mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-28 20:53:54 +02:00
21dd5279c3
Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com> Reviewed-by: Ganesh Ajjanagadde <gajjanag@mit.edu>
366 lines
12 KiB
C
366 lines
12 KiB
C
/*
|
|
* AAC encoder main-type prediction
|
|
* Copyright (C) 2015 Rostislav Pehlivanov
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* AAC encoder main prediction
|
|
* @author Rostislav Pehlivanov ( atomnuker gmail com )
|
|
*/
|
|
|
|
#include "aactab.h"
|
|
#include "aacenc_pred.h"
|
|
#include "aacenc_utils.h"
|
|
#include "aacenc_quantization.h"
|
|
|
|
static inline float flt16_round(float pf)
|
|
{
|
|
union av_intfloat32 tmp;
|
|
tmp.f = pf;
|
|
tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
|
|
return tmp.f;
|
|
}
|
|
|
|
static inline float flt16_even(float pf)
|
|
{
|
|
union av_intfloat32 tmp;
|
|
tmp.f = pf;
|
|
tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
|
|
return tmp.f;
|
|
}
|
|
|
|
static inline float flt16_trunc(float pf)
|
|
{
|
|
union av_intfloat32 pun;
|
|
pun.f = pf;
|
|
pun.i &= 0xFFFF0000U;
|
|
return pun.f;
|
|
}
|
|
|
|
static inline void predict(PredictorState *ps, float *coef, float *rcoef,
|
|
int output_enable)
|
|
{
|
|
const float a = 0.953125; // 61.0 / 64
|
|
float k2;
|
|
float r0 = ps->r0, r1 = ps->r1;
|
|
float cor0 = ps->cor0, cor1 = ps->cor1;
|
|
float var0 = ps->var0, var1 = ps->var1;
|
|
|
|
ps->k1 = var0 > 1 ? cor0 * flt16_even(a / var0) : 0;
|
|
k2 = var1 > 1 ? cor1 * flt16_even(a / var1) : 0;
|
|
|
|
ps->x_est = flt16_round(ps->k1*r0 + k2*r1);
|
|
|
|
if (output_enable)
|
|
*coef -= ps->x_est;
|
|
else
|
|
*rcoef = *coef - ps->x_est;
|
|
}
|
|
|
|
static inline void update_predictor(PredictorState *ps, float qcoef)
|
|
{
|
|
const float alpha = 0.90625; // 29.0 / 32
|
|
const float a = 0.953125; // 61.0 / 64
|
|
float k1 = ps->k1;
|
|
float r0 = ps->r0;
|
|
float r1 = ps->r1;
|
|
float e0 = qcoef + ps->x_est;
|
|
float e1 = e0 - k1 * r0;
|
|
float cor0 = ps->cor0, cor1 = ps->cor1;
|
|
float var0 = ps->var0, var1 = ps->var1;
|
|
|
|
ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
|
|
ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
|
|
ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
|
|
ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
|
|
|
|
ps->r1 = flt16_trunc(a * (r0 - k1 * e0));
|
|
ps->r0 = flt16_trunc(a * e0);
|
|
}
|
|
|
|
static inline void reset_predict_state(PredictorState *ps)
|
|
{
|
|
ps->r0 = 0.0f;
|
|
ps->r1 = 0.0f;
|
|
ps->cor0 = 0.0f;
|
|
ps->cor1 = 0.0f;
|
|
ps->var0 = 1.0f;
|
|
ps->var1 = 1.0f;
|
|
ps->k1 = 0.0f;
|
|
ps->x_est= 0.0f;
|
|
}
|
|
|
|
static inline void reset_all_predictors(SingleChannelElement *sce)
|
|
{
|
|
int i;
|
|
for (i = 0; i < MAX_PREDICTORS; i++)
|
|
reset_predict_state(&sce->predictor_state[i]);
|
|
for (i = 1; i < 31; i++)
|
|
sce->ics.predictor_reset_count[i] = 0;
|
|
}
|
|
|
|
static inline void reset_predictor_group(SingleChannelElement *sce, int group_num)
|
|
{
|
|
int i;
|
|
PredictorState *ps = sce->predictor_state;
|
|
sce->ics.predictor_reset_count[group_num] = 0;
|
|
for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
|
|
reset_predict_state(&ps[i]);
|
|
}
|
|
|
|
void ff_aac_apply_main_pred(AACEncContext *s, SingleChannelElement *sce)
|
|
{
|
|
int sfb, k;
|
|
|
|
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
|
|
for (sfb = 0; sfb < ff_aac_pred_sfb_max[s->samplerate_index]; sfb++) {
|
|
for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++)
|
|
predict(&sce->predictor_state[k], &sce->coeffs[k], &sce->prcoeffs[k],
|
|
(sce->ics.predictor_present && sce->ics.prediction_used[sfb]));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void decode_joint_stereo(ChannelElement *cpe)
|
|
{
|
|
int i, w, w2, g;
|
|
SingleChannelElement *sce0 = &cpe->ch[0];
|
|
SingleChannelElement *sce1 = &cpe->ch[1];
|
|
IndividualChannelStream *ics;
|
|
|
|
for (i = 0; i < MAX_PREDICTORS; i++)
|
|
sce0->prcoeffs[i] = sce0->predictor_state[i].x_est;
|
|
|
|
ics = &sce0->ics;
|
|
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
|
|
for (w2 = 0; w2 < ics->group_len[w]; w2++) {
|
|
int start = (w+w2) * 128;
|
|
for (g = 0; g < ics->num_swb; g++) {
|
|
int sfb = w*16 + g;
|
|
//apply Intensity stereo coeffs transformation
|
|
if (cpe->is_mask[sfb]) {
|
|
int p = -1 + 2 * (sce1->band_type[sfb] - 14);
|
|
float rscale = ff_aac_pow2sf_tab[-sce1->sf_idx[sfb] + POW_SF2_ZERO];
|
|
p *= 1 - 2 * cpe->ms_mask[sfb];
|
|
for (i = 0; i < ics->swb_sizes[g]; i++) {
|
|
sce0->pqcoeffs[start+i] = (sce0->prcoeffs[start+i] + p*sce0->pqcoeffs[start+i]) * rscale;
|
|
}
|
|
} else if (cpe->ms_mask[sfb] &&
|
|
sce0->band_type[sfb] < NOISE_BT &&
|
|
sce1->band_type[sfb] < NOISE_BT) {
|
|
for (i = 0; i < ics->swb_sizes[g]; i++) {
|
|
float L = sce0->pqcoeffs[start+i] + sce1->pqcoeffs[start+i];
|
|
float R = sce0->pqcoeffs[start+i] - sce1->pqcoeffs[start+i];
|
|
sce0->pqcoeffs[start+i] = L;
|
|
sce1->pqcoeffs[start+i] = R;
|
|
}
|
|
}
|
|
start += ics->swb_sizes[g];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void prepare_predictors(SingleChannelElement *sce)
|
|
{
|
|
int k;
|
|
for (k = 0; k < MAX_PREDICTORS; k++)
|
|
predict(&sce->predictor_state[k], &sce->coeffs[k], &sce->prcoeffs[k], 0);
|
|
}
|
|
|
|
void ff_aac_update_main_pred(AACEncContext *s, SingleChannelElement *sce, ChannelElement *cpe)
|
|
{
|
|
int k;
|
|
|
|
if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE)
|
|
return;
|
|
|
|
if (cpe && cpe->common_window)
|
|
decode_joint_stereo(cpe);
|
|
|
|
for (k = 0; k < MAX_PREDICTORS; k++)
|
|
update_predictor(&sce->predictor_state[k], sce->pqcoeffs[k]);
|
|
|
|
if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
|
|
reset_all_predictors(sce);
|
|
}
|
|
|
|
if (sce->ics.predictor_reset_group)
|
|
reset_predictor_group(sce, sce->ics.predictor_reset_group);
|
|
}
|
|
|
|
/* If inc == 0 check if it returns 0 to see if you can reset freely */
|
|
static inline int update_counters(IndividualChannelStream *ics, int inc)
|
|
{
|
|
int i, rg = 0;
|
|
for (i = 1; i < 31; i++) {
|
|
ics->predictor_reset_count[i] += inc;
|
|
if (!rg && ics->predictor_reset_count[i] > PRED_RESET_FRAME_MIN)
|
|
rg = i; /* Reset this immediately */
|
|
}
|
|
return rg;
|
|
}
|
|
|
|
void ff_aac_adjust_common_prediction(AACEncContext *s, ChannelElement *cpe)
|
|
{
|
|
int start, w, g, count = 0;
|
|
SingleChannelElement *sce0 = &cpe->ch[0];
|
|
SingleChannelElement *sce1 = &cpe->ch[1];
|
|
|
|
if (!cpe->common_window || sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE)
|
|
return;
|
|
|
|
/* Predict if IS or MS is on and at least one channel is marked or when both are */
|
|
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
|
|
start = 0;
|
|
for (g = 0; g < sce0->ics.num_swb; g++) {
|
|
int sfb = w*16+g;
|
|
if (sfb < PRED_SFB_START || sfb > ff_aac_pred_sfb_max[s->samplerate_index]) {
|
|
;
|
|
} else if ((cpe->is_mask[sfb] || cpe->ms_mask[sfb]) &&
|
|
(sce0->ics.prediction_used[sfb] || sce1->ics.prediction_used[sfb])) {
|
|
sce0->ics.prediction_used[sfb] = sce1->ics.prediction_used[sfb] = 1;
|
|
count++;
|
|
} else if (sce0->ics.prediction_used[sfb] && sce1->ics.prediction_used[sfb]) {
|
|
count++;
|
|
} else {
|
|
/* Restore band types, if changed - prediction never sets > RESERVED_BT */
|
|
if (sce0->ics.prediction_used[sfb] && sce0->band_type[sfb] < RESERVED_BT)
|
|
sce0->band_type[sfb] = sce0->orig_band_type[sfb];
|
|
if (sce1->ics.prediction_used[sfb] && sce1->band_type[sfb] < RESERVED_BT)
|
|
sce1->band_type[sfb] = sce1->orig_band_type[sfb];
|
|
sce0->ics.prediction_used[sfb] = sce1->ics.prediction_used[sfb] = 0;
|
|
}
|
|
start += sce0->ics.swb_sizes[g];
|
|
}
|
|
}
|
|
|
|
sce1->ics.predictor_present = sce0->ics.predictor_present = !!count;
|
|
|
|
if (!count)
|
|
return;
|
|
|
|
sce1->ics.predictor_reset_group = sce0->ics.predictor_reset_group;
|
|
}
|
|
|
|
static void update_pred_resets(SingleChannelElement *sce)
|
|
{
|
|
int i, max_group_id_c, max_frame = 0;
|
|
float avg_frame = 0.0f;
|
|
IndividualChannelStream *ics = &sce->ics;
|
|
|
|
/* Some other code probably chose the reset group */
|
|
if (ics->predictor_reset_group)
|
|
return;
|
|
|
|
if ((ics->predictor_reset_group = update_counters(&sce->ics, 1)))
|
|
return;
|
|
|
|
for (i = 1; i < 31; i++) {
|
|
if (ics->predictor_reset_count[i] > max_frame) {
|
|
max_group_id_c = i;
|
|
max_frame = ics->predictor_reset_count[i];
|
|
}
|
|
avg_frame = (ics->predictor_reset_count[i] + avg_frame)/2;
|
|
}
|
|
|
|
if (avg_frame*2 > max_frame && max_frame > PRED_RESET_MIN ||
|
|
max_frame > (2*PRED_RESET_MIN)/3) {
|
|
ics->predictor_reset_group = max_group_id_c;
|
|
} else {
|
|
ics->predictor_reset_group = 0;
|
|
}
|
|
}
|
|
|
|
void ff_aac_search_for_pred(AACEncContext *s, SingleChannelElement *sce)
|
|
{
|
|
int sfb, i, count = 0;
|
|
float *O34 = &s->scoefs[256*0], *P34 = &s->scoefs[256*1];
|
|
int cost_coeffs = PRICE_OFFSET;
|
|
int cost_pred = 1+(sce->ics.predictor_reset_group ? 5 : 0) +
|
|
FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
|
|
|
|
memcpy(sce->orig_band_type, sce->band_type, 128*sizeof(enum BandType));
|
|
|
|
if (!sce->ics.predictor_initialized ||
|
|
sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
|
|
reset_all_predictors(sce);
|
|
for (i = 1; i < 31; i++)
|
|
sce->ics.predictor_reset_count[i] = i;
|
|
sce->ics.predictor_initialized = 1;
|
|
}
|
|
|
|
update_pred_resets(sce);
|
|
prepare_predictors(sce);
|
|
sce->ics.predictor_reset_group = 0;
|
|
|
|
for (sfb = PRED_SFB_START; sfb < ff_aac_pred_sfb_max[s->samplerate_index]; sfb++) {
|
|
float dist1 = 0.0f, dist2 = 0.0f;
|
|
int swb_start = sce->ics.swb_offset[sfb];
|
|
int swb_len = sce->ics.swb_offset[sfb + 1] - swb_start;
|
|
int cb1 = sce->band_type[sfb], cb2, bits1 = 0, bits2 = 0;
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[sfb];
|
|
abs_pow34_v(O34, &sce->coeffs[swb_start], swb_len);
|
|
abs_pow34_v(P34, &sce->prcoeffs[swb_start], swb_len);
|
|
cb2 = find_min_book(find_max_val(1, swb_len, P34), sce->sf_idx[sfb]);
|
|
if (cb2 <= cb1) {
|
|
dist1 += quantize_band_cost(s, &sce->coeffs[swb_start], O34, swb_len,
|
|
sce->sf_idx[sfb], cb1, s->lambda / band->threshold,
|
|
INFINITY, &bits1, 0);
|
|
dist2 += quantize_band_cost(s, &sce->prcoeffs[swb_start], P34, swb_len,
|
|
sce->sf_idx[sfb], cb2, s->lambda / band->threshold,
|
|
INFINITY, &bits2, 0);
|
|
if (dist2 <= dist1) {
|
|
sce->ics.prediction_used[sfb] = 1;
|
|
sce->band_type[sfb] = cb2;
|
|
count++;
|
|
}
|
|
cost_coeffs += bits1;
|
|
cost_pred += bits2;
|
|
}
|
|
}
|
|
|
|
if (count && cost_pred > cost_coeffs) {
|
|
memset(sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
|
|
memcpy(sce->band_type, sce->orig_band_type, sizeof(sce->band_type));
|
|
count = 0;
|
|
}
|
|
|
|
sce->ics.predictor_present = !!count;
|
|
}
|
|
|
|
/**
|
|
* Encoder predictors data.
|
|
*/
|
|
void ff_aac_encode_main_pred(AACEncContext *s, SingleChannelElement *sce)
|
|
{
|
|
int sfb;
|
|
|
|
if (!sce->ics.predictor_present ||
|
|
sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE)
|
|
return;
|
|
|
|
put_bits(&s->pb, 1, !!sce->ics.predictor_reset_group);
|
|
if (sce->ics.predictor_reset_group)
|
|
put_bits(&s->pb, 5, sce->ics.predictor_reset_group);
|
|
for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]); sfb++)
|
|
put_bits(&s->pb, 1, sce->ics.prediction_used[sfb]);
|
|
}
|