1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00
FFmpeg/libswresample/resample.c
Michael Niedermayer b14361486b swresample/resample: fix typos
Found-by: wm4 <nfxjfg@googlemail.com>
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
2015-06-04 13:04:09 +02:00

438 lines
16 KiB
C

/*
* audio resampling
* Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* audio resampling
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include "libavutil/avassert.h"
#include "resample.h"
/**
* 0th order modified bessel function of the first kind.
*/
static double bessel(double x){
double v=1;
double lastv=0;
double t=1;
int i;
static const double inv[100]={
1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10),
1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20),
1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30),
1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40),
1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50),
1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60),
1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70),
1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80),
1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90),
1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000)
};
x= x*x/4;
for(i=0; v != lastv; i++){
lastv=v;
t *= x*inv[i];
v += t;
av_assert2(i<99);
}
return v;
}
/**
* builds a polyphase filterbank.
* @param factor resampling factor
* @param scale wanted sum of coefficients for each filter
* @param filter_type filter type
* @param kaiser_beta kaiser window beta
* @return 0 on success, negative on error
*/
static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale,
int filter_type, int kaiser_beta){
int ph, i;
double x, y, w;
double *tab = av_malloc_array(tap_count, sizeof(*tab));
const int center= (tap_count-1)/2;
if (!tab)
return AVERROR(ENOMEM);
/* if upsampling, only need to interpolate, no filter */
if (factor > 1.0)
factor = 1.0;
for(ph=0;ph<phase_count;ph++) {
double norm = 0;
for(i=0;i<tap_count;i++) {
x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
if (x == 0) y = 1.0;
else y = sin(x) / x;
switch(filter_type){
case SWR_FILTER_TYPE_CUBIC:{
const float d= -0.5; //first order derivative = -0.5
x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
else y= d*(-4 + 8*x - 5*x*x + x*x*x);
break;}
case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
w = 2.0*x / (factor*tap_count) + M_PI;
y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
break;
case SWR_FILTER_TYPE_KAISER:
w = 2.0*x / (factor*tap_count*M_PI);
y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
break;
default:
av_assert0(0);
}
tab[i] = y;
norm += y;
}
/* normalize so that an uniform color remains the same */
switch(c->format){
case AV_SAMPLE_FMT_S16P:
for(i=0;i<tap_count;i++)
((int16_t*)filter)[ph * alloc + i] = av_clip(lrintf(tab[i] * scale / norm), INT16_MIN, INT16_MAX);
break;
case AV_SAMPLE_FMT_S32P:
for(i=0;i<tap_count;i++)
((int32_t*)filter)[ph * alloc + i] = av_clipl_int32(llrint(tab[i] * scale / norm));
break;
case AV_SAMPLE_FMT_FLTP:
for(i=0;i<tap_count;i++)
((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
break;
case AV_SAMPLE_FMT_DBLP:
for(i=0;i<tap_count;i++)
((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
break;
}
}
#if 0
{
#define LEN 1024
int j,k;
double sine[LEN + tap_count];
double filtered[LEN];
double maxff=-2, minff=2, maxsf=-2, minsf=2;
for(i=0; i<LEN; i++){
double ss=0, sf=0, ff=0;
for(j=0; j<LEN+tap_count; j++)
sine[j]= cos(i*j*M_PI/LEN);
for(j=0; j<LEN; j++){
double sum=0;
ph=0;
for(k=0; k<tap_count; k++)
sum += filter[ph * tap_count + k] * sine[k+j];
filtered[j]= sum / (1<<FILTER_SHIFT);
ss+= sine[j + center] * sine[j + center];
ff+= filtered[j] * filtered[j];
sf+= sine[j + center] * filtered[j];
}
ss= sqrt(2*ss/LEN);
ff= sqrt(2*ff/LEN);
sf= 2*sf/LEN;
maxff= FFMAX(maxff, ff);
minff= FFMIN(minff, ff);
maxsf= FFMAX(maxsf, sf);
minsf= FFMIN(minsf, sf);
if(i%11==0){
av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
minff=minsf= 2;
maxff=maxsf= -2;
}
}
}
#endif
av_free(tab);
return 0;
}
static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, int kaiser_beta,
double precision, int cheby)
{
double cutoff = cutoff0? cutoff0 : 0.97;
double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
int phase_count= 1<<phase_shift;
if (!c || c->phase_shift != phase_shift || c->linear!=linear || c->factor != factor
|| c->filter_length != FFMAX((int)ceil(filter_size/factor), 1) || c->format != format
|| c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
c = av_mallocz(sizeof(*c));
if (!c)
return NULL;
c->format= format;
c->felem_size= av_get_bytes_per_sample(c->format);
switch(c->format){
case AV_SAMPLE_FMT_S16P:
c->filter_shift = 15;
break;
case AV_SAMPLE_FMT_S32P:
c->filter_shift = 30;
break;
case AV_SAMPLE_FMT_FLTP:
case AV_SAMPLE_FMT_DBLP:
c->filter_shift = 0;
break;
default:
av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
av_assert0(0);
}
if (filter_size/factor > INT32_MAX/256) {
av_log(NULL, AV_LOG_ERROR, "Filter length too large\n");
goto error;
}
c->phase_shift = phase_shift;
c->phase_mask = phase_count - 1;
c->linear = linear;
c->factor = factor;
c->filter_length = FFMAX((int)ceil(filter_size/factor), 1);
c->filter_alloc = FFALIGN(c->filter_length, 8);
c->filter_bank = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
c->filter_type = filter_type;
c->kaiser_beta = kaiser_beta;
if (!c->filter_bank)
goto error;
if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta))
goto error;
memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size);
memcpy(c->filter_bank + (c->filter_alloc*phase_count )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
}
c->compensation_distance= 0;
if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
goto error;
c->ideal_dst_incr = c->dst_incr;
c->dst_incr_div = c->dst_incr / c->src_incr;
c->dst_incr_mod = c->dst_incr % c->src_incr;
c->index= -phase_count*((c->filter_length-1)/2);
c->frac= 0;
swri_resample_dsp_init(c);
return c;
error:
av_freep(&c->filter_bank);
av_free(c);
return NULL;
}
static void resample_free(ResampleContext **c){
if(!*c)
return;
av_freep(&(*c)->filter_bank);
av_freep(c);
}
static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){
c->compensation_distance= compensation_distance;
if (compensation_distance)
c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
else
c->dst_incr = c->ideal_dst_incr;
c->dst_incr_div = c->dst_incr / c->src_incr;
c->dst_incr_mod = c->dst_incr % c->src_incr;
return 0;
}
static int swri_resample(ResampleContext *c,
uint8_t *dst, const uint8_t *src, int *consumed,
int src_size, int dst_size, int update_ctx)
{
if (c->filter_length == 1 && c->phase_shift == 0) {
int index= c->index;
int frac= c->frac;
int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*index;
int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
int new_size = (src_size * (int64_t)c->src_incr - frac + c->dst_incr - 1) / c->dst_incr;
dst_size= FFMIN(dst_size, new_size);
c->dsp.resample_one(dst, src, dst_size, index2, incr);
index += dst_size * c->dst_incr_div;
index += (frac + dst_size * (int64_t)c->dst_incr_mod) / c->src_incr;
av_assert2(index >= 0);
*consumed= index;
if (update_ctx) {
c->frac = (frac + dst_size * (int64_t)c->dst_incr_mod) % c->src_incr;
c->index = 0;
}
} else {
int64_t end_index = (1LL + src_size - c->filter_length) << c->phase_shift;
int64_t delta_frac = (end_index - c->index) * c->src_incr - c->frac;
int delta_n = (delta_frac + c->dst_incr - 1) / c->dst_incr;
dst_size = FFMIN(dst_size, delta_n);
if (dst_size > 0) {
*consumed = c->dsp.resample(c, dst, src, dst_size, update_ctx);
} else {
*consumed = 0;
}
}
return dst_size;
}
static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
int i, ret= -1;
int av_unused mm_flags = av_get_cpu_flags();
int need_emms = c->format == AV_SAMPLE_FMT_S16P && ARCH_X86_32 &&
(mm_flags & (AV_CPU_FLAG_MMX2 | AV_CPU_FLAG_SSE2)) == AV_CPU_FLAG_MMX2;
int64_t max_src_size = (INT64_MAX >> (c->phase_shift+1)) / c->src_incr;
if (c->compensation_distance)
dst_size = FFMIN(dst_size, c->compensation_distance);
src_size = FFMIN(src_size, max_src_size);
for(i=0; i<dst->ch_count; i++){
ret= swri_resample(c, dst->ch[i], src->ch[i],
consumed, src_size, dst_size, i+1==dst->ch_count);
}
if(need_emms)
emms_c();
if (c->compensation_distance) {
c->compensation_distance -= ret;
if (!c->compensation_distance) {
c->dst_incr = c->ideal_dst_incr;
c->dst_incr_div = c->dst_incr / c->src_incr;
c->dst_incr_mod = c->dst_incr % c->src_incr;
}
}
return ret;
}
static int64_t get_delay(struct SwrContext *s, int64_t base){
ResampleContext *c = s->resample;
int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
num *= 1 << c->phase_shift;
num -= c->index;
num *= c->src_incr;
num -= c->frac;
return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr << c->phase_shift);
}
static int64_t get_out_samples(struct SwrContext *s, int in_samples) {
ResampleContext *c = s->resample;
// The + 2 are added to allow implementations to be slightly inaccurate, they should not be needed currently.
// They also make it easier to proof that changes and optimizations do not
// break the upper bound.
int64_t num = s->in_buffer_count + 2LL + in_samples;
num *= 1 << c->phase_shift;
num -= c->index;
num = av_rescale_rnd(num, s->out_sample_rate, ((int64_t)s->in_sample_rate) << c->phase_shift, AV_ROUND_UP) + 2;
if (c->compensation_distance) {
if (num > INT_MAX)
return AVERROR(EINVAL);
num = FFMAX(num, (num * c->ideal_dst_incr - 1) / c->dst_incr + 1);
}
return num;
}
static int resample_flush(struct SwrContext *s) {
AudioData *a= &s->in_buffer;
int i, j, ret;
if((ret = swri_realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0)
return ret;
av_assert0(a->planar);
for(i=0; i<a->ch_count; i++){
for(j=0; j<s->in_buffer_count; j++){
memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j )*a->bps,
a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
}
}
s->in_buffer_count += (s->in_buffer_count+1)/2;
return 0;
}
// in fact the whole handle multiple ridiculously small buffers might need more thinking...
static int invert_initial_buffer(ResampleContext *c, AudioData *dst, const AudioData *src,
int in_count, int *out_idx, int *out_sz)
{
int n, ch, num = FFMIN(in_count + *out_sz, c->filter_length + 1), res;
if (c->index >= 0)
return 0;
if ((res = swri_realloc_audio(dst, c->filter_length * 2 + 1)) < 0)
return res;
// copy
for (n = *out_sz; n < num; n++) {
for (ch = 0; ch < src->ch_count; ch++) {
memcpy(dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
src->ch[ch] + ((n - *out_sz) * c->felem_size), c->felem_size);
}
}
// if not enough data is in, return and wait for more
if (num < c->filter_length + 1) {
*out_sz = num;
*out_idx = c->filter_length;
return INT_MAX;
}
// else invert
for (n = 1; n <= c->filter_length; n++) {
for (ch = 0; ch < src->ch_count; ch++) {
memcpy(dst->ch[ch] + ((c->filter_length - n) * c->felem_size),
dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
c->felem_size);
}
}
res = num - *out_sz;
*out_idx = c->filter_length + (c->index >> c->phase_shift);
*out_sz = FFMAX(*out_sz + c->filter_length,
1 + c->filter_length * 2) - *out_idx;
c->index &= c->phase_mask;
return FFMAX(res, 0);
}
struct Resampler const swri_resampler={
resample_init,
resample_free,
multiple_resample,
resample_flush,
set_compensation,
get_delay,
invert_initial_buffer,
get_out_samples,
};