1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavcodec/vp8.c
2016-05-05 10:48:34 +02:00

2790 lines
100 KiB
C

/*
* VP7/VP8 compatible video decoder
*
* Copyright (C) 2010 David Conrad
* Copyright (C) 2010 Ronald S. Bultje
* Copyright (C) 2010 Fiona Glaser
* Copyright (C) 2012 Daniel Kang
* Copyright (C) 2014 Peter Ross
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/imgutils.h"
#include "avcodec.h"
#include "internal.h"
#include "mathops.h"
#include "rectangle.h"
#include "thread.h"
#include "vp8.h"
#include "vp8data.h"
#if ARCH_ARM
# include "arm/vp8.h"
#endif
static void free_buffers(VP8Context *s)
{
int i;
if (s->thread_data)
for (i = 0; i < MAX_THREADS; i++) {
#if HAVE_THREADS
pthread_cond_destroy(&s->thread_data[i].cond);
pthread_mutex_destroy(&s->thread_data[i].lock);
#endif
av_freep(&s->thread_data[i].filter_strength);
}
av_freep(&s->thread_data);
av_freep(&s->macroblocks_base);
av_freep(&s->intra4x4_pred_mode_top);
av_freep(&s->top_nnz);
av_freep(&s->top_border);
s->macroblocks = NULL;
}
static int vp8_alloc_frame(VP8Context *s, VP8Frame *f, int ref)
{
int ret;
if ((ret = ff_thread_get_buffer(s->avctx, &f->tf,
ref ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
return ret;
if (!(f->seg_map = av_buffer_allocz(s->mb_width * s->mb_height))) {
ff_thread_release_buffer(s->avctx, &f->tf);
return AVERROR(ENOMEM);
}
return 0;
}
static void vp8_release_frame(VP8Context *s, VP8Frame *f)
{
av_buffer_unref(&f->seg_map);
ff_thread_release_buffer(s->avctx, &f->tf);
}
#if CONFIG_VP8_DECODER
static int vp8_ref_frame(VP8Context *s, VP8Frame *dst, VP8Frame *src)
{
int ret;
vp8_release_frame(s, dst);
if ((ret = ff_thread_ref_frame(&dst->tf, &src->tf)) < 0)
return ret;
if (src->seg_map &&
!(dst->seg_map = av_buffer_ref(src->seg_map))) {
vp8_release_frame(s, dst);
return AVERROR(ENOMEM);
}
return 0;
}
#endif /* CONFIG_VP8_DECODER */
static void vp8_decode_flush_impl(AVCodecContext *avctx, int free_mem)
{
VP8Context *s = avctx->priv_data;
int i;
for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++)
vp8_release_frame(s, &s->frames[i]);
memset(s->framep, 0, sizeof(s->framep));
if (free_mem)
free_buffers(s);
}
static void vp8_decode_flush(AVCodecContext *avctx)
{
vp8_decode_flush_impl(avctx, 0);
}
static VP8Frame *vp8_find_free_buffer(VP8Context *s)
{
VP8Frame *frame = NULL;
int i;
// find a free buffer
for (i = 0; i < 5; i++)
if (&s->frames[i] != s->framep[VP56_FRAME_CURRENT] &&
&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) {
frame = &s->frames[i];
break;
}
if (i == 5) {
av_log(s->avctx, AV_LOG_FATAL, "Ran out of free frames!\n");
abort();
}
if (frame->tf.f->data[0])
vp8_release_frame(s, frame);
return frame;
}
static av_always_inline
int update_dimensions(VP8Context *s, int width, int height, int is_vp7)
{
AVCodecContext *avctx = s->avctx;
int i, ret;
if (width != s->avctx->width ||
height != s->avctx->height) {
vp8_decode_flush_impl(s->avctx, 1);
ret = ff_set_dimensions(s->avctx, width, height);
if (ret < 0)
return ret;
}
s->mb_width = (s->avctx->coded_width + 15) / 16;
s->mb_height = (s->avctx->coded_height + 15) / 16;
s->mb_layout = is_vp7 || avctx->active_thread_type == FF_THREAD_SLICE &&
FFMIN(s->num_coeff_partitions, avctx->thread_count) > 1;
if (!s->mb_layout) { // Frame threading and one thread
s->macroblocks_base = av_mallocz((s->mb_width + s->mb_height * 2 + 1) *
sizeof(*s->macroblocks));
s->intra4x4_pred_mode_top = av_mallocz(s->mb_width * 4);
} else // Sliced threading
s->macroblocks_base = av_mallocz((s->mb_width + 2) * (s->mb_height + 2) *
sizeof(*s->macroblocks));
s->top_nnz = av_mallocz(s->mb_width * sizeof(*s->top_nnz));
s->top_border = av_mallocz((s->mb_width + 1) * sizeof(*s->top_border));
s->thread_data = av_mallocz(MAX_THREADS * sizeof(VP8ThreadData));
if (!s->macroblocks_base || !s->top_nnz || !s->top_border ||
!s->thread_data || (!s->intra4x4_pred_mode_top && !s->mb_layout)) {
free_buffers(s);
return AVERROR(ENOMEM);
}
for (i = 0; i < MAX_THREADS; i++) {
s->thread_data[i].filter_strength =
av_mallocz(s->mb_width * sizeof(*s->thread_data[0].filter_strength));
if (!s->thread_data[i].filter_strength) {
free_buffers(s);
return AVERROR(ENOMEM);
}
#if HAVE_THREADS
pthread_mutex_init(&s->thread_data[i].lock, NULL);
pthread_cond_init(&s->thread_data[i].cond, NULL);
#endif
}
s->macroblocks = s->macroblocks_base + 1;
return 0;
}
static int vp7_update_dimensions(VP8Context *s, int width, int height)
{
return update_dimensions(s, width, height, IS_VP7);
}
static int vp8_update_dimensions(VP8Context *s, int width, int height)
{
return update_dimensions(s, width, height, IS_VP8);
}
static void parse_segment_info(VP8Context *s)
{
VP56RangeCoder *c = &s->c;
int i;
s->segmentation.update_map = vp8_rac_get(c);
if (vp8_rac_get(c)) { // update segment feature data
s->segmentation.absolute_vals = vp8_rac_get(c);
for (i = 0; i < 4; i++)
s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7);
for (i = 0; i < 4; i++)
s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6);
}
if (s->segmentation.update_map)
for (i = 0; i < 3; i++)
s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255;
}
static void update_lf_deltas(VP8Context *s)
{
VP56RangeCoder *c = &s->c;
int i;
for (i = 0; i < 4; i++) {
if (vp8_rac_get(c)) {
s->lf_delta.ref[i] = vp8_rac_get_uint(c, 6);
if (vp8_rac_get(c))
s->lf_delta.ref[i] = -s->lf_delta.ref[i];
}
}
for (i = MODE_I4x4; i <= VP8_MVMODE_SPLIT; i++) {
if (vp8_rac_get(c)) {
s->lf_delta.mode[i] = vp8_rac_get_uint(c, 6);
if (vp8_rac_get(c))
s->lf_delta.mode[i] = -s->lf_delta.mode[i];
}
}
}
static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size)
{
const uint8_t *sizes = buf;
int i;
s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2);
buf += 3 * (s->num_coeff_partitions - 1);
buf_size -= 3 * (s->num_coeff_partitions - 1);
if (buf_size < 0)
return -1;
for (i = 0; i < s->num_coeff_partitions - 1; i++) {
int size = AV_RL24(sizes + 3 * i);
if (buf_size - size < 0)
return -1;
ff_vp56_init_range_decoder(&s->coeff_partition[i], buf, size);
buf += size;
buf_size -= size;
}
ff_vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size);
return 0;
}
static void vp7_get_quants(VP8Context *s)
{
VP56RangeCoder *c = &s->c;
int yac_qi = vp8_rac_get_uint(c, 7);
int ydc_qi = vp8_rac_get(c) ? vp8_rac_get_uint(c, 7) : yac_qi;
int y2dc_qi = vp8_rac_get(c) ? vp8_rac_get_uint(c, 7) : yac_qi;
int y2ac_qi = vp8_rac_get(c) ? vp8_rac_get_uint(c, 7) : yac_qi;
int uvdc_qi = vp8_rac_get(c) ? vp8_rac_get_uint(c, 7) : yac_qi;
int uvac_qi = vp8_rac_get(c) ? vp8_rac_get_uint(c, 7) : yac_qi;
s->qmat[0].luma_qmul[0] = vp7_ydc_qlookup[ydc_qi];
s->qmat[0].luma_qmul[1] = vp7_yac_qlookup[yac_qi];
s->qmat[0].luma_dc_qmul[0] = vp7_y2dc_qlookup[y2dc_qi];
s->qmat[0].luma_dc_qmul[1] = vp7_y2ac_qlookup[y2ac_qi];
s->qmat[0].chroma_qmul[0] = FFMIN(vp7_ydc_qlookup[uvdc_qi], 132);
s->qmat[0].chroma_qmul[1] = vp7_yac_qlookup[uvac_qi];
}
static void get_quants(VP8Context *s)
{
VP56RangeCoder *c = &s->c;
int i, base_qi;
int yac_qi = vp8_rac_get_uint(c, 7);
int ydc_delta = vp8_rac_get_sint(c, 4);
int y2dc_delta = vp8_rac_get_sint(c, 4);
int y2ac_delta = vp8_rac_get_sint(c, 4);
int uvdc_delta = vp8_rac_get_sint(c, 4);
int uvac_delta = vp8_rac_get_sint(c, 4);
for (i = 0; i < 4; i++) {
if (s->segmentation.enabled) {
base_qi = s->segmentation.base_quant[i];
if (!s->segmentation.absolute_vals)
base_qi += yac_qi;
} else
base_qi = yac_qi;
s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip_uintp2(base_qi + ydc_delta, 7)];
s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip_uintp2(base_qi, 7)];
s->qmat[i].luma_dc_qmul[0] = vp8_dc_qlookup[av_clip_uintp2(base_qi + y2dc_delta, 7)] * 2;
/* 101581>>16 is equivalent to 155/100 */
s->qmat[i].luma_dc_qmul[1] = vp8_ac_qlookup[av_clip_uintp2(base_qi + y2ac_delta, 7)] * 101581 >> 16;
s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip_uintp2(base_qi + uvdc_delta, 7)];
s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip_uintp2(base_qi + uvac_delta, 7)];
s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8);
s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132);
}
}
/**
* Determine which buffers golden and altref should be updated with after this frame.
* The spec isn't clear here, so I'm going by my understanding of what libvpx does
*
* Intra frames update all 3 references
* Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set
* If the update (golden|altref) flag is set, it's updated with the current frame
* if update_last is set, and VP56_FRAME_PREVIOUS otherwise.
* If the flag is not set, the number read means:
* 0: no update
* 1: VP56_FRAME_PREVIOUS
* 2: update golden with altref, or update altref with golden
*/
static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref)
{
VP56RangeCoder *c = &s->c;
if (update)
return VP56_FRAME_CURRENT;
switch (vp8_rac_get_uint(c, 2)) {
case 1:
return VP56_FRAME_PREVIOUS;
case 2:
return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN;
}
return VP56_FRAME_NONE;
}
static void vp78_reset_probability_tables(VP8Context *s)
{
int i, j;
for (i = 0; i < 4; i++)
for (j = 0; j < 16; j++)
memcpy(s->prob->token[i][j], vp8_token_default_probs[i][vp8_coeff_band[j]],
sizeof(s->prob->token[i][j]));
}
static void vp78_update_probability_tables(VP8Context *s)
{
VP56RangeCoder *c = &s->c;
int i, j, k, l, m;
for (i = 0; i < 4; i++)
for (j = 0; j < 8; j++)
for (k = 0; k < 3; k++)
for (l = 0; l < NUM_DCT_TOKENS-1; l++)
if (vp56_rac_get_prob_branchy(c, vp8_token_update_probs[i][j][k][l])) {
int prob = vp8_rac_get_uint(c, 8);
for (m = 0; vp8_coeff_band_indexes[j][m] >= 0; m++)
s->prob->token[i][vp8_coeff_band_indexes[j][m]][k][l] = prob;
}
}
#define VP7_MVC_SIZE 17
#define VP8_MVC_SIZE 19
static void vp78_update_pred16x16_pred8x8_mvc_probabilities(VP8Context *s,
int mvc_size)
{
VP56RangeCoder *c = &s->c;
int i, j;
if (vp8_rac_get(c))
for (i = 0; i < 4; i++)
s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8);
if (vp8_rac_get(c))
for (i = 0; i < 3; i++)
s->prob->pred8x8c[i] = vp8_rac_get_uint(c, 8);
// 17.2 MV probability update
for (i = 0; i < 2; i++)
for (j = 0; j < mvc_size; j++)
if (vp56_rac_get_prob_branchy(c, vp8_mv_update_prob[i][j]))
s->prob->mvc[i][j] = vp8_rac_get_nn(c);
}
static void update_refs(VP8Context *s)
{
VP56RangeCoder *c = &s->c;
int update_golden = vp8_rac_get(c);
int update_altref = vp8_rac_get(c);
s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN);
s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2);
}
static void copy_luma(AVFrame *dst, AVFrame *src, int width, int height)
{
int i, j;
for (j = 1; j < 3; j++) {
for (i = 0; i < height / 2; i++)
memcpy(dst->data[j] + i * dst->linesize[j],
src->data[j] + i * src->linesize[j], width / 2);
}
}
static void fade(uint8_t *dst, uint8_t *src,
int width, int height, int linesize,
int alpha, int beta)
{
int i, j;
for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {
uint8_t y = src[j * linesize + i];
dst[j * linesize + i] = av_clip_uint8(y + ((y * beta) >> 8) + alpha);
}
}
}
static int vp7_fade_frame(VP8Context *s, VP56RangeCoder *c)
{
int alpha = (int8_t) vp8_rac_get_uint(c, 8);
int beta = (int8_t) vp8_rac_get_uint(c, 8);
int ret;
if (!s->keyframe && (alpha || beta)) {
int width = s->mb_width * 16;
int height = s->mb_height * 16;
AVFrame *src, *dst;
if (!s->framep[VP56_FRAME_PREVIOUS])
return AVERROR_INVALIDDATA;
dst =
src = s->framep[VP56_FRAME_PREVIOUS]->tf.f;
/* preserve the golden frame, write a new previous frame */
if (s->framep[VP56_FRAME_GOLDEN] == s->framep[VP56_FRAME_PREVIOUS]) {
s->framep[VP56_FRAME_PREVIOUS] = vp8_find_free_buffer(s);
if ((ret = vp8_alloc_frame(s, s->framep[VP56_FRAME_PREVIOUS], 1)) < 0)
return ret;
dst = s->framep[VP56_FRAME_PREVIOUS]->tf.f;
copy_luma(dst, src, width, height);
}
fade(dst->data[0], src->data[0],
width, height, dst->linesize[0], alpha, beta);
}
return 0;
}
static int vp7_decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
{
VP56RangeCoder *c = &s->c;
int part1_size, hscale, vscale, i, j, ret;
int width = s->avctx->width;
int height = s->avctx->height;
if (buf_size < 4) {
return AVERROR_INVALIDDATA;
}
s->profile = (buf[0] >> 1) & 7;
if (s->profile > 1) {
avpriv_request_sample(s->avctx, "Unknown profile %d", s->profile);
return AVERROR_INVALIDDATA;
}
s->keyframe = !(buf[0] & 1);
s->invisible = 0;
part1_size = AV_RL24(buf) >> 4;
buf += 4 - s->profile;
buf_size -= 4 - s->profile;
if (buf_size < part1_size) {
return AVERROR_INVALIDDATA;
}
memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab));
ff_vp56_init_range_decoder(c, buf, part1_size);
buf += part1_size;
buf_size -= part1_size;
/* A. Dimension information (keyframes only) */
if (s->keyframe) {
width = vp8_rac_get_uint(c, 12);
height = vp8_rac_get_uint(c, 12);
hscale = vp8_rac_get_uint(c, 2);
vscale = vp8_rac_get_uint(c, 2);
if (hscale || vscale)
avpriv_request_sample(s->avctx, "Upscaling");
s->update_golden = s->update_altref = VP56_FRAME_CURRENT;
vp78_reset_probability_tables(s);
memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter,
sizeof(s->prob->pred16x16));
memcpy(s->prob->pred8x8c, vp8_pred8x8c_prob_inter,
sizeof(s->prob->pred8x8c));
for (i = 0; i < 2; i++)
memcpy(s->prob->mvc[i], vp7_mv_default_prob[i],
sizeof(vp7_mv_default_prob[i]));
memset(&s->segmentation, 0, sizeof(s->segmentation));
memset(&s->lf_delta, 0, sizeof(s->lf_delta));
memcpy(s->prob[0].scan, ff_zigzag_scan, sizeof(s->prob[0].scan));
}
if (s->keyframe || s->profile > 0)
memset(s->inter_dc_pred, 0 , sizeof(s->inter_dc_pred));
/* B. Decoding information for all four macroblock-level features */
for (i = 0; i < 4; i++) {
s->feature_enabled[i] = vp8_rac_get(c);
if (s->feature_enabled[i]) {
s->feature_present_prob[i] = vp8_rac_get_uint(c, 8);
for (j = 0; j < 3; j++)
s->feature_index_prob[i][j] =
vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255;
if (vp7_feature_value_size[s->profile][i])
for (j = 0; j < 4; j++)
s->feature_value[i][j] =
vp8_rac_get(c) ? vp8_rac_get_uint(c, vp7_feature_value_size[s->profile][i]) : 0;
}
}
s->segmentation.enabled = 0;
s->segmentation.update_map = 0;
s->lf_delta.enabled = 0;
s->num_coeff_partitions = 1;
ff_vp56_init_range_decoder(&s->coeff_partition[0], buf, buf_size);
if (!s->macroblocks_base || /* first frame */
width != s->avctx->width || height != s->avctx->height ||
(width + 15) / 16 != s->mb_width || (height + 15) / 16 != s->mb_height) {
if ((ret = vp7_update_dimensions(s, width, height)) < 0)
return ret;
}
/* C. Dequantization indices */
vp7_get_quants(s);
/* D. Golden frame update flag (a Flag) for interframes only */
if (!s->keyframe) {
s->update_golden = vp8_rac_get(c) ? VP56_FRAME_CURRENT : VP56_FRAME_NONE;
s->sign_bias[VP56_FRAME_GOLDEN] = 0;
}
s->update_last = 1;
s->update_probabilities = 1;
s->fade_present = 1;
if (s->profile > 0) {
s->update_probabilities = vp8_rac_get(c);
if (!s->update_probabilities)
s->prob[1] = s->prob[0];
if (!s->keyframe)
s->fade_present = vp8_rac_get(c);
}
/* E. Fading information for previous frame */
if (s->fade_present && vp8_rac_get(c)) {
if ((ret = vp7_fade_frame(s ,c)) < 0)
return ret;
}
/* F. Loop filter type */
if (!s->profile)
s->filter.simple = vp8_rac_get(c);
/* G. DCT coefficient ordering specification */
if (vp8_rac_get(c))
for (i = 1; i < 16; i++)
s->prob[0].scan[i] = ff_zigzag_scan[vp8_rac_get_uint(c, 4)];
/* H. Loop filter levels */
if (s->profile > 0)
s->filter.simple = vp8_rac_get(c);
s->filter.level = vp8_rac_get_uint(c, 6);
s->filter.sharpness = vp8_rac_get_uint(c, 3);
/* I. DCT coefficient probability update; 13.3 Token Probability Updates */
vp78_update_probability_tables(s);
s->mbskip_enabled = 0;
/* J. The remaining frame header data occurs ONLY FOR INTERFRAMES */
if (!s->keyframe) {
s->prob->intra = vp8_rac_get_uint(c, 8);
s->prob->last = vp8_rac_get_uint(c, 8);
vp78_update_pred16x16_pred8x8_mvc_probabilities(s, VP7_MVC_SIZE);
}
return 0;
}
static int vp8_decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
{
VP56RangeCoder *c = &s->c;
int header_size, hscale, vscale, ret;
int width = s->avctx->width;
int height = s->avctx->height;
s->keyframe = !(buf[0] & 1);
s->profile = (buf[0]>>1) & 7;
s->invisible = !(buf[0] & 0x10);
header_size = AV_RL24(buf) >> 5;
buf += 3;
buf_size -= 3;
if (s->profile > 3)
av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile);
if (!s->profile)
memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab,
sizeof(s->put_pixels_tab));
else // profile 1-3 use bilinear, 4+ aren't defined so whatever
memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab,
sizeof(s->put_pixels_tab));
if (header_size > buf_size - 7 * s->keyframe) {
av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n");
return AVERROR_INVALIDDATA;
}
if (s->keyframe) {
if (AV_RL24(buf) != 0x2a019d) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid start code 0x%x\n", AV_RL24(buf));
return AVERROR_INVALIDDATA;
}
width = AV_RL16(buf + 3) & 0x3fff;
height = AV_RL16(buf + 5) & 0x3fff;
hscale = buf[4] >> 6;
vscale = buf[6] >> 6;
buf += 7;
buf_size -= 7;
if (hscale || vscale)
avpriv_request_sample(s->avctx, "Upscaling");
s->update_golden = s->update_altref = VP56_FRAME_CURRENT;
vp78_reset_probability_tables(s);
memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter,
sizeof(s->prob->pred16x16));
memcpy(s->prob->pred8x8c, vp8_pred8x8c_prob_inter,
sizeof(s->prob->pred8x8c));
memcpy(s->prob->mvc, vp8_mv_default_prob,
sizeof(s->prob->mvc));
memset(&s->segmentation, 0, sizeof(s->segmentation));
memset(&s->lf_delta, 0, sizeof(s->lf_delta));
}
ff_vp56_init_range_decoder(c, buf, header_size);
buf += header_size;
buf_size -= header_size;
if (s->keyframe) {
s->colorspace = vp8_rac_get(c);
if (s->colorspace)
av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n");
s->fullrange = vp8_rac_get(c);
}
if ((s->segmentation.enabled = vp8_rac_get(c)))
parse_segment_info(s);
else
s->segmentation.update_map = 0; // FIXME: move this to some init function?
s->filter.simple = vp8_rac_get(c);
s->filter.level = vp8_rac_get_uint(c, 6);
s->filter.sharpness = vp8_rac_get_uint(c, 3);
if ((s->lf_delta.enabled = vp8_rac_get(c)))
if (vp8_rac_get(c))
update_lf_deltas(s);
if (setup_partitions(s, buf, buf_size)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n");
return AVERROR_INVALIDDATA;
}
if (!s->macroblocks_base || /* first frame */
width != s->avctx->width || height != s->avctx->height)
if ((ret = vp8_update_dimensions(s, width, height)) < 0)
return ret;
get_quants(s);
if (!s->keyframe) {
update_refs(s);
s->sign_bias[VP56_FRAME_GOLDEN] = vp8_rac_get(c);
s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c);
}
// if we aren't saving this frame's probabilities for future frames,
// make a copy of the current probabilities
if (!(s->update_probabilities = vp8_rac_get(c)))
s->prob[1] = s->prob[0];
s->update_last = s->keyframe || vp8_rac_get(c);
vp78_update_probability_tables(s);
if ((s->mbskip_enabled = vp8_rac_get(c)))
s->prob->mbskip = vp8_rac_get_uint(c, 8);
if (!s->keyframe) {
s->prob->intra = vp8_rac_get_uint(c, 8);
s->prob->last = vp8_rac_get_uint(c, 8);
s->prob->golden = vp8_rac_get_uint(c, 8);
vp78_update_pred16x16_pred8x8_mvc_probabilities(s, VP8_MVC_SIZE);
}
return 0;
}
static av_always_inline
void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src)
{
dst->x = av_clip(src->x, s->mv_min.x, s->mv_max.x);
dst->y = av_clip(src->y, s->mv_min.y, s->mv_max.y);
}
/**
* Motion vector coding, 17.1.
*/
static int read_mv_component(VP56RangeCoder *c, const uint8_t *p, int vp7)
{
int bit, x = 0;
if (vp56_rac_get_prob_branchy(c, p[0])) {
int i;
for (i = 0; i < 3; i++)
x += vp56_rac_get_prob(c, p[9 + i]) << i;
for (i = (vp7 ? 7 : 9); i > 3; i--)
x += vp56_rac_get_prob(c, p[9 + i]) << i;
if (!(x & (vp7 ? 0xF0 : 0xFFF0)) || vp56_rac_get_prob(c, p[12]))
x += 8;
} else {
// small_mvtree
const uint8_t *ps = p + 2;
bit = vp56_rac_get_prob(c, *ps);
ps += 1 + 3 * bit;
x += 4 * bit;
bit = vp56_rac_get_prob(c, *ps);
ps += 1 + bit;
x += 2 * bit;
x += vp56_rac_get_prob(c, *ps);
}
return (x && vp56_rac_get_prob(c, p[1])) ? -x : x;
}
static av_always_inline
const uint8_t *get_submv_prob(uint32_t left, uint32_t top, int is_vp7)
{
if (is_vp7)
return vp7_submv_prob;
if (left == top)
return vp8_submv_prob[4 - !!left];
if (!top)
return vp8_submv_prob[2];
return vp8_submv_prob[1 - !!left];
}
/**
* Split motion vector prediction, 16.4.
* @returns the number of motion vectors parsed (2, 4 or 16)
*/
static av_always_inline
int decode_splitmvs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb,
int layout, int is_vp7)
{
int part_idx;
int n, num;
VP8Macroblock *top_mb;
VP8Macroblock *left_mb = &mb[-1];
const uint8_t *mbsplits_left = vp8_mbsplits[left_mb->partitioning];
const uint8_t *mbsplits_top, *mbsplits_cur, *firstidx;
VP56mv *top_mv;
VP56mv *left_mv = left_mb->bmv;
VP56mv *cur_mv = mb->bmv;
if (!layout) // layout is inlined, s->mb_layout is not
top_mb = &mb[2];
else
top_mb = &mb[-s->mb_width - 1];
mbsplits_top = vp8_mbsplits[top_mb->partitioning];
top_mv = top_mb->bmv;
if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[0])) {
if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[1]))
part_idx = VP8_SPLITMVMODE_16x8 + vp56_rac_get_prob(c, vp8_mbsplit_prob[2]);
else
part_idx = VP8_SPLITMVMODE_8x8;
} else {
part_idx = VP8_SPLITMVMODE_4x4;
}
num = vp8_mbsplit_count[part_idx];
mbsplits_cur = vp8_mbsplits[part_idx],
firstidx = vp8_mbfirstidx[part_idx];
mb->partitioning = part_idx;
for (n = 0; n < num; n++) {
int k = firstidx[n];
uint32_t left, above;
const uint8_t *submv_prob;
if (!(k & 3))
left = AV_RN32A(&left_mv[mbsplits_left[k + 3]]);
else
left = AV_RN32A(&cur_mv[mbsplits_cur[k - 1]]);
if (k <= 3)
above = AV_RN32A(&top_mv[mbsplits_top[k + 12]]);
else
above = AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]);
submv_prob = get_submv_prob(left, above, is_vp7);
if (vp56_rac_get_prob_branchy(c, submv_prob[0])) {
if (vp56_rac_get_prob_branchy(c, submv_prob[1])) {
if (vp56_rac_get_prob_branchy(c, submv_prob[2])) {
mb->bmv[n].y = mb->mv.y +
read_mv_component(c, s->prob->mvc[0], is_vp7);
mb->bmv[n].x = mb->mv.x +
read_mv_component(c, s->prob->mvc[1], is_vp7);
} else {
AV_ZERO32(&mb->bmv[n]);
}
} else {
AV_WN32A(&mb->bmv[n], above);
}
} else {
AV_WN32A(&mb->bmv[n], left);
}
}
return num;
}
/**
* The vp7 reference decoder uses a padding macroblock column (added to right
* edge of the frame) to guard against illegal macroblock offsets. The
* algorithm has bugs that permit offsets to straddle the padding column.
* This function replicates those bugs.
*
* @param[out] edge_x macroblock x address
* @param[out] edge_y macroblock y address
*
* @return macroblock offset legal (boolean)
*/
static int vp7_calculate_mb_offset(int mb_x, int mb_y, int mb_width,
int xoffset, int yoffset, int boundary,
int *edge_x, int *edge_y)
{
int vwidth = mb_width + 1;
int new = (mb_y + yoffset) * vwidth + mb_x + xoffset;
if (new < boundary || new % vwidth == vwidth - 1)
return 0;
*edge_y = new / vwidth;
*edge_x = new % vwidth;
return 1;
}
static const VP56mv *get_bmv_ptr(const VP8Macroblock *mb, int subblock)
{
return &mb->bmv[mb->mode == VP8_MVMODE_SPLIT ? vp8_mbsplits[mb->partitioning][subblock] : 0];
}
static av_always_inline
void vp7_decode_mvs(VP8Context *s, VP8Macroblock *mb,
int mb_x, int mb_y, int layout)
{
VP8Macroblock *mb_edge[12];
enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR };
enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT };
int idx = CNT_ZERO;
VP56mv near_mv[3];
uint8_t cnt[3] = { 0 };
VP56RangeCoder *c = &s->c;
int i;
AV_ZERO32(&near_mv[0]);
AV_ZERO32(&near_mv[1]);
AV_ZERO32(&near_mv[2]);
for (i = 0; i < VP7_MV_PRED_COUNT; i++) {
const VP7MVPred * pred = &vp7_mv_pred[i];
int edge_x, edge_y;
if (vp7_calculate_mb_offset(mb_x, mb_y, s->mb_width, pred->xoffset,
pred->yoffset, !s->profile, &edge_x, &edge_y)) {
VP8Macroblock *edge = mb_edge[i] = (s->mb_layout == 1)
? s->macroblocks_base + 1 + edge_x +
(s->mb_width + 1) * (edge_y + 1)
: s->macroblocks + edge_x +
(s->mb_height - edge_y - 1) * 2;
uint32_t mv = AV_RN32A(get_bmv_ptr(edge, vp7_mv_pred[i].subblock));
if (mv) {
if (AV_RN32A(&near_mv[CNT_NEAREST])) {
if (mv == AV_RN32A(&near_mv[CNT_NEAREST])) {
idx = CNT_NEAREST;
} else if (AV_RN32A(&near_mv[CNT_NEAR])) {
if (mv != AV_RN32A(&near_mv[CNT_NEAR]))
continue;
idx = CNT_NEAR;
} else {
AV_WN32A(&near_mv[CNT_NEAR], mv);
idx = CNT_NEAR;
}
} else {
AV_WN32A(&near_mv[CNT_NEAREST], mv);
idx = CNT_NEAREST;
}
} else {
idx = CNT_ZERO;
}
} else {
idx = CNT_ZERO;
}
cnt[idx] += vp7_mv_pred[i].score;
}
mb->partitioning = VP8_SPLITMVMODE_NONE;
if (vp56_rac_get_prob_branchy(c, vp7_mode_contexts[cnt[CNT_ZERO]][0])) {
mb->mode = VP8_MVMODE_MV;
if (vp56_rac_get_prob_branchy(c, vp7_mode_contexts[cnt[CNT_NEAREST]][1])) {
if (vp56_rac_get_prob_branchy(c, vp7_mode_contexts[cnt[CNT_NEAR]][2])) {
if (cnt[CNT_NEAREST] > cnt[CNT_NEAR])
AV_WN32A(&mb->mv, cnt[CNT_ZERO] > cnt[CNT_NEAREST] ? 0 : AV_RN32A(&near_mv[CNT_NEAREST]));
else
AV_WN32A(&mb->mv, cnt[CNT_ZERO] > cnt[CNT_NEAR] ? 0 : AV_RN32A(&near_mv[CNT_NEAR]));
if (vp56_rac_get_prob_branchy(c, vp7_mode_contexts[cnt[CNT_NEAR]][3])) {
mb->mode = VP8_MVMODE_SPLIT;
mb->mv = mb->bmv[decode_splitmvs(s, c, mb, layout, IS_VP7) - 1];
} else {
mb->mv.y += read_mv_component(c, s->prob->mvc[0], IS_VP7);
mb->mv.x += read_mv_component(c, s->prob->mvc[1], IS_VP7);
mb->bmv[0] = mb->mv;
}
} else {
mb->mv = near_mv[CNT_NEAR];
mb->bmv[0] = mb->mv;
}
} else {
mb->mv = near_mv[CNT_NEAREST];
mb->bmv[0] = mb->mv;
}
} else {
mb->mode = VP8_MVMODE_ZERO;
AV_ZERO32(&mb->mv);
mb->bmv[0] = mb->mv;
}
}
static av_always_inline
void vp8_decode_mvs(VP8Context *s, VP8Macroblock *mb,
int mb_x, int mb_y, int layout)
{
VP8Macroblock *mb_edge[3] = { 0 /* top */,
mb - 1 /* left */,
0 /* top-left */ };
enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT };
int idx = CNT_ZERO;
int cur_sign_bias = s->sign_bias[mb->ref_frame];
int8_t *sign_bias = s->sign_bias;
VP56mv near_mv[4];
uint8_t cnt[4] = { 0 };
VP56RangeCoder *c = &s->c;
if (!layout) { // layout is inlined (s->mb_layout is not)
mb_edge[0] = mb + 2;
mb_edge[2] = mb + 1;
} else {
mb_edge[0] = mb - s->mb_width - 1;
mb_edge[2] = mb - s->mb_width - 2;
}
AV_ZERO32(&near_mv[0]);
AV_ZERO32(&near_mv[1]);
AV_ZERO32(&near_mv[2]);
/* Process MB on top, left and top-left */
#define MV_EDGE_CHECK(n) \
{ \
VP8Macroblock *edge = mb_edge[n]; \
int edge_ref = edge->ref_frame; \
if (edge_ref != VP56_FRAME_CURRENT) { \
uint32_t mv = AV_RN32A(&edge->mv); \
if (mv) { \
if (cur_sign_bias != sign_bias[edge_ref]) { \
/* SWAR negate of the values in mv. */ \
mv = ~mv; \
mv = ((mv & 0x7fff7fff) + \
0x00010001) ^ (mv & 0x80008000); \
} \
if (!n || mv != AV_RN32A(&near_mv[idx])) \
AV_WN32A(&near_mv[++idx], mv); \
cnt[idx] += 1 + (n != 2); \
} else \
cnt[CNT_ZERO] += 1 + (n != 2); \
} \
}
MV_EDGE_CHECK(0)
MV_EDGE_CHECK(1)
MV_EDGE_CHECK(2)
mb->partitioning = VP8_SPLITMVMODE_NONE;
if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_ZERO]][0])) {
mb->mode = VP8_MVMODE_MV;
/* If we have three distinct MVs, merge first and last if they're the same */
if (cnt[CNT_SPLITMV] &&
AV_RN32A(&near_mv[1 + VP8_EDGE_TOP]) == AV_RN32A(&near_mv[1 + VP8_EDGE_TOPLEFT]))
cnt[CNT_NEAREST] += 1;
/* Swap near and nearest if necessary */
if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
FFSWAP(uint8_t, cnt[CNT_NEAREST], cnt[CNT_NEAR]);
FFSWAP( VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]);
}
if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_NEAREST]][1])) {
if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_NEAR]][2])) {
/* Choose the best mv out of 0,0 and the nearest mv */
clamp_mv(s, &mb->mv, &near_mv[CNT_ZERO + (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])]);
cnt[CNT_SPLITMV] = ((mb_edge[VP8_EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) +
(mb_edge[VP8_EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 +
(mb_edge[VP8_EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT);
if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_SPLITMV]][3])) {
mb->mode = VP8_MVMODE_SPLIT;
mb->mv = mb->bmv[decode_splitmvs(s, c, mb, layout, IS_VP8) - 1];
} else {
mb->mv.y += read_mv_component(c, s->prob->mvc[0], IS_VP8);
mb->mv.x += read_mv_component(c, s->prob->mvc[1], IS_VP8);
mb->bmv[0] = mb->mv;
}
} else {
clamp_mv(s, &mb->mv, &near_mv[CNT_NEAR]);
mb->bmv[0] = mb->mv;
}
} else {
clamp_mv(s, &mb->mv, &near_mv[CNT_NEAREST]);
mb->bmv[0] = mb->mv;
}
} else {
mb->mode = VP8_MVMODE_ZERO;
AV_ZERO32(&mb->mv);
mb->bmv[0] = mb->mv;
}
}
static av_always_inline
void decode_intra4x4_modes(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb,
int mb_x, int keyframe, int layout)
{
uint8_t *intra4x4 = mb->intra4x4_pred_mode_mb;
if (layout == 1) {
VP8Macroblock *mb_top = mb - s->mb_width - 1;
memcpy(mb->intra4x4_pred_mode_top, mb_top->intra4x4_pred_mode_top, 4);
}
if (keyframe) {
int x, y;
uint8_t *top;
uint8_t *const left = s->intra4x4_pred_mode_left;
if (layout == 1)
top = mb->intra4x4_pred_mode_top;
else
top = s->intra4x4_pred_mode_top + 4 * mb_x;
for (y = 0; y < 4; y++) {
for (x = 0; x < 4; x++) {
const uint8_t *ctx;
ctx = vp8_pred4x4_prob_intra[top[x]][left[y]];
*intra4x4 = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx);
left[y] = top[x] = *intra4x4;
intra4x4++;
}
}
} else {
int i;
for (i = 0; i < 16; i++)
intra4x4[i] = vp8_rac_get_tree(c, vp8_pred4x4_tree,
vp8_pred4x4_prob_inter);
}
}
static av_always_inline
void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y,
uint8_t *segment, uint8_t *ref, int layout, int is_vp7)
{
VP56RangeCoder *c = &s->c;
static const char *vp7_feature_name[] = { "q-index",
"lf-delta",
"partial-golden-update",
"blit-pitch" };
if (is_vp7) {
int i;
*segment = 0;
for (i = 0; i < 4; i++) {
if (s->feature_enabled[i]) {
if (vp56_rac_get_prob(c, s->feature_present_prob[i])) {
int index = vp8_rac_get_tree(c, vp7_feature_index_tree,
s->feature_index_prob[i]);
av_log(s->avctx, AV_LOG_WARNING,
"Feature %s present in macroblock (value 0x%x)\n",
vp7_feature_name[i], s->feature_value[i][index]);
}
}
}
} else if (s->segmentation.update_map)
*segment = vp8_rac_get_tree(c, vp8_segmentid_tree, s->prob->segmentid);
else if (s->segmentation.enabled)
*segment = ref ? *ref : *segment;
mb->segment = *segment;
mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0;
if (s->keyframe) {
mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra,
vp8_pred16x16_prob_intra);
if (mb->mode == MODE_I4x4) {
decode_intra4x4_modes(s, c, mb, mb_x, 1, layout);
} else {
const uint32_t modes = (is_vp7 ? vp7_pred4x4_mode
: vp8_pred4x4_mode)[mb->mode] * 0x01010101u;
if (s->mb_layout == 1)
AV_WN32A(mb->intra4x4_pred_mode_top, modes);
else
AV_WN32A(s->intra4x4_pred_mode_top + 4 * mb_x, modes);
AV_WN32A(s->intra4x4_pred_mode_left, modes);
}
mb->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree,
vp8_pred8x8c_prob_intra);
mb->ref_frame = VP56_FRAME_CURRENT;
} else if (vp56_rac_get_prob_branchy(c, s->prob->intra)) {
// inter MB, 16.2
if (vp56_rac_get_prob_branchy(c, s->prob->last))
mb->ref_frame =
(!is_vp7 && vp56_rac_get_prob(c, s->prob->golden)) ? VP56_FRAME_GOLDEN2 /* altref */
: VP56_FRAME_GOLDEN;
else
mb->ref_frame = VP56_FRAME_PREVIOUS;
s->ref_count[mb->ref_frame - 1]++;
// motion vectors, 16.3
if (is_vp7)
vp7_decode_mvs(s, mb, mb_x, mb_y, layout);
else
vp8_decode_mvs(s, mb, mb_x, mb_y, layout);
} else {
// intra MB, 16.1
mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16);
if (mb->mode == MODE_I4x4)
decode_intra4x4_modes(s, c, mb, mb_x, 0, layout);
mb->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree,
s->prob->pred8x8c);
mb->ref_frame = VP56_FRAME_CURRENT;
mb->partitioning = VP8_SPLITMVMODE_NONE;
AV_ZERO32(&mb->bmv[0]);
}
}
/**
* @param r arithmetic bitstream reader context
* @param block destination for block coefficients
* @param probs probabilities to use when reading trees from the bitstream
* @param i initial coeff index, 0 unless a separate DC block is coded
* @param qmul array holding the dc/ac dequant factor at position 0/1
*
* @return 0 if no coeffs were decoded
* otherwise, the index of the last coeff decoded plus one
*/
static av_always_inline
int decode_block_coeffs_internal(VP56RangeCoder *r, int16_t block[16],
uint8_t probs[16][3][NUM_DCT_TOKENS - 1],
int i, uint8_t *token_prob, int16_t qmul[2],
const uint8_t scan[16], int vp7)
{
VP56RangeCoder c = *r;
goto skip_eob;
do {
int coeff;
restart:
if (!vp56_rac_get_prob_branchy(&c, token_prob[0])) // DCT_EOB
break;
skip_eob:
if (!vp56_rac_get_prob_branchy(&c, token_prob[1])) { // DCT_0
if (++i == 16)
break; // invalid input; blocks should end with EOB
token_prob = probs[i][0];
if (vp7)
goto restart;
goto skip_eob;
}
if (!vp56_rac_get_prob_branchy(&c, token_prob[2])) { // DCT_1
coeff = 1;
token_prob = probs[i + 1][1];
} else {
if (!vp56_rac_get_prob_branchy(&c, token_prob[3])) { // DCT 2,3,4
coeff = vp56_rac_get_prob_branchy(&c, token_prob[4]);
if (coeff)
coeff += vp56_rac_get_prob(&c, token_prob[5]);
coeff += 2;
} else {
// DCT_CAT*
if (!vp56_rac_get_prob_branchy(&c, token_prob[6])) {
if (!vp56_rac_get_prob_branchy(&c, token_prob[7])) { // DCT_CAT1
coeff = 5 + vp56_rac_get_prob(&c, vp8_dct_cat1_prob[0]);
} else { // DCT_CAT2
coeff = 7;
coeff += vp56_rac_get_prob(&c, vp8_dct_cat2_prob[0]) << 1;
coeff += vp56_rac_get_prob(&c, vp8_dct_cat2_prob[1]);
}
} else { // DCT_CAT3 and up
int a = vp56_rac_get_prob(&c, token_prob[8]);
int b = vp56_rac_get_prob(&c, token_prob[9 + a]);
int cat = (a << 1) + b;
coeff = 3 + (8 << cat);
coeff += vp8_rac_get_coeff(&c, ff_vp8_dct_cat_prob[cat]);
}
}
token_prob = probs[i + 1][2];
}
block[scan[i]] = (vp8_rac_get(&c) ? -coeff : coeff) * qmul[!!i];
} while (++i < 16);
*r = c;
return i;
}
static av_always_inline
int inter_predict_dc(int16_t block[16], int16_t pred[2])
{
int16_t dc = block[0];
int ret = 0;
if (pred[1] > 3) {
dc += pred[0];
ret = 1;
}
if (!pred[0] | !dc | ((int32_t)pred[0] ^ (int32_t)dc) >> 31) {
block[0] = pred[0] = dc;
pred[1] = 0;
} else {
if (pred[0] == dc)
pred[1]++;
block[0] = pred[0] = dc;
}
return ret;
}
static int vp7_decode_block_coeffs_internal(VP56RangeCoder *r,
int16_t block[16],
uint8_t probs[16][3][NUM_DCT_TOKENS - 1],
int i, uint8_t *token_prob,
int16_t qmul[2],
const uint8_t scan[16])
{
return decode_block_coeffs_internal(r, block, probs, i,
token_prob, qmul, scan, IS_VP7);
}
#ifndef vp8_decode_block_coeffs_internal
static int vp8_decode_block_coeffs_internal(VP56RangeCoder *r,
int16_t block[16],
uint8_t probs[16][3][NUM_DCT_TOKENS - 1],
int i, uint8_t *token_prob,
int16_t qmul[2])
{
return decode_block_coeffs_internal(r, block, probs, i,
token_prob, qmul, ff_zigzag_scan, IS_VP8);
}
#endif
/**
* @param c arithmetic bitstream reader context
* @param block destination for block coefficients
* @param probs probabilities to use when reading trees from the bitstream
* @param i initial coeff index, 0 unless a separate DC block is coded
* @param zero_nhood the initial prediction context for number of surrounding
* all-zero blocks (only left/top, so 0-2)
* @param qmul array holding the dc/ac dequant factor at position 0/1
*
* @return 0 if no coeffs were decoded
* otherwise, the index of the last coeff decoded plus one
*/
static av_always_inline
int decode_block_coeffs(VP56RangeCoder *c, int16_t block[16],
uint8_t probs[16][3][NUM_DCT_TOKENS - 1],
int i, int zero_nhood, int16_t qmul[2],
const uint8_t scan[16], int vp7)
{
uint8_t *token_prob = probs[i][zero_nhood];
if (!vp56_rac_get_prob_branchy(c, token_prob[0])) // DCT_EOB
return 0;
return vp7 ? vp7_decode_block_coeffs_internal(c, block, probs, i,
token_prob, qmul, scan)
: vp8_decode_block_coeffs_internal(c, block, probs, i,
token_prob, qmul);
}
static av_always_inline
void decode_mb_coeffs(VP8Context *s, VP8ThreadData *td, VP56RangeCoder *c,
VP8Macroblock *mb, uint8_t t_nnz[9], uint8_t l_nnz[9],
int is_vp7)
{
int i, x, y, luma_start = 0, luma_ctx = 3;
int nnz_pred, nnz, nnz_total = 0;
int segment = mb->segment;
int block_dc = 0;
if (mb->mode != MODE_I4x4 && (is_vp7 || mb->mode != VP8_MVMODE_SPLIT)) {
nnz_pred = t_nnz[8] + l_nnz[8];
// decode DC values and do hadamard
nnz = decode_block_coeffs(c, td->block_dc, s->prob->token[1], 0,
nnz_pred, s->qmat[segment].luma_dc_qmul,
ff_zigzag_scan, is_vp7);
l_nnz[8] = t_nnz[8] = !!nnz;
if (is_vp7 && mb->mode > MODE_I4x4) {
nnz |= inter_predict_dc(td->block_dc,
s->inter_dc_pred[mb->ref_frame - 1]);
}
if (nnz) {
nnz_total += nnz;
block_dc = 1;
if (nnz == 1)
s->vp8dsp.vp8_luma_dc_wht_dc(td->block, td->block_dc);
else
s->vp8dsp.vp8_luma_dc_wht(td->block, td->block_dc);
}
luma_start = 1;
luma_ctx = 0;
}
// luma blocks
for (y = 0; y < 4; y++)
for (x = 0; x < 4; x++) {
nnz_pred = l_nnz[y] + t_nnz[x];
nnz = decode_block_coeffs(c, td->block[y][x],
s->prob->token[luma_ctx],
luma_start, nnz_pred,
s->qmat[segment].luma_qmul,
s->prob[0].scan, is_vp7);
/* nnz+block_dc may be one more than the actual last index,
* but we don't care */
td->non_zero_count_cache[y][x] = nnz + block_dc;
t_nnz[x] = l_nnz[y] = !!nnz;
nnz_total += nnz;
}
// chroma blocks
// TODO: what to do about dimensions? 2nd dim for luma is x,
// but for chroma it's (y<<1)|x
for (i = 4; i < 6; i++)
for (y = 0; y < 2; y++)
for (x = 0; x < 2; x++) {
nnz_pred = l_nnz[i + 2 * y] + t_nnz[i + 2 * x];
nnz = decode_block_coeffs(c, td->block[i][(y << 1) + x],
s->prob->token[2], 0, nnz_pred,
s->qmat[segment].chroma_qmul,
s->prob[0].scan, is_vp7);
td->non_zero_count_cache[i][(y << 1) + x] = nnz;
t_nnz[i + 2 * x] = l_nnz[i + 2 * y] = !!nnz;
nnz_total += nnz;
}
// if there were no coded coeffs despite the macroblock not being marked skip,
// we MUST not do the inner loop filter and should not do IDCT
// Since skip isn't used for bitstream prediction, just manually set it.
if (!nnz_total)
mb->skip = 1;
}
static av_always_inline
void backup_mb_border(uint8_t *top_border, uint8_t *src_y,
uint8_t *src_cb, uint8_t *src_cr,
int linesize, int uvlinesize, int simple)
{
AV_COPY128(top_border, src_y + 15 * linesize);
if (!simple) {
AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
}
}
static av_always_inline
void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb,
uint8_t *src_cr, int linesize, int uvlinesize, int mb_x,
int mb_y, int mb_width, int simple, int xchg)
{
uint8_t *top_border_m1 = top_border - 32; // for TL prediction
src_y -= linesize;
src_cb -= uvlinesize;
src_cr -= uvlinesize;
#define XCHG(a, b, xchg) \
do { \
if (xchg) \
AV_SWAP64(b, a); \
else \
AV_COPY64(b, a); \
} while (0)
XCHG(top_border_m1 + 8, src_y - 8, xchg);
XCHG(top_border, src_y, xchg);
XCHG(top_border + 8, src_y + 8, 1);
if (mb_x < mb_width - 1)
XCHG(top_border + 32, src_y + 16, 1);
// only copy chroma for normal loop filter
// or to initialize the top row to 127
if (!simple || !mb_y) {
XCHG(top_border_m1 + 16, src_cb - 8, xchg);
XCHG(top_border_m1 + 24, src_cr - 8, xchg);
XCHG(top_border + 16, src_cb, 1);
XCHG(top_border + 24, src_cr, 1);
}
}
static av_always_inline
int check_dc_pred8x8_mode(int mode, int mb_x, int mb_y)
{
if (!mb_x)
return mb_y ? TOP_DC_PRED8x8 : DC_128_PRED8x8;
else
return mb_y ? mode : LEFT_DC_PRED8x8;
}
static av_always_inline
int check_tm_pred8x8_mode(int mode, int mb_x, int mb_y, int vp7)
{
if (!mb_x)
return mb_y ? VERT_PRED8x8 : (vp7 ? DC_128_PRED8x8 : DC_129_PRED8x8);
else
return mb_y ? mode : HOR_PRED8x8;
}
static av_always_inline
int check_intra_pred8x8_mode_emuedge(int mode, int mb_x, int mb_y, int vp7)
{
switch (mode) {
case DC_PRED8x8:
return check_dc_pred8x8_mode(mode, mb_x, mb_y);
case VERT_PRED8x8:
return !mb_y ? (vp7 ? DC_128_PRED8x8 : DC_127_PRED8x8) : mode;
case HOR_PRED8x8:
return !mb_x ? (vp7 ? DC_128_PRED8x8 : DC_129_PRED8x8) : mode;
case PLANE_PRED8x8: /* TM */
return check_tm_pred8x8_mode(mode, mb_x, mb_y, vp7);
}
return mode;
}
static av_always_inline
int check_tm_pred4x4_mode(int mode, int mb_x, int mb_y, int vp7)
{
if (!mb_x) {
return mb_y ? VERT_VP8_PRED : (vp7 ? DC_128_PRED : DC_129_PRED);
} else {
return mb_y ? mode : HOR_VP8_PRED;
}
}
static av_always_inline
int check_intra_pred4x4_mode_emuedge(int mode, int mb_x, int mb_y,
int *copy_buf, int vp7)
{
switch (mode) {
case VERT_PRED:
if (!mb_x && mb_y) {
*copy_buf = 1;
return mode;
}
/* fall-through */
case DIAG_DOWN_LEFT_PRED:
case VERT_LEFT_PRED:
return !mb_y ? (vp7 ? DC_128_PRED : DC_127_PRED) : mode;
case HOR_PRED:
if (!mb_y) {
*copy_buf = 1;
return mode;
}
/* fall-through */
case HOR_UP_PRED:
return !mb_x ? (vp7 ? DC_128_PRED : DC_129_PRED) : mode;
case TM_VP8_PRED:
return check_tm_pred4x4_mode(mode, mb_x, mb_y, vp7);
case DC_PRED: /* 4x4 DC doesn't use the same "H.264-style" exceptions
* as 16x16/8x8 DC */
case DIAG_DOWN_RIGHT_PRED:
case VERT_RIGHT_PRED:
case HOR_DOWN_PRED:
if (!mb_y || !mb_x)
*copy_buf = 1;
return mode;
}
return mode;
}
static av_always_inline
void intra_predict(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3],
VP8Macroblock *mb, int mb_x, int mb_y, int is_vp7)
{
int x, y, mode, nnz;
uint32_t tr;
/* for the first row, we need to run xchg_mb_border to init the top edge
* to 127 otherwise, skip it if we aren't going to deblock */
if (mb_y && (s->deblock_filter || !mb_y) && td->thread_nr == 0)
xchg_mb_border(s->top_border[mb_x + 1], dst[0], dst[1], dst[2],
s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
s->filter.simple, 1);
if (mb->mode < MODE_I4x4) {
mode = check_intra_pred8x8_mode_emuedge(mb->mode, mb_x, mb_y, is_vp7);
s->hpc.pred16x16[mode](dst[0], s->linesize);
} else {
uint8_t *ptr = dst[0];
uint8_t *intra4x4 = mb->intra4x4_pred_mode_mb;
const uint8_t lo = is_vp7 ? 128 : 127;
const uint8_t hi = is_vp7 ? 128 : 129;
uint8_t tr_top[4] = { lo, lo, lo, lo };
// all blocks on the right edge of the macroblock use bottom edge
// the top macroblock for their topright edge
uint8_t *tr_right = ptr - s->linesize + 16;
// if we're on the right edge of the frame, said edge is extended
// from the top macroblock
if (mb_y && mb_x == s->mb_width - 1) {
tr = tr_right[-1] * 0x01010101u;
tr_right = (uint8_t *) &tr;
}
if (mb->skip)
AV_ZERO128(td->non_zero_count_cache);
for (y = 0; y < 4; y++) {
uint8_t *topright = ptr + 4 - s->linesize;
for (x = 0; x < 4; x++) {
int copy = 0, linesize = s->linesize;
uint8_t *dst = ptr + 4 * x;
DECLARE_ALIGNED(4, uint8_t, copy_dst)[5 * 8];
if ((y == 0 || x == 3) && mb_y == 0) {
topright = tr_top;
} else if (x == 3)
topright = tr_right;
mode = check_intra_pred4x4_mode_emuedge(intra4x4[x], mb_x + x,
mb_y + y, &copy, is_vp7);
if (copy) {
dst = copy_dst + 12;
linesize = 8;
if (!(mb_y + y)) {
copy_dst[3] = lo;
AV_WN32A(copy_dst + 4, lo * 0x01010101U);
} else {
AV_COPY32(copy_dst + 4, ptr + 4 * x - s->linesize);
if (!(mb_x + x)) {
copy_dst[3] = hi;
} else {
copy_dst[3] = ptr[4 * x - s->linesize - 1];
}
}
if (!(mb_x + x)) {
copy_dst[11] =
copy_dst[19] =
copy_dst[27] =
copy_dst[35] = hi;
} else {
copy_dst[11] = ptr[4 * x - 1];
copy_dst[19] = ptr[4 * x + s->linesize - 1];
copy_dst[27] = ptr[4 * x + s->linesize * 2 - 1];
copy_dst[35] = ptr[4 * x + s->linesize * 3 - 1];
}
}
s->hpc.pred4x4[mode](dst, topright, linesize);
if (copy) {
AV_COPY32(ptr + 4 * x, copy_dst + 12);
AV_COPY32(ptr + 4 * x + s->linesize, copy_dst + 20);
AV_COPY32(ptr + 4 * x + s->linesize * 2, copy_dst + 28);
AV_COPY32(ptr + 4 * x + s->linesize * 3, copy_dst + 36);
}
nnz = td->non_zero_count_cache[y][x];
if (nnz) {
if (nnz == 1)
s->vp8dsp.vp8_idct_dc_add(ptr + 4 * x,
td->block[y][x], s->linesize);
else
s->vp8dsp.vp8_idct_add(ptr + 4 * x,
td->block[y][x], s->linesize);
}
topright += 4;
}
ptr += 4 * s->linesize;
intra4x4 += 4;
}
}
mode = check_intra_pred8x8_mode_emuedge(mb->chroma_pred_mode,
mb_x, mb_y, is_vp7);
s->hpc.pred8x8[mode](dst[1], s->uvlinesize);
s->hpc.pred8x8[mode](dst[2], s->uvlinesize);
if (mb_y && (s->deblock_filter || !mb_y) && td->thread_nr == 0)
xchg_mb_border(s->top_border[mb_x + 1], dst[0], dst[1], dst[2],
s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
s->filter.simple, 0);
}
static const uint8_t subpel_idx[3][8] = {
{ 0, 1, 2, 1, 2, 1, 2, 1 }, // nr. of left extra pixels,
// also function pointer index
{ 0, 3, 5, 3, 5, 3, 5, 3 }, // nr. of extra pixels required
{ 0, 2, 3, 2, 3, 2, 3, 2 }, // nr. of right extra pixels
};
/**
* luma MC function
*
* @param s VP8 decoding context
* @param dst target buffer for block data at block position
* @param ref reference picture buffer at origin (0, 0)
* @param mv motion vector (relative to block position) to get pixel data from
* @param x_off horizontal position of block from origin (0, 0)
* @param y_off vertical position of block from origin (0, 0)
* @param block_w width of block (16, 8 or 4)
* @param block_h height of block (always same as block_w)
* @param width width of src/dst plane data
* @param height height of src/dst plane data
* @param linesize size of a single line of plane data, including padding
* @param mc_func motion compensation function pointers (bilinear or sixtap MC)
*/
static av_always_inline
void vp8_mc_luma(VP8Context *s, VP8ThreadData *td, uint8_t *dst,
ThreadFrame *ref, const VP56mv *mv,
int x_off, int y_off, int block_w, int block_h,
int width, int height, ptrdiff_t linesize,
vp8_mc_func mc_func[3][3])
{
uint8_t *src = ref->f->data[0];
if (AV_RN32A(mv)) {
int src_linesize = linesize;
int mx = (mv->x << 1) & 7, mx_idx = subpel_idx[0][mx];
int my = (mv->y << 1) & 7, my_idx = subpel_idx[0][my];
x_off += mv->x >> 2;
y_off += mv->y >> 2;
// edge emulation
ff_thread_await_progress(ref, (3 + y_off + block_h + subpel_idx[2][my]) >> 4, 0);
src += y_off * linesize + x_off;
if (x_off < mx_idx || x_off >= width - block_w - subpel_idx[2][mx] ||
y_off < my_idx || y_off >= height - block_h - subpel_idx[2][my]) {
s->vdsp.emulated_edge_mc(td->edge_emu_buffer,
src - my_idx * linesize - mx_idx,
EDGE_EMU_LINESIZE, linesize,
block_w + subpel_idx[1][mx],
block_h + subpel_idx[1][my],
x_off - mx_idx, y_off - my_idx,
width, height);
src = td->edge_emu_buffer + mx_idx + EDGE_EMU_LINESIZE * my_idx;
src_linesize = EDGE_EMU_LINESIZE;
}
mc_func[my_idx][mx_idx](dst, linesize, src, src_linesize, block_h, mx, my);
} else {
ff_thread_await_progress(ref, (3 + y_off + block_h) >> 4, 0);
mc_func[0][0](dst, linesize, src + y_off * linesize + x_off,
linesize, block_h, 0, 0);
}
}
/**
* chroma MC function
*
* @param s VP8 decoding context
* @param dst1 target buffer for block data at block position (U plane)
* @param dst2 target buffer for block data at block position (V plane)
* @param ref reference picture buffer at origin (0, 0)
* @param mv motion vector (relative to block position) to get pixel data from
* @param x_off horizontal position of block from origin (0, 0)
* @param y_off vertical position of block from origin (0, 0)
* @param block_w width of block (16, 8 or 4)
* @param block_h height of block (always same as block_w)
* @param width width of src/dst plane data
* @param height height of src/dst plane data
* @param linesize size of a single line of plane data, including padding
* @param mc_func motion compensation function pointers (bilinear or sixtap MC)
*/
static av_always_inline
void vp8_mc_chroma(VP8Context *s, VP8ThreadData *td, uint8_t *dst1,
uint8_t *dst2, ThreadFrame *ref, const VP56mv *mv,
int x_off, int y_off, int block_w, int block_h,
int width, int height, ptrdiff_t linesize,
vp8_mc_func mc_func[3][3])
{
uint8_t *src1 = ref->f->data[1], *src2 = ref->f->data[2];
if (AV_RN32A(mv)) {
int mx = mv->x & 7, mx_idx = subpel_idx[0][mx];
int my = mv->y & 7, my_idx = subpel_idx[0][my];
x_off += mv->x >> 3;
y_off += mv->y >> 3;
// edge emulation
src1 += y_off * linesize + x_off;
src2 += y_off * linesize + x_off;
ff_thread_await_progress(ref, (3 + y_off + block_h + subpel_idx[2][my]) >> 3, 0);
if (x_off < mx_idx || x_off >= width - block_w - subpel_idx[2][mx] ||
y_off < my_idx || y_off >= height - block_h - subpel_idx[2][my]) {
s->vdsp.emulated_edge_mc(td->edge_emu_buffer,
src1 - my_idx * linesize - mx_idx,
EDGE_EMU_LINESIZE, linesize,
block_w + subpel_idx[1][mx], block_h + subpel_idx[1][my],
x_off - mx_idx, y_off - my_idx, width, height);
src1 = td->edge_emu_buffer + mx_idx + EDGE_EMU_LINESIZE * my_idx;
mc_func[my_idx][mx_idx](dst1, linesize, src1, EDGE_EMU_LINESIZE, block_h, mx, my);
s->vdsp.emulated_edge_mc(td->edge_emu_buffer,
src2 - my_idx * linesize - mx_idx,
EDGE_EMU_LINESIZE, linesize,
block_w + subpel_idx[1][mx], block_h + subpel_idx[1][my],
x_off - mx_idx, y_off - my_idx, width, height);
src2 = td->edge_emu_buffer + mx_idx + EDGE_EMU_LINESIZE * my_idx;
mc_func[my_idx][mx_idx](dst2, linesize, src2, EDGE_EMU_LINESIZE, block_h, mx, my);
} else {
mc_func[my_idx][mx_idx](dst1, linesize, src1, linesize, block_h, mx, my);
mc_func[my_idx][mx_idx](dst2, linesize, src2, linesize, block_h, mx, my);
}
} else {
ff_thread_await_progress(ref, (3 + y_off + block_h) >> 3, 0);
mc_func[0][0](dst1, linesize, src1 + y_off * linesize + x_off, linesize, block_h, 0, 0);
mc_func[0][0](dst2, linesize, src2 + y_off * linesize + x_off, linesize, block_h, 0, 0);
}
}
static av_always_inline
void vp8_mc_part(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3],
ThreadFrame *ref_frame, int x_off, int y_off,
int bx_off, int by_off, int block_w, int block_h,
int width, int height, VP56mv *mv)
{
VP56mv uvmv = *mv;
/* Y */
vp8_mc_luma(s, td, dst[0] + by_off * s->linesize + bx_off,
ref_frame, mv, x_off + bx_off, y_off + by_off,
block_w, block_h, width, height, s->linesize,
s->put_pixels_tab[block_w == 8]);
/* U/V */
if (s->profile == 3) {
/* this block only applies VP8; it is safe to check
* only the profile, as VP7 profile <= 1 */
uvmv.x &= ~7;
uvmv.y &= ~7;
}
x_off >>= 1;
y_off >>= 1;
bx_off >>= 1;
by_off >>= 1;
width >>= 1;
height >>= 1;
block_w >>= 1;
block_h >>= 1;
vp8_mc_chroma(s, td, dst[1] + by_off * s->uvlinesize + bx_off,
dst[2] + by_off * s->uvlinesize + bx_off, ref_frame,
&uvmv, x_off + bx_off, y_off + by_off,
block_w, block_h, width, height, s->uvlinesize,
s->put_pixels_tab[1 + (block_w == 4)]);
}
/* Fetch pixels for estimated mv 4 macroblocks ahead.
* Optimized for 64-byte cache lines. Inspired by ffh264 prefetch_motion. */
static av_always_inline
void prefetch_motion(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y,
int mb_xy, int ref)
{
/* Don't prefetch refs that haven't been used very often this frame. */
if (s->ref_count[ref - 1] > (mb_xy >> 5)) {
int x_off = mb_x << 4, y_off = mb_y << 4;
int mx = (mb->mv.x >> 2) + x_off + 8;
int my = (mb->mv.y >> 2) + y_off;
uint8_t **src = s->framep[ref]->tf.f->data;
int off = mx + (my + (mb_x & 3) * 4) * s->linesize + 64;
/* For threading, a ff_thread_await_progress here might be useful, but
* it actually slows down the decoder. Since a bad prefetch doesn't
* generate bad decoder output, we don't run it here. */
s->vdsp.prefetch(src[0] + off, s->linesize, 4);
off = (mx >> 1) + ((my >> 1) + (mb_x & 7)) * s->uvlinesize + 64;
s->vdsp.prefetch(src[1] + off, src[2] - src[1], 2);
}
}
/**
* Apply motion vectors to prediction buffer, chapter 18.
*/
static av_always_inline
void inter_predict(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3],
VP8Macroblock *mb, int mb_x, int mb_y)
{
int x_off = mb_x << 4, y_off = mb_y << 4;
int width = 16 * s->mb_width, height = 16 * s->mb_height;
ThreadFrame *ref = &s->framep[mb->ref_frame]->tf;
VP56mv *bmv = mb->bmv;
switch (mb->partitioning) {
case VP8_SPLITMVMODE_NONE:
vp8_mc_part(s, td, dst, ref, x_off, y_off,
0, 0, 16, 16, width, height, &mb->mv);
break;
case VP8_SPLITMVMODE_4x4: {
int x, y;
VP56mv uvmv;
/* Y */
for (y = 0; y < 4; y++) {
for (x = 0; x < 4; x++) {
vp8_mc_luma(s, td, dst[0] + 4 * y * s->linesize + x * 4,
ref, &bmv[4 * y + x],
4 * x + x_off, 4 * y + y_off, 4, 4,
width, height, s->linesize,
s->put_pixels_tab[2]);
}
}
/* U/V */
x_off >>= 1;
y_off >>= 1;
width >>= 1;
height >>= 1;
for (y = 0; y < 2; y++) {
for (x = 0; x < 2; x++) {
uvmv.x = mb->bmv[2 * y * 4 + 2 * x ].x +
mb->bmv[2 * y * 4 + 2 * x + 1].x +
mb->bmv[(2 * y + 1) * 4 + 2 * x ].x +
mb->bmv[(2 * y + 1) * 4 + 2 * x + 1].x;
uvmv.y = mb->bmv[2 * y * 4 + 2 * x ].y +
mb->bmv[2 * y * 4 + 2 * x + 1].y +
mb->bmv[(2 * y + 1) * 4 + 2 * x ].y +
mb->bmv[(2 * y + 1) * 4 + 2 * x + 1].y;
uvmv.x = (uvmv.x + 2 + FF_SIGNBIT(uvmv.x)) >> 2;
uvmv.y = (uvmv.y + 2 + FF_SIGNBIT(uvmv.y)) >> 2;
if (s->profile == 3) {
uvmv.x &= ~7;
uvmv.y &= ~7;
}
vp8_mc_chroma(s, td, dst[1] + 4 * y * s->uvlinesize + x * 4,
dst[2] + 4 * y * s->uvlinesize + x * 4, ref,
&uvmv, 4 * x + x_off, 4 * y + y_off, 4, 4,
width, height, s->uvlinesize,
s->put_pixels_tab[2]);
}
}
break;
}
case VP8_SPLITMVMODE_16x8:
vp8_mc_part(s, td, dst, ref, x_off, y_off,
0, 0, 16, 8, width, height, &bmv[0]);
vp8_mc_part(s, td, dst, ref, x_off, y_off,
0, 8, 16, 8, width, height, &bmv[1]);
break;
case VP8_SPLITMVMODE_8x16:
vp8_mc_part(s, td, dst, ref, x_off, y_off,
0, 0, 8, 16, width, height, &bmv[0]);
vp8_mc_part(s, td, dst, ref, x_off, y_off,
8, 0, 8, 16, width, height, &bmv[1]);
break;
case VP8_SPLITMVMODE_8x8:
vp8_mc_part(s, td, dst, ref, x_off, y_off,
0, 0, 8, 8, width, height, &bmv[0]);
vp8_mc_part(s, td, dst, ref, x_off, y_off,
8, 0, 8, 8, width, height, &bmv[1]);
vp8_mc_part(s, td, dst, ref, x_off, y_off,
0, 8, 8, 8, width, height, &bmv[2]);
vp8_mc_part(s, td, dst, ref, x_off, y_off,
8, 8, 8, 8, width, height, &bmv[3]);
break;
}
}
static av_always_inline
void idct_mb(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3], VP8Macroblock *mb)
{
int x, y, ch;
if (mb->mode != MODE_I4x4) {
uint8_t *y_dst = dst[0];
for (y = 0; y < 4; y++) {
uint32_t nnz4 = AV_RL32(td->non_zero_count_cache[y]);
if (nnz4) {
if (nnz4 & ~0x01010101) {
for (x = 0; x < 4; x++) {
if ((uint8_t) nnz4 == 1)
s->vp8dsp.vp8_idct_dc_add(y_dst + 4 * x,
td->block[y][x],
s->linesize);
else if ((uint8_t) nnz4 > 1)
s->vp8dsp.vp8_idct_add(y_dst + 4 * x,
td->block[y][x],
s->linesize);
nnz4 >>= 8;
if (!nnz4)
break;
}
} else {
s->vp8dsp.vp8_idct_dc_add4y(y_dst, td->block[y], s->linesize);
}
}
y_dst += 4 * s->linesize;
}
}
for (ch = 0; ch < 2; ch++) {
uint32_t nnz4 = AV_RL32(td->non_zero_count_cache[4 + ch]);
if (nnz4) {
uint8_t *ch_dst = dst[1 + ch];
if (nnz4 & ~0x01010101) {
for (y = 0; y < 2; y++) {
for (x = 0; x < 2; x++) {
if ((uint8_t) nnz4 == 1)
s->vp8dsp.vp8_idct_dc_add(ch_dst + 4 * x,
td->block[4 + ch][(y << 1) + x],
s->uvlinesize);
else if ((uint8_t) nnz4 > 1)
s->vp8dsp.vp8_idct_add(ch_dst + 4 * x,
td->block[4 + ch][(y << 1) + x],
s->uvlinesize);
nnz4 >>= 8;
if (!nnz4)
goto chroma_idct_end;
}
ch_dst += 4 * s->uvlinesize;
}
} else {
s->vp8dsp.vp8_idct_dc_add4uv(ch_dst, td->block[4 + ch], s->uvlinesize);
}
}
chroma_idct_end:
;
}
}
static av_always_inline
void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb,
VP8FilterStrength *f, int is_vp7)
{
int interior_limit, filter_level;
if (s->segmentation.enabled) {
filter_level = s->segmentation.filter_level[mb->segment];
if (!s->segmentation.absolute_vals)
filter_level += s->filter.level;
} else
filter_level = s->filter.level;
if (s->lf_delta.enabled) {
filter_level += s->lf_delta.ref[mb->ref_frame];
filter_level += s->lf_delta.mode[mb->mode];
}
filter_level = av_clip_uintp2(filter_level, 6);
interior_limit = filter_level;
if (s->filter.sharpness) {
interior_limit >>= (s->filter.sharpness + 3) >> 2;
interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness);
}
interior_limit = FFMAX(interior_limit, 1);
f->filter_level = filter_level;
f->inner_limit = interior_limit;
f->inner_filter = is_vp7 || !mb->skip || mb->mode == MODE_I4x4 ||
mb->mode == VP8_MVMODE_SPLIT;
}
static av_always_inline
void filter_mb(VP8Context *s, uint8_t *dst[3], VP8FilterStrength *f,
int mb_x, int mb_y, int is_vp7)
{
int mbedge_lim, bedge_lim_y, bedge_lim_uv, hev_thresh;
int filter_level = f->filter_level;
int inner_limit = f->inner_limit;
int inner_filter = f->inner_filter;
int linesize = s->linesize;
int uvlinesize = s->uvlinesize;
static const uint8_t hev_thresh_lut[2][64] = {
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2 }
};
if (!filter_level)
return;
if (is_vp7) {
bedge_lim_y = filter_level;
bedge_lim_uv = filter_level * 2;
mbedge_lim = filter_level + 2;
} else {
bedge_lim_y =
bedge_lim_uv = filter_level * 2 + inner_limit;
mbedge_lim = bedge_lim_y + 4;
}
hev_thresh = hev_thresh_lut[s->keyframe][filter_level];
if (mb_x) {
s->vp8dsp.vp8_h_loop_filter16y(dst[0], linesize,
mbedge_lim, inner_limit, hev_thresh);
s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], uvlinesize,
mbedge_lim, inner_limit, hev_thresh);
}
#define H_LOOP_FILTER_16Y_INNER(cond) \
if (cond && inner_filter) { \
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 4, linesize, \
bedge_lim_y, inner_limit, \
hev_thresh); \
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 8, linesize, \
bedge_lim_y, inner_limit, \
hev_thresh); \
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 12, linesize, \
bedge_lim_y, inner_limit, \
hev_thresh); \
s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4, \
uvlinesize, bedge_lim_uv, \
inner_limit, hev_thresh); \
}
H_LOOP_FILTER_16Y_INNER(!is_vp7)
if (mb_y) {
s->vp8dsp.vp8_v_loop_filter16y(dst[0], linesize,
mbedge_lim, inner_limit, hev_thresh);
s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], uvlinesize,
mbedge_lim, inner_limit, hev_thresh);
}
if (inner_filter) {
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 4 * linesize,
linesize, bedge_lim_y,
inner_limit, hev_thresh);
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 8 * linesize,
linesize, bedge_lim_y,
inner_limit, hev_thresh);
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 12 * linesize,
linesize, bedge_lim_y,
inner_limit, hev_thresh);
s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * uvlinesize,
dst[2] + 4 * uvlinesize,
uvlinesize, bedge_lim_uv,
inner_limit, hev_thresh);
}
H_LOOP_FILTER_16Y_INNER(is_vp7)
}
static av_always_inline
void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8FilterStrength *f,
int mb_x, int mb_y)
{
int mbedge_lim, bedge_lim;
int filter_level = f->filter_level;
int inner_limit = f->inner_limit;
int inner_filter = f->inner_filter;
int linesize = s->linesize;
if (!filter_level)
return;
bedge_lim = 2 * filter_level + inner_limit;
mbedge_lim = bedge_lim + 4;
if (mb_x)
s->vp8dsp.vp8_h_loop_filter_simple(dst, linesize, mbedge_lim);
if (inner_filter) {
s->vp8dsp.vp8_h_loop_filter_simple(dst + 4, linesize, bedge_lim);
s->vp8dsp.vp8_h_loop_filter_simple(dst + 8, linesize, bedge_lim);
s->vp8dsp.vp8_h_loop_filter_simple(dst + 12, linesize, bedge_lim);
}
if (mb_y)
s->vp8dsp.vp8_v_loop_filter_simple(dst, linesize, mbedge_lim);
if (inner_filter) {
s->vp8dsp.vp8_v_loop_filter_simple(dst + 4 * linesize, linesize, bedge_lim);
s->vp8dsp.vp8_v_loop_filter_simple(dst + 8 * linesize, linesize, bedge_lim);
s->vp8dsp.vp8_v_loop_filter_simple(dst + 12 * linesize, linesize, bedge_lim);
}
}
#define MARGIN (16 << 2)
static av_always_inline
void vp78_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *curframe,
VP8Frame *prev_frame, int is_vp7)
{
VP8Context *s = avctx->priv_data;
int mb_x, mb_y;
s->mv_min.y = -MARGIN;
s->mv_max.y = ((s->mb_height - 1) << 6) + MARGIN;
for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
VP8Macroblock *mb = s->macroblocks_base +
((s->mb_width + 1) * (mb_y + 1) + 1);
int mb_xy = mb_y * s->mb_width;
AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED * 0x01010101);
s->mv_min.x = -MARGIN;
s->mv_max.x = ((s->mb_width - 1) << 6) + MARGIN;
for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) {
if (mb_y == 0)
AV_WN32A((mb - s->mb_width - 1)->intra4x4_pred_mode_top,
DC_PRED * 0x01010101);
decode_mb_mode(s, mb, mb_x, mb_y, curframe->seg_map->data + mb_xy,
prev_frame && prev_frame->seg_map ?
prev_frame->seg_map->data + mb_xy : NULL, 1, is_vp7);
s->mv_min.x -= 64;
s->mv_max.x -= 64;
}
s->mv_min.y -= 64;
s->mv_max.y -= 64;
}
}
static void vp7_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *cur_frame,
VP8Frame *prev_frame)
{
vp78_decode_mv_mb_modes(avctx, cur_frame, prev_frame, IS_VP7);
}
static void vp8_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *cur_frame,
VP8Frame *prev_frame)
{
vp78_decode_mv_mb_modes(avctx, cur_frame, prev_frame, IS_VP8);
}
#if HAVE_THREADS
#define check_thread_pos(td, otd, mb_x_check, mb_y_check) \
do { \
int tmp = (mb_y_check << 16) | (mb_x_check & 0xFFFF); \
if (otd->thread_mb_pos < tmp) { \
pthread_mutex_lock(&otd->lock); \
td->wait_mb_pos = tmp; \
do { \
if (otd->thread_mb_pos >= tmp) \
break; \
pthread_cond_wait(&otd->cond, &otd->lock); \
} while (1); \
td->wait_mb_pos = INT_MAX; \
pthread_mutex_unlock(&otd->lock); \
} \
} while (0);
#define update_pos(td, mb_y, mb_x) \
do { \
int pos = (mb_y << 16) | (mb_x & 0xFFFF); \
int sliced_threading = (avctx->active_thread_type == FF_THREAD_SLICE) && \
(num_jobs > 1); \
int is_null = !next_td || !prev_td; \
int pos_check = (is_null) ? 1 \
: (next_td != td && \
pos >= next_td->wait_mb_pos) || \
(prev_td != td && \
pos >= prev_td->wait_mb_pos); \
td->thread_mb_pos = pos; \
if (sliced_threading && pos_check) { \
pthread_mutex_lock(&td->lock); \
pthread_cond_broadcast(&td->cond); \
pthread_mutex_unlock(&td->lock); \
} \
} while (0);
#else
#define check_thread_pos(td, otd, mb_x_check, mb_y_check)
#define update_pos(td, mb_y, mb_x)
#endif
static void vp8_decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata,
int jobnr, int threadnr, int is_vp7)
{
VP8Context *s = avctx->priv_data;
VP8ThreadData *prev_td, *next_td, *td = &s->thread_data[threadnr];
int mb_y = td->thread_mb_pos >> 16;
int mb_x, mb_xy = mb_y * s->mb_width;
int num_jobs = s->num_jobs;
VP8Frame *curframe = s->curframe, *prev_frame = s->prev_frame;
VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions - 1)];
VP8Macroblock *mb;
uint8_t *dst[3] = {
curframe->tf.f->data[0] + 16 * mb_y * s->linesize,
curframe->tf.f->data[1] + 8 * mb_y * s->uvlinesize,
curframe->tf.f->data[2] + 8 * mb_y * s->uvlinesize
};
if (mb_y == 0)
prev_td = td;
else
prev_td = &s->thread_data[(jobnr + num_jobs - 1) % num_jobs];
if (mb_y == s->mb_height - 1)
next_td = td;
else
next_td = &s->thread_data[(jobnr + 1) % num_jobs];
if (s->mb_layout == 1)
mb = s->macroblocks_base + ((s->mb_width + 1) * (mb_y + 1) + 1);
else {
// Make sure the previous frame has read its segmentation map,
// if we re-use the same map.
if (prev_frame && s->segmentation.enabled &&
!s->segmentation.update_map)
ff_thread_await_progress(&prev_frame->tf, mb_y, 0);
mb = s->macroblocks + (s->mb_height - mb_y - 1) * 2;
memset(mb - 1, 0, sizeof(*mb)); // zero left macroblock
AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED * 0x01010101);
}
if (!is_vp7 || mb_y == 0)
memset(td->left_nnz, 0, sizeof(td->left_nnz));
s->mv_min.x = -MARGIN;
s->mv_max.x = ((s->mb_width - 1) << 6) + MARGIN;
for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) {
// Wait for previous thread to read mb_x+2, and reach mb_y-1.
if (prev_td != td) {
if (threadnr != 0) {
check_thread_pos(td, prev_td,
mb_x + (is_vp7 ? 2 : 1),
mb_y - (is_vp7 ? 2 : 1));
} else {
check_thread_pos(td, prev_td,
mb_x + (is_vp7 ? 2 : 1) + s->mb_width + 3,
mb_y - (is_vp7 ? 2 : 1));
}
}
s->vdsp.prefetch(dst[0] + (mb_x & 3) * 4 * s->linesize + 64,
s->linesize, 4);
s->vdsp.prefetch(dst[1] + (mb_x & 7) * s->uvlinesize + 64,
dst[2] - dst[1], 2);
if (!s->mb_layout)
decode_mb_mode(s, mb, mb_x, mb_y, curframe->seg_map->data + mb_xy,
prev_frame && prev_frame->seg_map ?
prev_frame->seg_map->data + mb_xy : NULL, 0, is_vp7);
prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_PREVIOUS);
if (!mb->skip)
decode_mb_coeffs(s, td, c, mb, s->top_nnz[mb_x], td->left_nnz, is_vp7);
if (mb->mode <= MODE_I4x4)
intra_predict(s, td, dst, mb, mb_x, mb_y, is_vp7);
else
inter_predict(s, td, dst, mb, mb_x, mb_y);
prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN);
if (!mb->skip) {
idct_mb(s, td, dst, mb);
} else {
AV_ZERO64(td->left_nnz);
AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned
/* Reset DC block predictors if they would exist
* if the mb had coefficients */
if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
td->left_nnz[8] = 0;
s->top_nnz[mb_x][8] = 0;
}
}
if (s->deblock_filter)
filter_level_for_mb(s, mb, &td->filter_strength[mb_x], is_vp7);
if (s->deblock_filter && num_jobs != 1 && threadnr == num_jobs - 1) {
if (s->filter.simple)
backup_mb_border(s->top_border[mb_x + 1], dst[0],
NULL, NULL, s->linesize, 0, 1);
else
backup_mb_border(s->top_border[mb_x + 1], dst[0],
dst[1], dst[2], s->linesize, s->uvlinesize, 0);
}
prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN2);
dst[0] += 16;
dst[1] += 8;
dst[2] += 8;
s->mv_min.x -= 64;
s->mv_max.x -= 64;
if (mb_x == s->mb_width + 1) {
update_pos(td, mb_y, s->mb_width + 3);
} else {
update_pos(td, mb_y, mb_x);
}
}
}
static void vp8_filter_mb_row(AVCodecContext *avctx, void *tdata,
int jobnr, int threadnr, int is_vp7)
{
VP8Context *s = avctx->priv_data;
VP8ThreadData *td = &s->thread_data[threadnr];
int mb_x, mb_y = td->thread_mb_pos >> 16, num_jobs = s->num_jobs;
AVFrame *curframe = s->curframe->tf.f;
VP8Macroblock *mb;
VP8ThreadData *prev_td, *next_td;
uint8_t *dst[3] = {
curframe->data[0] + 16 * mb_y * s->linesize,
curframe->data[1] + 8 * mb_y * s->uvlinesize,
curframe->data[2] + 8 * mb_y * s->uvlinesize
};
if (s->mb_layout == 1)
mb = s->macroblocks_base + ((s->mb_width + 1) * (mb_y + 1) + 1);
else
mb = s->macroblocks + (s->mb_height - mb_y - 1) * 2;
if (mb_y == 0)
prev_td = td;
else
prev_td = &s->thread_data[(jobnr + num_jobs - 1) % num_jobs];
if (mb_y == s->mb_height - 1)
next_td = td;
else
next_td = &s->thread_data[(jobnr + 1) % num_jobs];
for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb++) {
VP8FilterStrength *f = &td->filter_strength[mb_x];
if (prev_td != td)
check_thread_pos(td, prev_td,
(mb_x + 1) + (s->mb_width + 3), mb_y - 1);
if (next_td != td)
if (next_td != &s->thread_data[0])
check_thread_pos(td, next_td, mb_x + 1, mb_y + 1);
if (num_jobs == 1) {
if (s->filter.simple)
backup_mb_border(s->top_border[mb_x + 1], dst[0],
NULL, NULL, s->linesize, 0, 1);
else
backup_mb_border(s->top_border[mb_x + 1], dst[0],
dst[1], dst[2], s->linesize, s->uvlinesize, 0);
}
if (s->filter.simple)
filter_mb_simple(s, dst[0], f, mb_x, mb_y);
else
filter_mb(s, dst, f, mb_x, mb_y, is_vp7);
dst[0] += 16;
dst[1] += 8;
dst[2] += 8;
update_pos(td, mb_y, (s->mb_width + 3) + mb_x);
}
}
static av_always_inline
int vp78_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata, int jobnr,
int threadnr, int is_vp7)
{
VP8Context *s = avctx->priv_data;
VP8ThreadData *td = &s->thread_data[jobnr];
VP8ThreadData *next_td = NULL, *prev_td = NULL;
VP8Frame *curframe = s->curframe;
int mb_y, num_jobs = s->num_jobs;
td->thread_nr = threadnr;
for (mb_y = jobnr; mb_y < s->mb_height; mb_y += num_jobs) {
if (mb_y >= s->mb_height)
break;
td->thread_mb_pos = mb_y << 16;
vp8_decode_mb_row_no_filter(avctx, tdata, jobnr, threadnr, is_vp7);
if (s->deblock_filter)
vp8_filter_mb_row(avctx, tdata, jobnr, threadnr, is_vp7);
update_pos(td, mb_y, INT_MAX & 0xFFFF);
s->mv_min.y -= 64;
s->mv_max.y -= 64;
if (avctx->active_thread_type == FF_THREAD_FRAME)
ff_thread_report_progress(&curframe->tf, mb_y, 0);
}
return 0;
}
static int vp7_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata,
int jobnr, int threadnr)
{
return vp78_decode_mb_row_sliced(avctx, tdata, jobnr, threadnr, IS_VP7);
}
static int vp8_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata,
int jobnr, int threadnr)
{
return vp78_decode_mb_row_sliced(avctx, tdata, jobnr, threadnr, IS_VP8);
}
static av_always_inline
int vp78_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
AVPacket *avpkt, int is_vp7)
{
VP8Context *s = avctx->priv_data;
int ret, i, referenced, num_jobs;
enum AVDiscard skip_thresh;
VP8Frame *av_uninit(curframe), *prev_frame;
if (is_vp7)
ret = vp7_decode_frame_header(s, avpkt->data, avpkt->size);
else
ret = vp8_decode_frame_header(s, avpkt->data, avpkt->size);
if (ret < 0)
goto err;
prev_frame = s->framep[VP56_FRAME_CURRENT];
referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT ||
s->update_altref == VP56_FRAME_CURRENT;
skip_thresh = !referenced ? AVDISCARD_NONREF
: !s->keyframe ? AVDISCARD_NONKEY
: AVDISCARD_ALL;
if (avctx->skip_frame >= skip_thresh) {
s->invisible = 1;
memcpy(&s->next_framep[0], &s->framep[0], sizeof(s->framep[0]) * 4);
goto skip_decode;
}
s->deblock_filter = s->filter.level && avctx->skip_loop_filter < skip_thresh;
// release no longer referenced frames
for (i = 0; i < 5; i++)
if (s->frames[i].tf.f->data[0] &&
&s->frames[i] != prev_frame &&
&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN2])
vp8_release_frame(s, &s->frames[i]);
curframe = s->framep[VP56_FRAME_CURRENT] = vp8_find_free_buffer(s);
if (!s->colorspace)
avctx->colorspace = AVCOL_SPC_BT470BG;
if (s->fullrange)
avctx->color_range = AVCOL_RANGE_JPEG;
else
avctx->color_range = AVCOL_RANGE_MPEG;
/* Given that arithmetic probabilities are updated every frame, it's quite
* likely that the values we have on a random interframe are complete
* junk if we didn't start decode on a keyframe. So just don't display
* anything rather than junk. */
if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] ||
!s->framep[VP56_FRAME_GOLDEN] ||
!s->framep[VP56_FRAME_GOLDEN2])) {
av_log(avctx, AV_LOG_WARNING,
"Discarding interframe without a prior keyframe!\n");
ret = AVERROR_INVALIDDATA;
goto err;
}
curframe->tf.f->key_frame = s->keyframe;
curframe->tf.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I
: AV_PICTURE_TYPE_P;
if ((ret = vp8_alloc_frame(s, curframe, referenced))) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed!\n");
goto err;
}
// check if golden and altref are swapped
if (s->update_altref != VP56_FRAME_NONE)
s->next_framep[VP56_FRAME_GOLDEN2] = s->framep[s->update_altref];
else
s->next_framep[VP56_FRAME_GOLDEN2] = s->framep[VP56_FRAME_GOLDEN2];
if (s->update_golden != VP56_FRAME_NONE)
s->next_framep[VP56_FRAME_GOLDEN] = s->framep[s->update_golden];
else
s->next_framep[VP56_FRAME_GOLDEN] = s->framep[VP56_FRAME_GOLDEN];
if (s->update_last)
s->next_framep[VP56_FRAME_PREVIOUS] = curframe;
else
s->next_framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_PREVIOUS];
s->next_framep[VP56_FRAME_CURRENT] = curframe;
ff_thread_finish_setup(avctx);
s->linesize = curframe->tf.f->linesize[0];
s->uvlinesize = curframe->tf.f->linesize[1];
memset(s->top_nnz, 0, s->mb_width * sizeof(*s->top_nnz));
/* Zero macroblock structures for top/top-left prediction
* from outside the frame. */
if (!s->mb_layout)
memset(s->macroblocks + s->mb_height * 2 - 1, 0,
(s->mb_width + 1) * sizeof(*s->macroblocks));
if (!s->mb_layout && s->keyframe)
memset(s->intra4x4_pred_mode_top, DC_PRED, s->mb_width * 4);
memset(s->ref_count, 0, sizeof(s->ref_count));
if (s->mb_layout == 1) {
// Make sure the previous frame has read its segmentation map,
// if we re-use the same map.
if (prev_frame && s->segmentation.enabled &&
!s->segmentation.update_map)
ff_thread_await_progress(&prev_frame->tf, 1, 0);
if (is_vp7)
vp7_decode_mv_mb_modes(avctx, curframe, prev_frame);
else
vp8_decode_mv_mb_modes(avctx, curframe, prev_frame);
}
if (avctx->active_thread_type == FF_THREAD_FRAME)
num_jobs = 1;
else
num_jobs = FFMIN(s->num_coeff_partitions, avctx->thread_count);
s->num_jobs = num_jobs;
s->curframe = curframe;
s->prev_frame = prev_frame;
s->mv_min.y = -MARGIN;
s->mv_max.y = ((s->mb_height - 1) << 6) + MARGIN;
for (i = 0; i < MAX_THREADS; i++) {
s->thread_data[i].thread_mb_pos = 0;
s->thread_data[i].wait_mb_pos = INT_MAX;
}
if (is_vp7)
avctx->execute2(avctx, vp7_decode_mb_row_sliced, s->thread_data, NULL,
num_jobs);
else
avctx->execute2(avctx, vp8_decode_mb_row_sliced, s->thread_data, NULL,
num_jobs);
ff_thread_report_progress(&curframe->tf, INT_MAX, 0);
memcpy(&s->framep[0], &s->next_framep[0], sizeof(s->framep[0]) * 4);
skip_decode:
// if future frames don't use the updated probabilities,
// reset them to the values we saved
if (!s->update_probabilities)
s->prob[0] = s->prob[1];
if (!s->invisible) {
if ((ret = av_frame_ref(data, curframe->tf.f)) < 0)
return ret;
*got_frame = 1;
}
return avpkt->size;
err:
memcpy(&s->next_framep[0], &s->framep[0], sizeof(s->framep[0]) * 4);
return ret;
}
int ff_vp8_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
AVPacket *avpkt)
{
return vp78_decode_frame(avctx, data, got_frame, avpkt, IS_VP8);
}
#if CONFIG_VP7_DECODER
static int vp7_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
AVPacket *avpkt)
{
return vp78_decode_frame(avctx, data, got_frame, avpkt, IS_VP7);
}
#endif /* CONFIG_VP7_DECODER */
av_cold int ff_vp8_decode_free(AVCodecContext *avctx)
{
VP8Context *s = avctx->priv_data;
int i;
vp8_decode_flush_impl(avctx, 1);
for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++)
av_frame_free(&s->frames[i].tf.f);
return 0;
}
static av_cold int vp8_init_frames(VP8Context *s)
{
int i;
for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++) {
s->frames[i].tf.f = av_frame_alloc();
if (!s->frames[i].tf.f)
return AVERROR(ENOMEM);
}
return 0;
}
static av_always_inline
int vp78_decode_init(AVCodecContext *avctx, int is_vp7)
{
VP8Context *s = avctx->priv_data;
int ret;
s->avctx = avctx;
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
avctx->internal->allocate_progress = 1;
ff_videodsp_init(&s->vdsp, 8);
ff_vp78dsp_init(&s->vp8dsp);
if (CONFIG_VP7_DECODER && is_vp7) {
ff_h264_pred_init(&s->hpc, AV_CODEC_ID_VP7, 8, 1);
ff_vp7dsp_init(&s->vp8dsp);
} else if (CONFIG_VP8_DECODER && !is_vp7) {
ff_h264_pred_init(&s->hpc, AV_CODEC_ID_VP8, 8, 1);
ff_vp8dsp_init(&s->vp8dsp);
}
/* does not change for VP8 */
memcpy(s->prob[0].scan, ff_zigzag_scan, sizeof(s->prob[0].scan));
if ((ret = vp8_init_frames(s)) < 0) {
ff_vp8_decode_free(avctx);
return ret;
}
return 0;
}
#if CONFIG_VP7_DECODER
static int vp7_decode_init(AVCodecContext *avctx)
{
return vp78_decode_init(avctx, IS_VP7);
}
#endif /* CONFIG_VP7_DECODER */
av_cold int ff_vp8_decode_init(AVCodecContext *avctx)
{
return vp78_decode_init(avctx, IS_VP8);
}
#if CONFIG_VP8_DECODER
static av_cold int vp8_decode_init_thread_copy(AVCodecContext *avctx)
{
VP8Context *s = avctx->priv_data;
int ret;
s->avctx = avctx;
if ((ret = vp8_init_frames(s)) < 0) {
ff_vp8_decode_free(avctx);
return ret;
}
return 0;
}
#define REBASE(pic) pic ? pic - &s_src->frames[0] + &s->frames[0] : NULL
static int vp8_decode_update_thread_context(AVCodecContext *dst,
const AVCodecContext *src)
{
VP8Context *s = dst->priv_data, *s_src = src->priv_data;
int i;
if (s->macroblocks_base &&
(s_src->mb_width != s->mb_width || s_src->mb_height != s->mb_height)) {
free_buffers(s);
s->mb_width = s_src->mb_width;
s->mb_height = s_src->mb_height;
}
s->prob[0] = s_src->prob[!s_src->update_probabilities];
s->segmentation = s_src->segmentation;
s->lf_delta = s_src->lf_delta;
memcpy(s->sign_bias, s_src->sign_bias, sizeof(s->sign_bias));
for (i = 0; i < FF_ARRAY_ELEMS(s_src->frames); i++) {
if (s_src->frames[i].tf.f->data[0]) {
int ret = vp8_ref_frame(s, &s->frames[i], &s_src->frames[i]);
if (ret < 0)
return ret;
}
}
s->framep[0] = REBASE(s_src->next_framep[0]);
s->framep[1] = REBASE(s_src->next_framep[1]);
s->framep[2] = REBASE(s_src->next_framep[2]);
s->framep[3] = REBASE(s_src->next_framep[3]);
return 0;
}
#endif /* CONFIG_VP8_DECODER */
#if CONFIG_VP7_DECODER
AVCodec ff_vp7_decoder = {
.name = "vp7",
.long_name = NULL_IF_CONFIG_SMALL("On2 VP7"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_VP7,
.priv_data_size = sizeof(VP8Context),
.init = vp7_decode_init,
.close = ff_vp8_decode_free,
.decode = vp7_decode_frame,
.capabilities = AV_CODEC_CAP_DR1,
.flush = vp8_decode_flush,
};
#endif /* CONFIG_VP7_DECODER */
#if CONFIG_VP8_DECODER
AVCodec ff_vp8_decoder = {
.name = "vp8",
.long_name = NULL_IF_CONFIG_SMALL("On2 VP8"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_VP8,
.priv_data_size = sizeof(VP8Context),
.init = ff_vp8_decode_init,
.close = ff_vp8_decode_free,
.decode = ff_vp8_decode_frame,
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
AV_CODEC_CAP_SLICE_THREADS,
.flush = vp8_decode_flush,
.init_thread_copy = ONLY_IF_THREADS_ENABLED(vp8_decode_init_thread_copy),
.update_thread_context = ONLY_IF_THREADS_ENABLED(vp8_decode_update_thread_context),
};
#endif /* CONFIG_VP7_DECODER */