1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-12 19:18:44 +02:00
FFmpeg/libavcodec/cbs_av1.c
Andreas Rheinhardt 7c92eaace2 avcodec/cbs: Factor out common code for writing units
All cbs-functions to write units share a common pattern:
1. They check whether they have a write buffer (that is used to store
the unit's data until the needed size becomes known after writing the
unit when a dedicated buffer will be allocated).
2. They use this buffer for a PutBitContext.
3. The (codec-specific) writing takes place through the PutBitContext.
4. The return value is checked. AVERROR(ENOSPC) here always indicates
that the buffer was too small and leads to a reallocation of said
buffer.
5. The final buffer will be allocated and the data copied.

This commit factors this common code out in a single function in cbs.c.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
2019-11-17 23:31:44 +00:00

1267 lines
36 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avassert.h"
#include "libavutil/pixfmt.h"
#include "cbs.h"
#include "cbs_internal.h"
#include "cbs_av1.h"
#include "internal.h"
static int cbs_av1_read_uvlc(CodedBitstreamContext *ctx, GetBitContext *gbc,
const char *name, uint32_t *write_to,
uint32_t range_min, uint32_t range_max)
{
uint32_t zeroes, bits_value, value;
int position;
if (ctx->trace_enable)
position = get_bits_count(gbc);
zeroes = 0;
while (1) {
if (get_bits_left(gbc) < 1) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid uvlc code at "
"%s: bitstream ended.\n", name);
return AVERROR_INVALIDDATA;
}
if (get_bits1(gbc))
break;
++zeroes;
}
if (zeroes >= 32) {
value = MAX_UINT_BITS(32);
} else {
if (get_bits_left(gbc) < zeroes) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid uvlc code at "
"%s: bitstream ended.\n", name);
return AVERROR_INVALIDDATA;
}
bits_value = get_bits_long(gbc, zeroes);
value = bits_value + (UINT32_C(1) << zeroes) - 1;
}
if (ctx->trace_enable) {
char bits[65];
int i, j, k;
if (zeroes >= 32) {
while (zeroes > 32) {
k = FFMIN(zeroes - 32, 32);
for (i = 0; i < k; i++)
bits[i] = '0';
bits[i] = 0;
ff_cbs_trace_syntax_element(ctx, position, name,
NULL, bits, 0);
zeroes -= k;
position += k;
}
}
for (i = 0; i < zeroes; i++)
bits[i] = '0';
bits[i++] = '1';
if (zeroes < 32) {
for (j = 0; j < zeroes; j++)
bits[i++] = (bits_value >> (zeroes - j - 1) & 1) ? '1' : '0';
}
bits[i] = 0;
ff_cbs_trace_syntax_element(ctx, position, name,
NULL, bits, value);
}
if (value < range_min || value > range_max) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
"%"PRIu32", but must be in [%"PRIu32",%"PRIu32"].\n",
name, value, range_min, range_max);
return AVERROR_INVALIDDATA;
}
*write_to = value;
return 0;
}
static int cbs_av1_write_uvlc(CodedBitstreamContext *ctx, PutBitContext *pbc,
const char *name, uint32_t value,
uint32_t range_min, uint32_t range_max)
{
uint32_t v;
int position, zeroes;
if (value < range_min || value > range_max) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
"%"PRIu32", but must be in [%"PRIu32",%"PRIu32"].\n",
name, value, range_min, range_max);
return AVERROR_INVALIDDATA;
}
if (ctx->trace_enable)
position = put_bits_count(pbc);
if (value == 0) {
zeroes = 0;
put_bits(pbc, 1, 1);
} else {
zeroes = av_log2(value + 1);
v = value - (1 << zeroes) + 1;
put_bits(pbc, zeroes + 1, 1);
put_bits(pbc, zeroes, v);
}
if (ctx->trace_enable) {
char bits[65];
int i, j;
i = 0;
for (j = 0; j < zeroes; j++)
bits[i++] = '0';
bits[i++] = '1';
for (j = 0; j < zeroes; j++)
bits[i++] = (v >> (zeroes - j - 1) & 1) ? '1' : '0';
bits[i++] = 0;
ff_cbs_trace_syntax_element(ctx, position, name, NULL,
bits, value);
}
return 0;
}
static int cbs_av1_read_leb128(CodedBitstreamContext *ctx, GetBitContext *gbc,
const char *name, uint64_t *write_to)
{
uint64_t value;
int position, err, i;
if (ctx->trace_enable)
position = get_bits_count(gbc);
value = 0;
for (i = 0; i < 8; i++) {
int subscript[2] = { 1, i };
uint32_t byte;
err = ff_cbs_read_unsigned(ctx, gbc, 8, "leb128_byte[i]", subscript,
&byte, 0x00, 0xff);
if (err < 0)
return err;
value |= (uint64_t)(byte & 0x7f) << (i * 7);
if (!(byte & 0x80))
break;
}
if (ctx->trace_enable)
ff_cbs_trace_syntax_element(ctx, position, name, NULL, "", value);
*write_to = value;
return 0;
}
static int cbs_av1_write_leb128(CodedBitstreamContext *ctx, PutBitContext *pbc,
const char *name, uint64_t value)
{
int position, err, len, i;
uint8_t byte;
len = (av_log2(value) + 7) / 7;
if (ctx->trace_enable)
position = put_bits_count(pbc);
for (i = 0; i < len; i++) {
int subscript[2] = { 1, i };
byte = value >> (7 * i) & 0x7f;
if (i < len - 1)
byte |= 0x80;
err = ff_cbs_write_unsigned(ctx, pbc, 8, "leb128_byte[i]", subscript,
byte, 0x00, 0xff);
if (err < 0)
return err;
}
if (ctx->trace_enable)
ff_cbs_trace_syntax_element(ctx, position, name, NULL, "", value);
return 0;
}
static int cbs_av1_read_ns(CodedBitstreamContext *ctx, GetBitContext *gbc,
uint32_t n, const char *name,
const int *subscripts, uint32_t *write_to)
{
uint32_t m, v, extra_bit, value;
int position, w;
av_assert0(n > 0);
if (ctx->trace_enable)
position = get_bits_count(gbc);
w = av_log2(n) + 1;
m = (1 << w) - n;
if (get_bits_left(gbc) < w) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid non-symmetric value at "
"%s: bitstream ended.\n", name);
return AVERROR_INVALIDDATA;
}
if (w - 1 > 0)
v = get_bits(gbc, w - 1);
else
v = 0;
if (v < m) {
value = v;
} else {
extra_bit = get_bits1(gbc);
value = (v << 1) - m + extra_bit;
}
if (ctx->trace_enable) {
char bits[33];
int i;
for (i = 0; i < w - 1; i++)
bits[i] = (v >> i & 1) ? '1' : '0';
if (v >= m)
bits[i++] = extra_bit ? '1' : '0';
bits[i] = 0;
ff_cbs_trace_syntax_element(ctx, position,
name, subscripts, bits, value);
}
*write_to = value;
return 0;
}
static int cbs_av1_write_ns(CodedBitstreamContext *ctx, PutBitContext *pbc,
uint32_t n, const char *name,
const int *subscripts, uint32_t value)
{
uint32_t w, m, v, extra_bit;
int position;
if (value > n) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
"%"PRIu32", but must be in [0,%"PRIu32"].\n",
name, value, n);
return AVERROR_INVALIDDATA;
}
if (ctx->trace_enable)
position = put_bits_count(pbc);
w = av_log2(n) + 1;
m = (1 << w) - n;
if (put_bits_left(pbc) < w)
return AVERROR(ENOSPC);
if (value < m) {
v = value;
put_bits(pbc, w - 1, v);
} else {
v = m + ((value - m) >> 1);
extra_bit = (value - m) & 1;
put_bits(pbc, w - 1, v);
put_bits(pbc, 1, extra_bit);
}
if (ctx->trace_enable) {
char bits[33];
int i;
for (i = 0; i < w - 1; i++)
bits[i] = (v >> i & 1) ? '1' : '0';
if (value >= m)
bits[i++] = extra_bit ? '1' : '0';
bits[i] = 0;
ff_cbs_trace_syntax_element(ctx, position,
name, subscripts, bits, value);
}
return 0;
}
static int cbs_av1_read_increment(CodedBitstreamContext *ctx, GetBitContext *gbc,
uint32_t range_min, uint32_t range_max,
const char *name, uint32_t *write_to)
{
uint32_t value;
int position, i;
char bits[33];
av_assert0(range_min <= range_max && range_max - range_min < sizeof(bits) - 1);
if (ctx->trace_enable)
position = get_bits_count(gbc);
for (i = 0, value = range_min; value < range_max;) {
if (get_bits_left(gbc) < 1) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid increment value at "
"%s: bitstream ended.\n", name);
return AVERROR_INVALIDDATA;
}
if (get_bits1(gbc)) {
bits[i++] = '1';
++value;
} else {
bits[i++] = '0';
break;
}
}
if (ctx->trace_enable) {
bits[i] = 0;
ff_cbs_trace_syntax_element(ctx, position,
name, NULL, bits, value);
}
*write_to = value;
return 0;
}
static int cbs_av1_write_increment(CodedBitstreamContext *ctx, PutBitContext *pbc,
uint32_t range_min, uint32_t range_max,
const char *name, uint32_t value)
{
int len;
av_assert0(range_min <= range_max && range_max - range_min < 32);
if (value < range_min || value > range_max) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
"%"PRIu32", but must be in [%"PRIu32",%"PRIu32"].\n",
name, value, range_min, range_max);
return AVERROR_INVALIDDATA;
}
if (value == range_max)
len = range_max - range_min;
else
len = value - range_min + 1;
if (put_bits_left(pbc) < len)
return AVERROR(ENOSPC);
if (ctx->trace_enable) {
char bits[33];
int i;
for (i = 0; i < len; i++) {
if (range_min + i == value)
bits[i] = '0';
else
bits[i] = '1';
}
bits[i] = 0;
ff_cbs_trace_syntax_element(ctx, put_bits_count(pbc),
name, NULL, bits, value);
}
if (len > 0)
put_bits(pbc, len, (1 << len) - 1 - (value != range_max));
return 0;
}
static int cbs_av1_read_subexp(CodedBitstreamContext *ctx, GetBitContext *gbc,
uint32_t range_max, const char *name,
const int *subscripts, uint32_t *write_to)
{
uint32_t value;
int position, err;
uint32_t max_len, len, range_offset, range_bits;
if (ctx->trace_enable)
position = get_bits_count(gbc);
av_assert0(range_max > 0);
max_len = av_log2(range_max - 1) - 3;
err = cbs_av1_read_increment(ctx, gbc, 0, max_len,
"subexp_more_bits", &len);
if (err < 0)
return err;
if (len) {
range_bits = 2 + len;
range_offset = 1 << range_bits;
} else {
range_bits = 3;
range_offset = 0;
}
if (len < max_len) {
err = ff_cbs_read_unsigned(ctx, gbc, range_bits,
"subexp_bits", NULL, &value,
0, MAX_UINT_BITS(range_bits));
if (err < 0)
return err;
} else {
err = cbs_av1_read_ns(ctx, gbc, range_max - range_offset,
"subexp_final_bits", NULL, &value);
if (err < 0)
return err;
}
value += range_offset;
if (ctx->trace_enable)
ff_cbs_trace_syntax_element(ctx, position,
name, subscripts, "", value);
*write_to = value;
return err;
}
static int cbs_av1_write_subexp(CodedBitstreamContext *ctx, PutBitContext *pbc,
uint32_t range_max, const char *name,
const int *subscripts, uint32_t value)
{
int position, err;
uint32_t max_len, len, range_offset, range_bits;
if (value > range_max) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
"%"PRIu32", but must be in [0,%"PRIu32"].\n",
name, value, range_max);
return AVERROR_INVALIDDATA;
}
if (ctx->trace_enable)
position = put_bits_count(pbc);
av_assert0(range_max > 0);
max_len = av_log2(range_max - 1) - 3;
if (value < 8) {
range_bits = 3;
range_offset = 0;
len = 0;
} else {
range_bits = av_log2(value);
len = range_bits - 2;
if (len > max_len) {
// The top bin is combined with the one below it.
av_assert0(len == max_len + 1);
--range_bits;
len = max_len;
}
range_offset = 1 << range_bits;
}
err = cbs_av1_write_increment(ctx, pbc, 0, max_len,
"subexp_more_bits", len);
if (err < 0)
return err;
if (len < max_len) {
err = ff_cbs_write_unsigned(ctx, pbc, range_bits,
"subexp_bits", NULL,
value - range_offset,
0, MAX_UINT_BITS(range_bits));
if (err < 0)
return err;
} else {
err = cbs_av1_write_ns(ctx, pbc, range_max - range_offset,
"subexp_final_bits", NULL,
value - range_offset);
if (err < 0)
return err;
}
if (ctx->trace_enable)
ff_cbs_trace_syntax_element(ctx, position,
name, subscripts, "", value);
return err;
}
static int cbs_av1_tile_log2(int blksize, int target)
{
int k;
for (k = 0; (blksize << k) < target; k++);
return k;
}
static int cbs_av1_get_relative_dist(const AV1RawSequenceHeader *seq,
unsigned int a, unsigned int b)
{
unsigned int diff, m;
if (!seq->enable_order_hint)
return 0;
diff = a - b;
m = 1 << seq->order_hint_bits_minus_1;
diff = (diff & (m - 1)) - (diff & m);
return diff;
}
static size_t cbs_av1_get_payload_bytes_left(GetBitContext *gbc)
{
GetBitContext tmp = *gbc;
size_t size = 0;
for (int i = 0; get_bits_left(&tmp) >= 8; i++) {
if (get_bits(&tmp, 8))
size = i;
}
return size;
}
#define HEADER(name) do { \
ff_cbs_trace_header(ctx, name); \
} while (0)
#define CHECK(call) do { \
err = (call); \
if (err < 0) \
return err; \
} while (0)
#define FUNC_NAME(rw, codec, name) cbs_ ## codec ## _ ## rw ## _ ## name
#define FUNC_AV1(rw, name) FUNC_NAME(rw, av1, name)
#define FUNC(name) FUNC_AV1(READWRITE, name)
#define SUBSCRIPTS(subs, ...) (subs > 0 ? ((int[subs + 1]){ subs, __VA_ARGS__ }) : NULL)
#define fb(width, name) \
xf(width, name, current->name, 0, MAX_UINT_BITS(width), 0)
#define fc(width, name, range_min, range_max) \
xf(width, name, current->name, range_min, range_max, 0)
#define flag(name) fb(1, name)
#define su(width, name) \
xsu(width, name, current->name, 0)
#define fbs(width, name, subs, ...) \
xf(width, name, current->name, 0, MAX_UINT_BITS(width), subs, __VA_ARGS__)
#define fcs(width, name, range_min, range_max, subs, ...) \
xf(width, name, current->name, range_min, range_max, subs, __VA_ARGS__)
#define flags(name, subs, ...) \
xf(1, name, current->name, 0, 1, subs, __VA_ARGS__)
#define sus(width, name, subs, ...) \
xsu(width, name, current->name, subs, __VA_ARGS__)
#define fixed(width, name, value) do { \
av_unused uint32_t fixed_value = value; \
xf(width, name, fixed_value, value, value, 0); \
} while (0)
#define READ
#define READWRITE read
#define RWContext GetBitContext
#define xf(width, name, var, range_min, range_max, subs, ...) do { \
uint32_t value; \
CHECK(ff_cbs_read_unsigned(ctx, rw, width, #name, \
SUBSCRIPTS(subs, __VA_ARGS__), \
&value, range_min, range_max)); \
var = value; \
} while (0)
#define xsu(width, name, var, subs, ...) do { \
int32_t value; \
CHECK(ff_cbs_read_signed(ctx, rw, width, #name, \
SUBSCRIPTS(subs, __VA_ARGS__), &value, \
MIN_INT_BITS(width), \
MAX_INT_BITS(width))); \
var = value; \
} while (0)
#define uvlc(name, range_min, range_max) do { \
uint32_t value; \
CHECK(cbs_av1_read_uvlc(ctx, rw, #name, \
&value, range_min, range_max)); \
current->name = value; \
} while (0)
#define ns(max_value, name, subs, ...) do { \
uint32_t value; \
CHECK(cbs_av1_read_ns(ctx, rw, max_value, #name, \
SUBSCRIPTS(subs, __VA_ARGS__), &value)); \
current->name = value; \
} while (0)
#define increment(name, min, max) do { \
uint32_t value; \
CHECK(cbs_av1_read_increment(ctx, rw, min, max, #name, &value)); \
current->name = value; \
} while (0)
#define subexp(name, max, subs, ...) do { \
uint32_t value; \
CHECK(cbs_av1_read_subexp(ctx, rw, max, #name, \
SUBSCRIPTS(subs, __VA_ARGS__), &value)); \
current->name = value; \
} while (0)
#define delta_q(name) do { \
uint8_t delta_coded; \
int8_t delta_q; \
xf(1, name.delta_coded, delta_coded, 0, 1, 0); \
if (delta_coded) \
xsu(1 + 6, name.delta_q, delta_q, 0); \
else \
delta_q = 0; \
current->name = delta_q; \
} while (0)
#define leb128(name) do { \
uint64_t value; \
CHECK(cbs_av1_read_leb128(ctx, rw, #name, &value)); \
current->name = value; \
} while (0)
#define infer(name, value) do { \
current->name = value; \
} while (0)
#define byte_alignment(rw) (get_bits_count(rw) % 8)
#include "cbs_av1_syntax_template.c"
#undef READ
#undef READWRITE
#undef RWContext
#undef xf
#undef xsu
#undef uvlc
#undef ns
#undef increment
#undef subexp
#undef delta_q
#undef leb128
#undef infer
#undef byte_alignment
#define WRITE
#define READWRITE write
#define RWContext PutBitContext
#define xf(width, name, var, range_min, range_max, subs, ...) do { \
CHECK(ff_cbs_write_unsigned(ctx, rw, width, #name, \
SUBSCRIPTS(subs, __VA_ARGS__), \
var, range_min, range_max)); \
} while (0)
#define xsu(width, name, var, subs, ...) do { \
CHECK(ff_cbs_write_signed(ctx, rw, width, #name, \
SUBSCRIPTS(subs, __VA_ARGS__), var, \
MIN_INT_BITS(width), \
MAX_INT_BITS(width))); \
} while (0)
#define uvlc(name, range_min, range_max) do { \
CHECK(cbs_av1_write_uvlc(ctx, rw, #name, current->name, \
range_min, range_max)); \
} while (0)
#define ns(max_value, name, subs, ...) do { \
CHECK(cbs_av1_write_ns(ctx, rw, max_value, #name, \
SUBSCRIPTS(subs, __VA_ARGS__), \
current->name)); \
} while (0)
#define increment(name, min, max) do { \
CHECK(cbs_av1_write_increment(ctx, rw, min, max, #name, \
current->name)); \
} while (0)
#define subexp(name, max, subs, ...) do { \
CHECK(cbs_av1_write_subexp(ctx, rw, max, #name, \
SUBSCRIPTS(subs, __VA_ARGS__), \
current->name)); \
} while (0)
#define delta_q(name) do { \
xf(1, name.delta_coded, current->name != 0, 0, 1, 0); \
if (current->name) \
xsu(1 + 6, name.delta_q, current->name, 0); \
} while (0)
#define leb128(name) do { \
CHECK(cbs_av1_write_leb128(ctx, rw, #name, current->name)); \
} while (0)
#define infer(name, value) do { \
if (current->name != (value)) { \
av_log(ctx->log_ctx, AV_LOG_WARNING, "Warning: " \
"%s does not match inferred value: " \
"%"PRId64", but should be %"PRId64".\n", \
#name, (int64_t)current->name, (int64_t)(value)); \
} \
} while (0)
#define byte_alignment(rw) (put_bits_count(rw) % 8)
#include "cbs_av1_syntax_template.c"
#undef WRITE
#undef READWRITE
#undef RWContext
#undef xf
#undef xsu
#undef uvlc
#undef ns
#undef increment
#undef subexp
#undef delta_q
#undef leb128
#undef infer
#undef byte_alignment
static int cbs_av1_split_fragment(CodedBitstreamContext *ctx,
CodedBitstreamFragment *frag,
int header)
{
GetBitContext gbc;
uint8_t *data;
size_t size;
uint64_t obu_length;
int pos, err, trace;
// Don't include this parsing in trace output.
trace = ctx->trace_enable;
ctx->trace_enable = 0;
data = frag->data;
size = frag->data_size;
if (INT_MAX / 8 < size) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid fragment: "
"too large (%"SIZE_SPECIFIER" bytes).\n", size);
err = AVERROR_INVALIDDATA;
goto fail;
}
while (size > 0) {
AV1RawOBUHeader header;
uint64_t obu_size;
init_get_bits(&gbc, data, 8 * size);
err = cbs_av1_read_obu_header(ctx, &gbc, &header);
if (err < 0)
goto fail;
if (header.obu_has_size_field) {
if (get_bits_left(&gbc) < 8) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid OBU: fragment "
"too short (%"SIZE_SPECIFIER" bytes).\n", size);
err = AVERROR_INVALIDDATA;
goto fail;
}
err = cbs_av1_read_leb128(ctx, &gbc, "obu_size", &obu_size);
if (err < 0)
goto fail;
} else
obu_size = size - 1 - header.obu_extension_flag;
pos = get_bits_count(&gbc);
av_assert0(pos % 8 == 0 && pos / 8 <= size);
obu_length = pos / 8 + obu_size;
if (size < obu_length) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid OBU length: "
"%"PRIu64", but only %"SIZE_SPECIFIER" bytes remaining in fragment.\n",
obu_length, size);
err = AVERROR_INVALIDDATA;
goto fail;
}
err = ff_cbs_insert_unit_data(ctx, frag, -1, header.obu_type,
data, obu_length, frag->data_ref);
if (err < 0)
goto fail;
data += obu_length;
size -= obu_length;
}
err = 0;
fail:
ctx->trace_enable = trace;
return err;
}
static void cbs_av1_free_tile_data(AV1RawTileData *td)
{
av_buffer_unref(&td->data_ref);
}
static void cbs_av1_free_padding(AV1RawPadding *pd)
{
av_buffer_unref(&pd->payload_ref);
}
static void cbs_av1_free_metadata(AV1RawMetadata *md)
{
switch (md->metadata_type) {
case AV1_METADATA_TYPE_ITUT_T35:
av_buffer_unref(&md->metadata.itut_t35.payload_ref);
break;
}
}
static void cbs_av1_free_obu(void *opaque, uint8_t *content)
{
AV1RawOBU *obu = (AV1RawOBU*)content;
switch (obu->header.obu_type) {
case AV1_OBU_TILE_GROUP:
cbs_av1_free_tile_data(&obu->obu.tile_group.tile_data);
break;
case AV1_OBU_FRAME:
cbs_av1_free_tile_data(&obu->obu.frame.tile_group.tile_data);
break;
case AV1_OBU_TILE_LIST:
cbs_av1_free_tile_data(&obu->obu.tile_list.tile_data);
break;
case AV1_OBU_METADATA:
cbs_av1_free_metadata(&obu->obu.metadata);
break;
case AV1_OBU_PADDING:
cbs_av1_free_padding(&obu->obu.padding);
break;
}
av_freep(&obu);
}
static int cbs_av1_ref_tile_data(CodedBitstreamContext *ctx,
CodedBitstreamUnit *unit,
GetBitContext *gbc,
AV1RawTileData *td)
{
int pos;
pos = get_bits_count(gbc);
if (pos >= 8 * unit->data_size) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Bitstream ended before "
"any data in tile group (%d bits read).\n", pos);
return AVERROR_INVALIDDATA;
}
// Must be byte-aligned at this point.
av_assert0(pos % 8 == 0);
td->data_ref = av_buffer_ref(unit->data_ref);
if (!td->data_ref)
return AVERROR(ENOMEM);
td->data = unit->data + pos / 8;
td->data_size = unit->data_size - pos / 8;
return 0;
}
static int cbs_av1_read_unit(CodedBitstreamContext *ctx,
CodedBitstreamUnit *unit)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
AV1RawOBU *obu;
GetBitContext gbc;
int err, start_pos, end_pos;
err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(*obu),
&cbs_av1_free_obu);
if (err < 0)
return err;
obu = unit->content;
err = init_get_bits(&gbc, unit->data, 8 * unit->data_size);
if (err < 0)
return err;
err = cbs_av1_read_obu_header(ctx, &gbc, &obu->header);
if (err < 0)
return err;
av_assert0(obu->header.obu_type == unit->type);
if (obu->header.obu_has_size_field) {
uint64_t obu_size;
err = cbs_av1_read_leb128(ctx, &gbc, "obu_size", &obu_size);
if (err < 0)
return err;
obu->obu_size = obu_size;
} else {
if (unit->data_size < 1 + obu->header.obu_extension_flag) {
av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid OBU length: "
"unit too short (%"SIZE_SPECIFIER").\n", unit->data_size);
return AVERROR_INVALIDDATA;
}
obu->obu_size = unit->data_size - 1 - obu->header.obu_extension_flag;
}
start_pos = get_bits_count(&gbc);
if (obu->header.obu_extension_flag) {
priv->temporal_id = obu->header.temporal_id;
priv->spatial_id = obu->header.spatial_id;
if (obu->header.obu_type != AV1_OBU_SEQUENCE_HEADER &&
obu->header.obu_type != AV1_OBU_TEMPORAL_DELIMITER &&
priv->operating_point_idc) {
int in_temporal_layer =
(priv->operating_point_idc >> priv->temporal_id ) & 1;
int in_spatial_layer =
(priv->operating_point_idc >> (priv->spatial_id + 8)) & 1;
if (!in_temporal_layer || !in_spatial_layer) {
// Decoding will drop this OBU at this operating point.
}
}
} else {
priv->temporal_id = 0;
priv->spatial_id = 0;
}
switch (obu->header.obu_type) {
case AV1_OBU_SEQUENCE_HEADER:
{
err = cbs_av1_read_sequence_header_obu(ctx, &gbc,
&obu->obu.sequence_header);
if (err < 0)
return err;
av_buffer_unref(&priv->sequence_header_ref);
priv->sequence_header = NULL;
priv->sequence_header_ref = av_buffer_ref(unit->content_ref);
if (!priv->sequence_header_ref)
return AVERROR(ENOMEM);
priv->sequence_header = &obu->obu.sequence_header;
}
break;
case AV1_OBU_TEMPORAL_DELIMITER:
{
err = cbs_av1_read_temporal_delimiter_obu(ctx, &gbc);
if (err < 0)
return err;
}
break;
case AV1_OBU_FRAME_HEADER:
case AV1_OBU_REDUNDANT_FRAME_HEADER:
{
err = cbs_av1_read_frame_header_obu(ctx, &gbc,
&obu->obu.frame_header,
obu->header.obu_type ==
AV1_OBU_REDUNDANT_FRAME_HEADER,
unit->data_ref);
if (err < 0)
return err;
}
break;
case AV1_OBU_TILE_GROUP:
{
err = cbs_av1_read_tile_group_obu(ctx, &gbc,
&obu->obu.tile_group);
if (err < 0)
return err;
err = cbs_av1_ref_tile_data(ctx, unit, &gbc,
&obu->obu.tile_group.tile_data);
if (err < 0)
return err;
}
break;
case AV1_OBU_FRAME:
{
err = cbs_av1_read_frame_obu(ctx, &gbc, &obu->obu.frame,
unit->data_ref);
if (err < 0)
return err;
err = cbs_av1_ref_tile_data(ctx, unit, &gbc,
&obu->obu.frame.tile_group.tile_data);
if (err < 0)
return err;
}
break;
case AV1_OBU_TILE_LIST:
{
err = cbs_av1_read_tile_list_obu(ctx, &gbc,
&obu->obu.tile_list);
if (err < 0)
return err;
err = cbs_av1_ref_tile_data(ctx, unit, &gbc,
&obu->obu.tile_list.tile_data);
if (err < 0)
return err;
}
break;
case AV1_OBU_METADATA:
{
err = cbs_av1_read_metadata_obu(ctx, &gbc, &obu->obu.metadata);
if (err < 0)
return err;
}
break;
case AV1_OBU_PADDING:
{
err = cbs_av1_read_padding_obu(ctx, &gbc, &obu->obu.padding);
if (err < 0)
return err;
}
break;
default:
return AVERROR(ENOSYS);
}
end_pos = get_bits_count(&gbc);
av_assert0(end_pos <= unit->data_size * 8);
if (obu->obu_size > 0 &&
obu->header.obu_type != AV1_OBU_TILE_GROUP &&
obu->header.obu_type != AV1_OBU_FRAME) {
int nb_bits = obu->obu_size * 8 + start_pos - end_pos;
if (nb_bits <= 0)
return AVERROR_INVALIDDATA;
err = cbs_av1_read_trailing_bits(ctx, &gbc, nb_bits);
if (err < 0)
return err;
}
return 0;
}
static int cbs_av1_write_obu(CodedBitstreamContext *ctx,
CodedBitstreamUnit *unit,
PutBitContext *pbc)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
AV1RawOBU *obu = unit->content;
PutBitContext pbc_tmp;
AV1RawTileData *td;
size_t header_size;
int err, start_pos, end_pos, data_pos;
// OBUs in the normal bitstream format must contain a size field
// in every OBU (in annex B it is optional, but we don't support
// writing that).
obu->header.obu_has_size_field = 1;
err = cbs_av1_write_obu_header(ctx, pbc, &obu->header);
if (err < 0)
return err;
if (obu->header.obu_has_size_field) {
pbc_tmp = *pbc;
// Add space for the size field to fill later.
put_bits32(pbc, 0);
put_bits32(pbc, 0);
}
td = NULL;
start_pos = put_bits_count(pbc);
switch (obu->header.obu_type) {
case AV1_OBU_SEQUENCE_HEADER:
{
err = cbs_av1_write_sequence_header_obu(ctx, pbc,
&obu->obu.sequence_header);
if (err < 0)
return err;
av_buffer_unref(&priv->sequence_header_ref);
priv->sequence_header = NULL;
priv->sequence_header_ref = av_buffer_ref(unit->content_ref);
if (!priv->sequence_header_ref)
return AVERROR(ENOMEM);
priv->sequence_header = &obu->obu.sequence_header;
}
break;
case AV1_OBU_TEMPORAL_DELIMITER:
{
err = cbs_av1_write_temporal_delimiter_obu(ctx, pbc);
if (err < 0)
return err;
}
break;
case AV1_OBU_FRAME_HEADER:
case AV1_OBU_REDUNDANT_FRAME_HEADER:
{
err = cbs_av1_write_frame_header_obu(ctx, pbc,
&obu->obu.frame_header,
obu->header.obu_type ==
AV1_OBU_REDUNDANT_FRAME_HEADER,
NULL);
if (err < 0)
return err;
}
break;
case AV1_OBU_TILE_GROUP:
{
err = cbs_av1_write_tile_group_obu(ctx, pbc,
&obu->obu.tile_group);
if (err < 0)
return err;
td = &obu->obu.tile_group.tile_data;
}
break;
case AV1_OBU_FRAME:
{
err = cbs_av1_write_frame_obu(ctx, pbc, &obu->obu.frame, NULL);
if (err < 0)
return err;
td = &obu->obu.frame.tile_group.tile_data;
}
break;
case AV1_OBU_TILE_LIST:
{
err = cbs_av1_write_tile_list_obu(ctx, pbc, &obu->obu.tile_list);
if (err < 0)
return err;
td = &obu->obu.tile_list.tile_data;
}
break;
case AV1_OBU_METADATA:
{
err = cbs_av1_write_metadata_obu(ctx, pbc, &obu->obu.metadata);
if (err < 0)
return err;
}
break;
case AV1_OBU_PADDING:
{
err = cbs_av1_write_padding_obu(ctx, pbc, &obu->obu.padding);
if (err < 0)
return err;
}
break;
default:
return AVERROR(ENOSYS);
}
end_pos = put_bits_count(pbc);
header_size = (end_pos - start_pos + 7) / 8;
if (td) {
obu->obu_size = header_size + td->data_size;
} else if (header_size > 0) {
// Add trailing bits and recalculate.
err = cbs_av1_write_trailing_bits(ctx, pbc, 8 - end_pos % 8);
if (err < 0)
return err;
end_pos = put_bits_count(pbc);
obu->obu_size = header_size = (end_pos - start_pos + 7) / 8;
} else {
// Empty OBU.
obu->obu_size = 0;
}
end_pos = put_bits_count(pbc);
// Must now be byte-aligned.
av_assert0(end_pos % 8 == 0);
flush_put_bits(pbc);
start_pos /= 8;
end_pos /= 8;
*pbc = pbc_tmp;
err = cbs_av1_write_leb128(ctx, pbc, "obu_size", obu->obu_size);
if (err < 0)
return err;
data_pos = put_bits_count(pbc) / 8;
flush_put_bits(pbc);
av_assert0(data_pos <= start_pos);
if (8 * obu->obu_size > put_bits_left(pbc))
return AVERROR(ENOSPC);
if (obu->obu_size > 0) {
memmove(pbc->buf + data_pos,
pbc->buf + start_pos, header_size);
skip_put_bytes(pbc, header_size);
if (td) {
memcpy(pbc->buf + data_pos + header_size,
td->data, td->data_size);
skip_put_bytes(pbc, td->data_size);
}
}
// OBU data must be byte-aligned.
av_assert0(put_bits_count(pbc) % 8 == 0);
return 0;
}
static int cbs_av1_assemble_fragment(CodedBitstreamContext *ctx,
CodedBitstreamFragment *frag)
{
size_t size, pos;
int i;
size = 0;
for (i = 0; i < frag->nb_units; i++)
size += frag->units[i].data_size;
frag->data_ref = av_buffer_alloc(size + AV_INPUT_BUFFER_PADDING_SIZE);
if (!frag->data_ref)
return AVERROR(ENOMEM);
frag->data = frag->data_ref->data;
memset(frag->data + size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
pos = 0;
for (i = 0; i < frag->nb_units; i++) {
memcpy(frag->data + pos, frag->units[i].data,
frag->units[i].data_size);
pos += frag->units[i].data_size;
}
av_assert0(pos == size);
frag->data_size = size;
return 0;
}
static void cbs_av1_close(CodedBitstreamContext *ctx)
{
CodedBitstreamAV1Context *priv = ctx->priv_data;
av_buffer_unref(&priv->sequence_header_ref);
av_buffer_unref(&priv->frame_header_ref);
}
const CodedBitstreamType ff_cbs_type_av1 = {
.codec_id = AV_CODEC_ID_AV1,
.priv_data_size = sizeof(CodedBitstreamAV1Context),
.split_fragment = &cbs_av1_split_fragment,
.read_unit = &cbs_av1_read_unit,
.write_unit = &cbs_av1_write_obu,
.assemble_fragment = &cbs_av1_assemble_fragment,
.close = &cbs_av1_close,
};