slice_end) {
|
|
av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
slice_size = slice_end - slice_start;
|
|
slice_start = slice_end;
|
|
max_slice_size = FFMAX(max_slice_size, slice_size);
|
|
}
|
|
plane_size = slice_end;
|
|
bytestream2_skipu(&gb, plane_size);
|
|
}
|
|
plane_start[c->planes] = gb.buffer;
|
|
if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
|
|
av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
c->frame_info = bytestream2_get_le32u(&gb);
|
|
}
|
|
av_log(avctx, AV_LOG_DEBUG, "frame information flags %"PRIX32"\n",
|
|
c->frame_info);
|
|
|
|
c->frame_pred = (c->frame_info >> 8) & 3;
|
|
|
|
av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
|
|
max_slice_size + AV_INPUT_BUFFER_PADDING_SIZE);
|
|
|
|
if (!c->slice_bits) {
|
|
av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
switch (c->avctx->pix_fmt) {
|
|
case AV_PIX_FMT_RGB24:
|
|
case AV_PIX_FMT_RGBA:
|
|
for (i = 0; i < c->planes; i++) {
|
|
ret = decode_plane(c, i, frame.f->data[0] + ff_ut_rgb_order[i],
|
|
c->planes, frame.f->linesize[0], avctx->width,
|
|
avctx->height, plane_start[i],
|
|
c->frame_pred == PRED_LEFT);
|
|
if (ret)
|
|
return ret;
|
|
if (c->frame_pred == PRED_MEDIAN) {
|
|
if (!c->interlaced) {
|
|
restore_median_packed(frame.f->data[0] + ff_ut_rgb_order[i],
|
|
c->planes, frame.f->linesize[0], avctx->width,
|
|
avctx->height, c->slices, 0);
|
|
} else {
|
|
restore_median_packed_il(frame.f->data[0] + ff_ut_rgb_order[i],
|
|
c->planes, frame.f->linesize[0],
|
|
avctx->width, avctx->height, c->slices,
|
|
0);
|
|
}
|
|
} else if (c->frame_pred == PRED_GRADIENT) {
|
|
if (!c->interlaced) {
|
|
restore_gradient_packed(frame.f->data[0] + ff_ut_rgb_order[i],
|
|
c->planes, frame.f->linesize[0], avctx->width,
|
|
avctx->height, c->slices, 0);
|
|
} else {
|
|
restore_gradient_packed_il(frame.f->data[0] + ff_ut_rgb_order[i],
|
|
c->planes, frame.f->linesize[0],
|
|
avctx->width, avctx->height, c->slices,
|
|
0);
|
|
}
|
|
}
|
|
}
|
|
restore_rgb_planes(frame.f->data[0], c->planes, frame.f->linesize[0],
|
|
avctx->width, avctx->height);
|
|
break;
|
|
case AV_PIX_FMT_GBRAP10:
|
|
case AV_PIX_FMT_GBRP10:
|
|
for (i = 0; i < c->planes; i++) {
|
|
ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i], 1,
|
|
frame.f->linesize[i] / 2, avctx->width,
|
|
avctx->height, plane_start[i],
|
|
plane_start[i + 1] - 1024,
|
|
c->frame_pred == PRED_LEFT);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
restore_rgb_planes10(frame.f, avctx->width, avctx->height);
|
|
break;
|
|
case AV_PIX_FMT_YUV420P:
|
|
for (i = 0; i < 3; i++) {
|
|
ret = decode_plane(c, i, frame.f->data[i], 1, frame.f->linesize[i],
|
|
avctx->width >> !!i, avctx->height >> !!i,
|
|
plane_start[i], c->frame_pred == PRED_LEFT);
|
|
if (ret)
|
|
return ret;
|
|
if (c->frame_pred == PRED_MEDIAN) {
|
|
if (!c->interlaced) {
|
|
restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
|
|
avctx->width >> !!i, avctx->height >> !!i,
|
|
c->slices, !i);
|
|
} else {
|
|
restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
|
|
avctx->width >> !!i,
|
|
avctx->height >> !!i,
|
|
c->slices, !i);
|
|
}
|
|
} else if (c->frame_pred == PRED_GRADIENT) {
|
|
if (!c->interlaced) {
|
|
restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
|
|
avctx->width >> !!i, avctx->height >> !!i,
|
|
c->slices, !i);
|
|
} else {
|
|
restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
|
|
avctx->width >> !!i,
|
|
avctx->height >> !!i,
|
|
c->slices, !i);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AV_PIX_FMT_YUV422P:
|
|
for (i = 0; i < 3; i++) {
|
|
ret = decode_plane(c, i, frame.f->data[i], 1, frame.f->linesize[i],
|
|
avctx->width >> !!i, avctx->height,
|
|
plane_start[i], c->frame_pred == PRED_LEFT);
|
|
if (ret)
|
|
return ret;
|
|
if (c->frame_pred == PRED_MEDIAN) {
|
|
if (!c->interlaced) {
|
|
restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
|
|
avctx->width >> !!i, avctx->height,
|
|
c->slices, 0);
|
|
} else {
|
|
restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
|
|
avctx->width >> !!i, avctx->height,
|
|
c->slices, 0);
|
|
}
|
|
} else if (c->frame_pred == PRED_GRADIENT) {
|
|
if (!c->interlaced) {
|
|
restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
|
|
avctx->width >> !!i, avctx->height,
|
|
c->slices, 0);
|
|
} else {
|
|
restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
|
|
avctx->width >> !!i, avctx->height,
|
|
c->slices, 0);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AV_PIX_FMT_YUV444P:
|
|
for (i = 0; i < 3; i++) {
|
|
ret = decode_plane(c, i, frame.f->data[i], 1, frame.f->linesize[i],
|
|
avctx->width, avctx->height,
|
|
plane_start[i], c->frame_pred == PRED_LEFT);
|
|
if (ret)
|
|
return ret;
|
|
if (c->frame_pred == PRED_MEDIAN) {
|
|
if (!c->interlaced) {
|
|
restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
|
|
avctx->width, avctx->height,
|
|
c->slices, 0);
|
|
} else {
|
|
restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
|
|
avctx->width, avctx->height,
|
|
c->slices, 0);
|
|
}
|
|
} else if (c->frame_pred == PRED_GRADIENT) {
|
|
if (!c->interlaced) {
|
|
restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
|
|
avctx->width, avctx->height,
|
|
c->slices, 0);
|
|
} else {
|
|
restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
|
|
avctx->width, avctx->height,
|
|
c->slices, 0);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AV_PIX_FMT_YUV422P10:
|
|
for (i = 0; i < 3; i++) {
|
|
ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i], 1, frame.f->linesize[i] / 2,
|
|
avctx->width >> !!i, avctx->height,
|
|
plane_start[i], plane_start[i + 1] - 1024, c->frame_pred == PRED_LEFT);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
break;
|
|
}
|
|
|
|
frame.f->key_frame = 1;
|
|
frame.f->pict_type = AV_PICTURE_TYPE_I;
|
|
frame.f->interlaced_frame = !!c->interlaced;
|
|
|
|
*got_frame = 1;
|
|
|
|
/* always report that the buffer was completely consumed */
|
|
return buf_size;
|
|
}
|
|
|
|
static av_cold int decode_init(AVCodecContext *avctx)
|
|
{
|
|
UtvideoContext * const c = avctx->priv_data;
|
|
|
|
c->avctx = avctx;
|
|
|
|
ff_bswapdsp_init(&c->bdsp);
|
|
ff_llviddsp_init(&c->llviddsp);
|
|
|
|
if (avctx->extradata_size >= 16) {
|
|
av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
|
|
avctx->extradata[3], avctx->extradata[2],
|
|
avctx->extradata[1], avctx->extradata[0]);
|
|
av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
|
|
AV_RB32(avctx->extradata + 4));
|
|
c->frame_info_size = AV_RL32(avctx->extradata + 8);
|
|
c->flags = AV_RL32(avctx->extradata + 12);
|
|
|
|
if (c->frame_info_size != 4)
|
|
avpriv_request_sample(avctx, "Frame info not 4 bytes");
|
|
av_log(avctx, AV_LOG_DEBUG, "Encoding parameters %08"PRIX32"\n", c->flags);
|
|
c->slices = (c->flags >> 24) + 1;
|
|
c->compression = c->flags & 1;
|
|
c->interlaced = c->flags & 0x800;
|
|
} else if (avctx->extradata_size == 8) {
|
|
av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
|
|
avctx->extradata[3], avctx->extradata[2],
|
|
avctx->extradata[1], avctx->extradata[0]);
|
|
av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
|
|
AV_RB32(avctx->extradata + 4));
|
|
c->interlaced = 0;
|
|
c->pro = 1;
|
|
c->frame_info_size = 4;
|
|
} else {
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
"Insufficient extradata size %d, should be at least 16\n",
|
|
avctx->extradata_size);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
c->slice_bits_size = 0;
|
|
|
|
switch (avctx->codec_tag) {
|
|
case MKTAG('U', 'L', 'R', 'G'):
|
|
c->planes = 3;
|
|
avctx->pix_fmt = AV_PIX_FMT_RGB24;
|
|
break;
|
|
case MKTAG('U', 'L', 'R', 'A'):
|
|
c->planes = 4;
|
|
avctx->pix_fmt = AV_PIX_FMT_RGBA;
|
|
break;
|
|
case MKTAG('U', 'L', 'Y', '0'):
|
|
c->planes = 3;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
|
|
avctx->colorspace = AVCOL_SPC_BT470BG;
|
|
break;
|
|
case MKTAG('U', 'L', 'Y', '2'):
|
|
c->planes = 3;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
|
|
avctx->colorspace = AVCOL_SPC_BT470BG;
|
|
break;
|
|
case MKTAG('U', 'L', 'Y', '4'):
|
|
c->planes = 3;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUV444P;
|
|
avctx->colorspace = AVCOL_SPC_BT470BG;
|
|
break;
|
|
case MKTAG('U', 'Q', 'Y', '2'):
|
|
c->planes = 3;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUV422P10;
|
|
break;
|
|
case MKTAG('U', 'Q', 'R', 'G'):
|
|
c->planes = 3;
|
|
avctx->pix_fmt = AV_PIX_FMT_GBRP10;
|
|
break;
|
|
case MKTAG('U', 'Q', 'R', 'A'):
|
|
c->planes = 4;
|
|
avctx->pix_fmt = AV_PIX_FMT_GBRAP10;
|
|
break;
|
|
case MKTAG('U', 'L', 'H', '0'):
|
|
c->planes = 3;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
|
|
avctx->colorspace = AVCOL_SPC_BT709;
|
|
break;
|
|
case MKTAG('U', 'L', 'H', '2'):
|
|
c->planes = 3;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
|
|
avctx->colorspace = AVCOL_SPC_BT709;
|
|
break;
|
|
case MKTAG('U', 'L', 'H', '4'):
|
|
c->planes = 3;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUV444P;
|
|
avctx->colorspace = AVCOL_SPC_BT709;
|
|
break;
|
|
default:
|
|
av_log(avctx, AV_LOG_ERROR, "Unknown Ut Video FOURCC provided (%08X)\n",
|
|
avctx->codec_tag);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_cold int decode_end(AVCodecContext *avctx)
|
|
{
|
|
UtvideoContext * const c = avctx->priv_data;
|
|
|
|
av_freep(&c->slice_bits);
|
|
|
|
return 0;
|
|
}
|
|
|
|
AVCodec ff_utvideo_decoder = {
|
|
.name = "utvideo",
|
|
.long_name = NULL_IF_CONFIG_SMALL("Ut Video"),
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.id = AV_CODEC_ID_UTVIDEO,
|
|
.priv_data_size = sizeof(UtvideoContext),
|
|
.init = decode_init,
|
|
.close = decode_end,
|
|
.decode = decode_frame,
|
|
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
|
|
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
|
|
};
|