mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-11-26 19:01:44 +02:00
dc7bd7c5a5
Signed-off-by: James Almer <jamrial@gmail.com>
3018 lines
108 KiB
C
3018 lines
108 KiB
C
/*
|
|
* VP7/VP8 compatible video decoder
|
|
*
|
|
* Copyright (C) 2010 David Conrad
|
|
* Copyright (C) 2010 Ronald S. Bultje
|
|
* Copyright (C) 2010 Fiona Glaser
|
|
* Copyright (C) 2012 Daniel Kang
|
|
* Copyright (C) 2014 Peter Ross
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "config_components.h"
|
|
|
|
#include "libavutil/mem_internal.h"
|
|
|
|
#include "avcodec.h"
|
|
#include "codec_internal.h"
|
|
#include "decode.h"
|
|
#include "hwconfig.h"
|
|
#include "mathops.h"
|
|
#include "thread.h"
|
|
#include "threadframe.h"
|
|
#include "vp8.h"
|
|
#include "vp89_rac.h"
|
|
#include "vp8data.h"
|
|
#include "vpx_rac.h"
|
|
|
|
#if ARCH_ARM
|
|
# include "arm/vp8.h"
|
|
#endif
|
|
|
|
// fixme: add 1 bit to all the calls to this?
|
|
static int vp8_rac_get_sint(VPXRangeCoder *c, int bits)
|
|
{
|
|
int v;
|
|
|
|
if (!vp89_rac_get(c))
|
|
return 0;
|
|
|
|
v = vp89_rac_get_uint(c, bits);
|
|
|
|
if (vp89_rac_get(c))
|
|
v = -v;
|
|
|
|
return v;
|
|
}
|
|
|
|
static int vp8_rac_get_nn(VPXRangeCoder *c)
|
|
{
|
|
int v = vp89_rac_get_uint(c, 7) << 1;
|
|
return v + !v;
|
|
}
|
|
|
|
// DCTextra
|
|
static int vp8_rac_get_coeff(VPXRangeCoder *c, const uint8_t *prob)
|
|
{
|
|
int v = 0;
|
|
|
|
do {
|
|
v = (v<<1) + vpx_rac_get_prob(c, *prob++);
|
|
} while (*prob);
|
|
|
|
return v;
|
|
}
|
|
|
|
static void free_buffers(VP8Context *s)
|
|
{
|
|
int i;
|
|
if (s->thread_data)
|
|
for (i = 0; i < MAX_THREADS; i++) {
|
|
#if HAVE_THREADS
|
|
pthread_cond_destroy(&s->thread_data[i].cond);
|
|
pthread_mutex_destroy(&s->thread_data[i].lock);
|
|
#endif
|
|
av_freep(&s->thread_data[i].filter_strength);
|
|
}
|
|
av_freep(&s->thread_data);
|
|
av_freep(&s->macroblocks_base);
|
|
av_freep(&s->intra4x4_pred_mode_top);
|
|
av_freep(&s->top_nnz);
|
|
av_freep(&s->top_border);
|
|
|
|
s->macroblocks = NULL;
|
|
}
|
|
|
|
static int vp8_alloc_frame(VP8Context *s, VP8Frame *f, int ref)
|
|
{
|
|
int ret;
|
|
if ((ret = ff_thread_get_ext_buffer(s->avctx, &f->tf,
|
|
ref ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
|
|
return ret;
|
|
if (!(f->seg_map = av_buffer_allocz(s->mb_width * s->mb_height)))
|
|
goto fail;
|
|
if (s->avctx->hwaccel) {
|
|
const AVHWAccel *hwaccel = s->avctx->hwaccel;
|
|
if (hwaccel->frame_priv_data_size) {
|
|
f->hwaccel_priv_buf = av_buffer_allocz(hwaccel->frame_priv_data_size);
|
|
if (!f->hwaccel_priv_buf)
|
|
goto fail;
|
|
f->hwaccel_picture_private = f->hwaccel_priv_buf->data;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
fail:
|
|
av_buffer_unref(&f->seg_map);
|
|
ff_thread_release_ext_buffer(s->avctx, &f->tf);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
static void vp8_release_frame(VP8Context *s, VP8Frame *f)
|
|
{
|
|
av_buffer_unref(&f->seg_map);
|
|
av_buffer_unref(&f->hwaccel_priv_buf);
|
|
f->hwaccel_picture_private = NULL;
|
|
ff_thread_release_ext_buffer(s->avctx, &f->tf);
|
|
}
|
|
|
|
#if CONFIG_VP8_DECODER
|
|
static int vp8_ref_frame(VP8Context *s, VP8Frame *dst, const VP8Frame *src)
|
|
{
|
|
int ret;
|
|
|
|
vp8_release_frame(s, dst);
|
|
|
|
if ((ret = ff_thread_ref_frame(&dst->tf, &src->tf)) < 0)
|
|
return ret;
|
|
if (src->seg_map &&
|
|
!(dst->seg_map = av_buffer_ref(src->seg_map))) {
|
|
vp8_release_frame(s, dst);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
if (src->hwaccel_picture_private) {
|
|
dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
|
|
if (!dst->hwaccel_priv_buf)
|
|
return AVERROR(ENOMEM);
|
|
dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_VP8_DECODER */
|
|
|
|
static void vp8_decode_flush_impl(AVCodecContext *avctx, int free_mem)
|
|
{
|
|
VP8Context *s = avctx->priv_data;
|
|
int i;
|
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++)
|
|
vp8_release_frame(s, &s->frames[i]);
|
|
memset(s->framep, 0, sizeof(s->framep));
|
|
|
|
if (free_mem)
|
|
free_buffers(s);
|
|
}
|
|
|
|
static void vp8_decode_flush(AVCodecContext *avctx)
|
|
{
|
|
vp8_decode_flush_impl(avctx, 0);
|
|
}
|
|
|
|
static VP8Frame *vp8_find_free_buffer(VP8Context *s)
|
|
{
|
|
VP8Frame *frame = NULL;
|
|
int i;
|
|
|
|
// find a free buffer
|
|
for (i = 0; i < 5; i++)
|
|
if (&s->frames[i] != s->framep[VP8_FRAME_CURRENT] &&
|
|
&s->frames[i] != s->framep[VP8_FRAME_PREVIOUS] &&
|
|
&s->frames[i] != s->framep[VP8_FRAME_GOLDEN] &&
|
|
&s->frames[i] != s->framep[VP8_FRAME_ALTREF]) {
|
|
frame = &s->frames[i];
|
|
break;
|
|
}
|
|
if (i == 5) {
|
|
av_log(s->avctx, AV_LOG_FATAL, "Ran out of free frames!\n");
|
|
abort();
|
|
}
|
|
if (frame->tf.f->buf[0])
|
|
vp8_release_frame(s, frame);
|
|
|
|
return frame;
|
|
}
|
|
|
|
static enum AVPixelFormat get_pixel_format(VP8Context *s)
|
|
{
|
|
enum AVPixelFormat pix_fmts[] = {
|
|
#if CONFIG_VP8_VAAPI_HWACCEL
|
|
AV_PIX_FMT_VAAPI,
|
|
#endif
|
|
#if CONFIG_VP8_NVDEC_HWACCEL
|
|
AV_PIX_FMT_CUDA,
|
|
#endif
|
|
AV_PIX_FMT_YUV420P,
|
|
AV_PIX_FMT_NONE,
|
|
};
|
|
|
|
return ff_get_format(s->avctx, pix_fmts);
|
|
}
|
|
|
|
static av_always_inline
|
|
int update_dimensions(VP8Context *s, int width, int height, int is_vp7)
|
|
{
|
|
AVCodecContext *avctx = s->avctx;
|
|
int i, ret, dim_reset = 0;
|
|
|
|
if (width != s->avctx->width || ((width+15)/16 != s->mb_width || (height+15)/16 != s->mb_height) && s->macroblocks_base ||
|
|
height != s->avctx->height) {
|
|
vp8_decode_flush_impl(s->avctx, 1);
|
|
|
|
ret = ff_set_dimensions(s->avctx, width, height);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
dim_reset = (s->macroblocks_base != NULL);
|
|
}
|
|
|
|
if ((s->pix_fmt == AV_PIX_FMT_NONE || dim_reset) &&
|
|
!s->actually_webp && !is_vp7) {
|
|
s->pix_fmt = get_pixel_format(s);
|
|
if (s->pix_fmt < 0)
|
|
return AVERROR(EINVAL);
|
|
avctx->pix_fmt = s->pix_fmt;
|
|
}
|
|
|
|
s->mb_width = (s->avctx->coded_width + 15) / 16;
|
|
s->mb_height = (s->avctx->coded_height + 15) / 16;
|
|
|
|
s->mb_layout = is_vp7 || avctx->active_thread_type == FF_THREAD_SLICE &&
|
|
avctx->thread_count > 1;
|
|
if (!s->mb_layout) { // Frame threading and one thread
|
|
s->macroblocks_base = av_mallocz((s->mb_width + s->mb_height * 2 + 1) *
|
|
sizeof(*s->macroblocks));
|
|
s->intra4x4_pred_mode_top = av_mallocz(s->mb_width * 4);
|
|
} else // Sliced threading
|
|
s->macroblocks_base = av_mallocz((s->mb_width + 2) * (s->mb_height + 2) *
|
|
sizeof(*s->macroblocks));
|
|
s->top_nnz = av_mallocz(s->mb_width * sizeof(*s->top_nnz));
|
|
s->top_border = av_mallocz((s->mb_width + 1) * sizeof(*s->top_border));
|
|
s->thread_data = av_mallocz(MAX_THREADS * sizeof(VP8ThreadData));
|
|
|
|
if (!s->macroblocks_base || !s->top_nnz || !s->top_border ||
|
|
!s->thread_data || (!s->intra4x4_pred_mode_top && !s->mb_layout)) {
|
|
free_buffers(s);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
for (i = 0; i < MAX_THREADS; i++) {
|
|
s->thread_data[i].filter_strength =
|
|
av_mallocz(s->mb_width * sizeof(*s->thread_data[0].filter_strength));
|
|
if (!s->thread_data[i].filter_strength) {
|
|
free_buffers(s);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
#if HAVE_THREADS
|
|
pthread_mutex_init(&s->thread_data[i].lock, NULL);
|
|
pthread_cond_init(&s->thread_data[i].cond, NULL);
|
|
#endif
|
|
}
|
|
|
|
s->macroblocks = s->macroblocks_base + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vp7_update_dimensions(VP8Context *s, int width, int height)
|
|
{
|
|
return update_dimensions(s, width, height, IS_VP7);
|
|
}
|
|
|
|
static int vp8_update_dimensions(VP8Context *s, int width, int height)
|
|
{
|
|
return update_dimensions(s, width, height, IS_VP8);
|
|
}
|
|
|
|
|
|
static void parse_segment_info(VP8Context *s)
|
|
{
|
|
VPXRangeCoder *c = &s->c;
|
|
int i;
|
|
|
|
s->segmentation.update_map = vp89_rac_get(c);
|
|
s->segmentation.update_feature_data = vp89_rac_get(c);
|
|
|
|
if (s->segmentation.update_feature_data) {
|
|
s->segmentation.absolute_vals = vp89_rac_get(c);
|
|
|
|
for (i = 0; i < 4; i++)
|
|
s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7);
|
|
|
|
for (i = 0; i < 4; i++)
|
|
s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6);
|
|
}
|
|
if (s->segmentation.update_map)
|
|
for (i = 0; i < 3; i++)
|
|
s->prob->segmentid[i] = vp89_rac_get(c) ? vp89_rac_get_uint(c, 8) : 255;
|
|
}
|
|
|
|
static void update_lf_deltas(VP8Context *s)
|
|
{
|
|
VPXRangeCoder *c = &s->c;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (vp89_rac_get(c)) {
|
|
s->lf_delta.ref[i] = vp89_rac_get_uint(c, 6);
|
|
|
|
if (vp89_rac_get(c))
|
|
s->lf_delta.ref[i] = -s->lf_delta.ref[i];
|
|
}
|
|
}
|
|
|
|
for (i = MODE_I4x4; i <= VP8_MVMODE_SPLIT; i++) {
|
|
if (vp89_rac_get(c)) {
|
|
s->lf_delta.mode[i] = vp89_rac_get_uint(c, 6);
|
|
|
|
if (vp89_rac_get(c))
|
|
s->lf_delta.mode[i] = -s->lf_delta.mode[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size)
|
|
{
|
|
const uint8_t *sizes = buf;
|
|
int i;
|
|
int ret;
|
|
|
|
s->num_coeff_partitions = 1 << vp89_rac_get_uint(&s->c, 2);
|
|
|
|
buf += 3 * (s->num_coeff_partitions - 1);
|
|
buf_size -= 3 * (s->num_coeff_partitions - 1);
|
|
if (buf_size < 0)
|
|
return -1;
|
|
|
|
for (i = 0; i < s->num_coeff_partitions - 1; i++) {
|
|
int size = AV_RL24(sizes + 3 * i);
|
|
if (buf_size - size < 0)
|
|
return -1;
|
|
s->coeff_partition_size[i] = size;
|
|
|
|
ret = ff_vpx_init_range_decoder(&s->coeff_partition[i], buf, size);
|
|
if (ret < 0)
|
|
return ret;
|
|
buf += size;
|
|
buf_size -= size;
|
|
}
|
|
|
|
s->coeff_partition_size[i] = buf_size;
|
|
ff_vpx_init_range_decoder(&s->coeff_partition[i], buf, buf_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vp7_get_quants(VP8Context *s)
|
|
{
|
|
VPXRangeCoder *c = &s->c;
|
|
|
|
int yac_qi = vp89_rac_get_uint(c, 7);
|
|
int ydc_qi = vp89_rac_get(c) ? vp89_rac_get_uint(c, 7) : yac_qi;
|
|
int y2dc_qi = vp89_rac_get(c) ? vp89_rac_get_uint(c, 7) : yac_qi;
|
|
int y2ac_qi = vp89_rac_get(c) ? vp89_rac_get_uint(c, 7) : yac_qi;
|
|
int uvdc_qi = vp89_rac_get(c) ? vp89_rac_get_uint(c, 7) : yac_qi;
|
|
int uvac_qi = vp89_rac_get(c) ? vp89_rac_get_uint(c, 7) : yac_qi;
|
|
|
|
s->qmat[0].luma_qmul[0] = vp7_ydc_qlookup[ydc_qi];
|
|
s->qmat[0].luma_qmul[1] = vp7_yac_qlookup[yac_qi];
|
|
s->qmat[0].luma_dc_qmul[0] = vp7_y2dc_qlookup[y2dc_qi];
|
|
s->qmat[0].luma_dc_qmul[1] = vp7_y2ac_qlookup[y2ac_qi];
|
|
s->qmat[0].chroma_qmul[0] = FFMIN(vp7_ydc_qlookup[uvdc_qi], 132);
|
|
s->qmat[0].chroma_qmul[1] = vp7_yac_qlookup[uvac_qi];
|
|
}
|
|
|
|
static void vp8_get_quants(VP8Context *s)
|
|
{
|
|
VPXRangeCoder *c = &s->c;
|
|
int i, base_qi;
|
|
|
|
s->quant.yac_qi = vp89_rac_get_uint(c, 7);
|
|
s->quant.ydc_delta = vp8_rac_get_sint(c, 4);
|
|
s->quant.y2dc_delta = vp8_rac_get_sint(c, 4);
|
|
s->quant.y2ac_delta = vp8_rac_get_sint(c, 4);
|
|
s->quant.uvdc_delta = vp8_rac_get_sint(c, 4);
|
|
s->quant.uvac_delta = vp8_rac_get_sint(c, 4);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (s->segmentation.enabled) {
|
|
base_qi = s->segmentation.base_quant[i];
|
|
if (!s->segmentation.absolute_vals)
|
|
base_qi += s->quant.yac_qi;
|
|
} else
|
|
base_qi = s->quant.yac_qi;
|
|
|
|
s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip_uintp2(base_qi + s->quant.ydc_delta, 7)];
|
|
s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip_uintp2(base_qi, 7)];
|
|
s->qmat[i].luma_dc_qmul[0] = vp8_dc_qlookup[av_clip_uintp2(base_qi + s->quant.y2dc_delta, 7)] * 2;
|
|
/* 101581>>16 is equivalent to 155/100 */
|
|
s->qmat[i].luma_dc_qmul[1] = vp8_ac_qlookup[av_clip_uintp2(base_qi + s->quant.y2ac_delta, 7)] * 101581 >> 16;
|
|
s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip_uintp2(base_qi + s->quant.uvdc_delta, 7)];
|
|
s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip_uintp2(base_qi + s->quant.uvac_delta, 7)];
|
|
|
|
s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8);
|
|
s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Determine which buffers golden and altref should be updated with after this frame.
|
|
* The spec isn't clear here, so I'm going by my understanding of what libvpx does
|
|
*
|
|
* Intra frames update all 3 references
|
|
* Inter frames update VP8_FRAME_PREVIOUS if the update_last flag is set
|
|
* If the update (golden|altref) flag is set, it's updated with the current frame
|
|
* if update_last is set, and VP8_FRAME_PREVIOUS otherwise.
|
|
* If the flag is not set, the number read means:
|
|
* 0: no update
|
|
* 1: VP8_FRAME_PREVIOUS
|
|
* 2: update golden with altref, or update altref with golden
|
|
*/
|
|
static VP8FrameType ref_to_update(VP8Context *s, int update, VP8FrameType ref)
|
|
{
|
|
VPXRangeCoder *c = &s->c;
|
|
|
|
if (update)
|
|
return VP8_FRAME_CURRENT;
|
|
|
|
switch (vp89_rac_get_uint(c, 2)) {
|
|
case 1:
|
|
return VP8_FRAME_PREVIOUS;
|
|
case 2:
|
|
return (ref == VP8_FRAME_GOLDEN) ? VP8_FRAME_ALTREF : VP8_FRAME_GOLDEN;
|
|
}
|
|
return VP8_FRAME_NONE;
|
|
}
|
|
|
|
static void vp78_reset_probability_tables(VP8Context *s)
|
|
{
|
|
int i, j;
|
|
for (i = 0; i < 4; i++)
|
|
for (j = 0; j < 16; j++)
|
|
memcpy(s->prob->token[i][j], vp8_token_default_probs[i][vp8_coeff_band[j]],
|
|
sizeof(s->prob->token[i][j]));
|
|
}
|
|
|
|
static void vp78_update_probability_tables(VP8Context *s)
|
|
{
|
|
VPXRangeCoder *c = &s->c;
|
|
int i, j, k, l, m;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
for (j = 0; j < 8; j++)
|
|
for (k = 0; k < 3; k++)
|
|
for (l = 0; l < NUM_DCT_TOKENS-1; l++)
|
|
if (vpx_rac_get_prob_branchy(c, vp8_token_update_probs[i][j][k][l])) {
|
|
int prob = vp89_rac_get_uint(c, 8);
|
|
for (m = 0; vp8_coeff_band_indexes[j][m] >= 0; m++)
|
|
s->prob->token[i][vp8_coeff_band_indexes[j][m]][k][l] = prob;
|
|
}
|
|
}
|
|
|
|
#define VP7_MVC_SIZE 17
|
|
#define VP8_MVC_SIZE 19
|
|
|
|
static void vp78_update_pred16x16_pred8x8_mvc_probabilities(VP8Context *s,
|
|
int mvc_size)
|
|
{
|
|
VPXRangeCoder *c = &s->c;
|
|
int i, j;
|
|
|
|
if (vp89_rac_get(c))
|
|
for (i = 0; i < 4; i++)
|
|
s->prob->pred16x16[i] = vp89_rac_get_uint(c, 8);
|
|
if (vp89_rac_get(c))
|
|
for (i = 0; i < 3; i++)
|
|
s->prob->pred8x8c[i] = vp89_rac_get_uint(c, 8);
|
|
|
|
// 17.2 MV probability update
|
|
for (i = 0; i < 2; i++)
|
|
for (j = 0; j < mvc_size; j++)
|
|
if (vpx_rac_get_prob_branchy(c, vp8_mv_update_prob[i][j]))
|
|
s->prob->mvc[i][j] = vp8_rac_get_nn(c);
|
|
}
|
|
|
|
static void update_refs(VP8Context *s)
|
|
{
|
|
VPXRangeCoder *c = &s->c;
|
|
|
|
int update_golden = vp89_rac_get(c);
|
|
int update_altref = vp89_rac_get(c);
|
|
|
|
s->update_golden = ref_to_update(s, update_golden, VP8_FRAME_GOLDEN);
|
|
s->update_altref = ref_to_update(s, update_altref, VP8_FRAME_ALTREF);
|
|
}
|
|
|
|
static void copy_chroma(AVFrame *dst, const AVFrame *src, int width, int height)
|
|
{
|
|
int i, j;
|
|
|
|
for (j = 1; j < 3; j++) {
|
|
for (i = 0; i < height / 2; i++)
|
|
memcpy(dst->data[j] + i * dst->linesize[j],
|
|
src->data[j] + i * src->linesize[j], width / 2);
|
|
}
|
|
}
|
|
|
|
static void fade(uint8_t *dst, ptrdiff_t dst_linesize,
|
|
const uint8_t *src, ptrdiff_t src_linesize,
|
|
int width, int height,
|
|
int alpha, int beta)
|
|
{
|
|
int i, j;
|
|
for (j = 0; j < height; j++) {
|
|
const uint8_t *src2 = src + j * src_linesize;
|
|
uint8_t *dst2 = dst + j * dst_linesize;
|
|
for (i = 0; i < width; i++) {
|
|
uint8_t y = src2[i];
|
|
dst2[i] = av_clip_uint8(y + ((y * beta) >> 8) + alpha);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int vp7_fade_frame(VP8Context *s, int alpha, int beta)
|
|
{
|
|
int ret;
|
|
|
|
if (!s->keyframe && (alpha || beta)) {
|
|
int width = s->mb_width * 16;
|
|
int height = s->mb_height * 16;
|
|
const AVFrame *src;
|
|
AVFrame *dst;
|
|
|
|
if (!s->framep[VP8_FRAME_PREVIOUS] ||
|
|
!s->framep[VP8_FRAME_GOLDEN]) {
|
|
av_log(s->avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
src =
|
|
dst = s->framep[VP8_FRAME_PREVIOUS]->tf.f;
|
|
|
|
/* preserve the golden frame, write a new previous frame */
|
|
if (s->framep[VP8_FRAME_GOLDEN] == s->framep[VP8_FRAME_PREVIOUS]) {
|
|
s->framep[VP8_FRAME_PREVIOUS] = vp8_find_free_buffer(s);
|
|
if ((ret = vp8_alloc_frame(s, s->framep[VP8_FRAME_PREVIOUS], 1)) < 0)
|
|
return ret;
|
|
|
|
dst = s->framep[VP8_FRAME_PREVIOUS]->tf.f;
|
|
|
|
copy_chroma(dst, src, width, height);
|
|
}
|
|
|
|
fade(dst->data[0], dst->linesize[0],
|
|
src->data[0], src->linesize[0],
|
|
width, height, alpha, beta);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vp7_decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
|
|
{
|
|
VPXRangeCoder *c = &s->c;
|
|
int part1_size, hscale, vscale, i, j, ret;
|
|
int width = s->avctx->width;
|
|
int height = s->avctx->height;
|
|
int alpha = 0;
|
|
int beta = 0;
|
|
int fade_present = 1;
|
|
|
|
if (buf_size < 4) {
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
s->profile = (buf[0] >> 1) & 7;
|
|
if (s->profile > 1) {
|
|
avpriv_request_sample(s->avctx, "Unknown profile %d", s->profile);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
s->keyframe = !(buf[0] & 1);
|
|
s->invisible = 0;
|
|
part1_size = AV_RL24(buf) >> 4;
|
|
|
|
if (buf_size < 4 - s->profile + part1_size) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Buffer size %d is too small, needed : %d\n", buf_size, 4 - s->profile + part1_size);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
buf += 4 - s->profile;
|
|
buf_size -= 4 - s->profile;
|
|
|
|
memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab));
|
|
|
|
ret = ff_vpx_init_range_decoder(c, buf, part1_size);
|
|
if (ret < 0)
|
|
return ret;
|
|
buf += part1_size;
|
|
buf_size -= part1_size;
|
|
|
|
/* A. Dimension information (keyframes only) */
|
|
if (s->keyframe) {
|
|
width = vp89_rac_get_uint(c, 12);
|
|
height = vp89_rac_get_uint(c, 12);
|
|
hscale = vp89_rac_get_uint(c, 2);
|
|
vscale = vp89_rac_get_uint(c, 2);
|
|
if (hscale || vscale)
|
|
avpriv_request_sample(s->avctx, "Upscaling");
|
|
|
|
s->update_golden = s->update_altref = VP8_FRAME_CURRENT;
|
|
vp78_reset_probability_tables(s);
|
|
memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter,
|
|
sizeof(s->prob->pred16x16));
|
|
memcpy(s->prob->pred8x8c, vp8_pred8x8c_prob_inter,
|
|
sizeof(s->prob->pred8x8c));
|
|
for (i = 0; i < 2; i++)
|
|
memcpy(s->prob->mvc[i], vp7_mv_default_prob[i],
|
|
sizeof(vp7_mv_default_prob[i]));
|
|
memset(&s->segmentation, 0, sizeof(s->segmentation));
|
|
memset(&s->lf_delta, 0, sizeof(s->lf_delta));
|
|
memcpy(s->prob[0].scan, ff_zigzag_scan, sizeof(s->prob[0].scan));
|
|
}
|
|
|
|
if (s->keyframe || s->profile > 0)
|
|
memset(s->inter_dc_pred, 0 , sizeof(s->inter_dc_pred));
|
|
|
|
/* B. Decoding information for all four macroblock-level features */
|
|
for (i = 0; i < 4; i++) {
|
|
s->feature_enabled[i] = vp89_rac_get(c);
|
|
if (s->feature_enabled[i]) {
|
|
s->feature_present_prob[i] = vp89_rac_get_uint(c, 8);
|
|
|
|
for (j = 0; j < 3; j++)
|
|
s->feature_index_prob[i][j] =
|
|
vp89_rac_get(c) ? vp89_rac_get_uint(c, 8) : 255;
|
|
|
|
if (vp7_feature_value_size[s->profile][i])
|
|
for (j = 0; j < 4; j++)
|
|
s->feature_value[i][j] =
|
|
vp89_rac_get(c) ? vp89_rac_get_uint(c, vp7_feature_value_size[s->profile][i]) : 0;
|
|
}
|
|
}
|
|
|
|
s->segmentation.enabled = 0;
|
|
s->segmentation.update_map = 0;
|
|
s->lf_delta.enabled = 0;
|
|
|
|
s->num_coeff_partitions = 1;
|
|
ret = ff_vpx_init_range_decoder(&s->coeff_partition[0], buf, buf_size);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (!s->macroblocks_base || /* first frame */
|
|
width != s->avctx->width || height != s->avctx->height ||
|
|
(width + 15) / 16 != s->mb_width || (height + 15) / 16 != s->mb_height) {
|
|
if ((ret = vp7_update_dimensions(s, width, height)) < 0)
|
|
return ret;
|
|
}
|
|
|
|
/* C. Dequantization indices */
|
|
vp7_get_quants(s);
|
|
|
|
/* D. Golden frame update flag (a Flag) for interframes only */
|
|
if (!s->keyframe) {
|
|
s->update_golden = vp89_rac_get(c) ? VP8_FRAME_CURRENT : VP8_FRAME_NONE;
|
|
s->sign_bias[VP8_FRAME_GOLDEN] = 0;
|
|
}
|
|
|
|
s->update_last = 1;
|
|
s->update_probabilities = 1;
|
|
|
|
if (s->profile > 0) {
|
|
s->update_probabilities = vp89_rac_get(c);
|
|
if (!s->update_probabilities)
|
|
s->prob[1] = s->prob[0];
|
|
|
|
if (!s->keyframe)
|
|
fade_present = vp89_rac_get(c);
|
|
}
|
|
|
|
if (vpx_rac_is_end(c))
|
|
return AVERROR_INVALIDDATA;
|
|
/* E. Fading information for previous frame */
|
|
if (fade_present && vp89_rac_get(c)) {
|
|
alpha = (int8_t) vp89_rac_get_uint(c, 8);
|
|
beta = (int8_t) vp89_rac_get_uint(c, 8);
|
|
}
|
|
|
|
/* F. Loop filter type */
|
|
if (!s->profile)
|
|
s->filter.simple = vp89_rac_get(c);
|
|
|
|
/* G. DCT coefficient ordering specification */
|
|
if (vp89_rac_get(c))
|
|
for (i = 1; i < 16; i++)
|
|
s->prob[0].scan[i] = ff_zigzag_scan[vp89_rac_get_uint(c, 4)];
|
|
|
|
/* H. Loop filter levels */
|
|
if (s->profile > 0)
|
|
s->filter.simple = vp89_rac_get(c);
|
|
s->filter.level = vp89_rac_get_uint(c, 6);
|
|
s->filter.sharpness = vp89_rac_get_uint(c, 3);
|
|
|
|
/* I. DCT coefficient probability update; 13.3 Token Probability Updates */
|
|
vp78_update_probability_tables(s);
|
|
|
|
s->mbskip_enabled = 0;
|
|
|
|
/* J. The remaining frame header data occurs ONLY FOR INTERFRAMES */
|
|
if (!s->keyframe) {
|
|
s->prob->intra = vp89_rac_get_uint(c, 8);
|
|
s->prob->last = vp89_rac_get_uint(c, 8);
|
|
vp78_update_pred16x16_pred8x8_mvc_probabilities(s, VP7_MVC_SIZE);
|
|
}
|
|
|
|
if (vpx_rac_is_end(c))
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
if ((ret = vp7_fade_frame(s, alpha, beta)) < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vp8_decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
|
|
{
|
|
VPXRangeCoder *c = &s->c;
|
|
int header_size, hscale, vscale, ret;
|
|
int width = s->avctx->width;
|
|
int height = s->avctx->height;
|
|
|
|
if (buf_size < 3) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Insufficent data (%d) for header\n", buf_size);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
s->keyframe = !(buf[0] & 1);
|
|
s->profile = (buf[0]>>1) & 7;
|
|
s->invisible = !(buf[0] & 0x10);
|
|
header_size = AV_RL24(buf) >> 5;
|
|
buf += 3;
|
|
buf_size -= 3;
|
|
|
|
s->header_partition_size = header_size;
|
|
|
|
if (s->profile > 3)
|
|
av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile);
|
|
|
|
if (!s->profile)
|
|
memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab,
|
|
sizeof(s->put_pixels_tab));
|
|
else // profile 1-3 use bilinear, 4+ aren't defined so whatever
|
|
memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab,
|
|
sizeof(s->put_pixels_tab));
|
|
|
|
if (header_size > buf_size - 7 * s->keyframe) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (s->keyframe) {
|
|
if (AV_RL24(buf) != 0x2a019d) {
|
|
av_log(s->avctx, AV_LOG_ERROR,
|
|
"Invalid start code 0x%x\n", AV_RL24(buf));
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
width = AV_RL16(buf + 3) & 0x3fff;
|
|
height = AV_RL16(buf + 5) & 0x3fff;
|
|
hscale = buf[4] >> 6;
|
|
vscale = buf[6] >> 6;
|
|
buf += 7;
|
|
buf_size -= 7;
|
|
|
|
if (hscale || vscale)
|
|
avpriv_request_sample(s->avctx, "Upscaling");
|
|
|
|
s->update_golden = s->update_altref = VP8_FRAME_CURRENT;
|
|
vp78_reset_probability_tables(s);
|
|
memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter,
|
|
sizeof(s->prob->pred16x16));
|
|
memcpy(s->prob->pred8x8c, vp8_pred8x8c_prob_inter,
|
|
sizeof(s->prob->pred8x8c));
|
|
memcpy(s->prob->mvc, vp8_mv_default_prob,
|
|
sizeof(s->prob->mvc));
|
|
memset(&s->segmentation, 0, sizeof(s->segmentation));
|
|
memset(&s->lf_delta, 0, sizeof(s->lf_delta));
|
|
}
|
|
|
|
ret = ff_vpx_init_range_decoder(c, buf, header_size);
|
|
if (ret < 0)
|
|
return ret;
|
|
buf += header_size;
|
|
buf_size -= header_size;
|
|
|
|
if (s->keyframe) {
|
|
s->colorspace = vp89_rac_get(c);
|
|
if (s->colorspace)
|
|
av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n");
|
|
s->fullrange = vp89_rac_get(c);
|
|
}
|
|
|
|
if ((s->segmentation.enabled = vp89_rac_get(c)))
|
|
parse_segment_info(s);
|
|
else
|
|
s->segmentation.update_map = 0; // FIXME: move this to some init function?
|
|
|
|
s->filter.simple = vp89_rac_get(c);
|
|
s->filter.level = vp89_rac_get_uint(c, 6);
|
|
s->filter.sharpness = vp89_rac_get_uint(c, 3);
|
|
|
|
if ((s->lf_delta.enabled = vp89_rac_get(c))) {
|
|
s->lf_delta.update = vp89_rac_get(c);
|
|
if (s->lf_delta.update)
|
|
update_lf_deltas(s);
|
|
}
|
|
|
|
if (setup_partitions(s, buf, buf_size)) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (!s->macroblocks_base || /* first frame */
|
|
width != s->avctx->width || height != s->avctx->height ||
|
|
(width+15)/16 != s->mb_width || (height+15)/16 != s->mb_height)
|
|
if ((ret = vp8_update_dimensions(s, width, height)) < 0)
|
|
return ret;
|
|
|
|
vp8_get_quants(s);
|
|
|
|
if (!s->keyframe) {
|
|
update_refs(s);
|
|
s->sign_bias[VP8_FRAME_GOLDEN] = vp89_rac_get(c);
|
|
s->sign_bias[VP8_FRAME_ALTREF] = vp89_rac_get(c);
|
|
}
|
|
|
|
// if we aren't saving this frame's probabilities for future frames,
|
|
// make a copy of the current probabilities
|
|
if (!(s->update_probabilities = vp89_rac_get(c)))
|
|
s->prob[1] = s->prob[0];
|
|
|
|
s->update_last = s->keyframe || vp89_rac_get(c);
|
|
|
|
vp78_update_probability_tables(s);
|
|
|
|
if ((s->mbskip_enabled = vp89_rac_get(c)))
|
|
s->prob->mbskip = vp89_rac_get_uint(c, 8);
|
|
|
|
if (!s->keyframe) {
|
|
s->prob->intra = vp89_rac_get_uint(c, 8);
|
|
s->prob->last = vp89_rac_get_uint(c, 8);
|
|
s->prob->golden = vp89_rac_get_uint(c, 8);
|
|
vp78_update_pred16x16_pred8x8_mvc_probabilities(s, VP8_MVC_SIZE);
|
|
}
|
|
|
|
// Record the entropy coder state here so that hwaccels can use it.
|
|
s->c.code_word = vpx_rac_renorm(&s->c);
|
|
s->coder_state_at_header_end.input = s->c.buffer - (-s->c.bits / 8);
|
|
s->coder_state_at_header_end.range = s->c.high;
|
|
s->coder_state_at_header_end.value = s->c.code_word >> 16;
|
|
s->coder_state_at_header_end.bit_count = -s->c.bits % 8;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_always_inline
|
|
void clamp_mv(const VP8mvbounds *s, VP8mv *dst, const VP8mv *src)
|
|
{
|
|
dst->x = av_clip(src->x, av_clip(s->mv_min.x, INT16_MIN, INT16_MAX),
|
|
av_clip(s->mv_max.x, INT16_MIN, INT16_MAX));
|
|
dst->y = av_clip(src->y, av_clip(s->mv_min.y, INT16_MIN, INT16_MAX),
|
|
av_clip(s->mv_max.y, INT16_MIN, INT16_MAX));
|
|
}
|
|
|
|
/**
|
|
* Motion vector coding, 17.1.
|
|
*/
|
|
static av_always_inline int read_mv_component(VPXRangeCoder *c, const uint8_t *p, int vp7)
|
|
{
|
|
int bit, x = 0;
|
|
|
|
if (vpx_rac_get_prob_branchy(c, p[0])) {
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
x += vpx_rac_get_prob(c, p[9 + i]) << i;
|
|
for (i = (vp7 ? 7 : 9); i > 3; i--)
|
|
x += vpx_rac_get_prob(c, p[9 + i]) << i;
|
|
if (!(x & (vp7 ? 0xF0 : 0xFFF0)) || vpx_rac_get_prob(c, p[12]))
|
|
x += 8;
|
|
} else {
|
|
// small_mvtree
|
|
const uint8_t *ps = p + 2;
|
|
bit = vpx_rac_get_prob(c, *ps);
|
|
ps += 1 + 3 * bit;
|
|
x += 4 * bit;
|
|
bit = vpx_rac_get_prob(c, *ps);
|
|
ps += 1 + bit;
|
|
x += 2 * bit;
|
|
x += vpx_rac_get_prob(c, *ps);
|
|
}
|
|
|
|
return (x && vpx_rac_get_prob(c, p[1])) ? -x : x;
|
|
}
|
|
|
|
static int vp7_read_mv_component(VPXRangeCoder *c, const uint8_t *p)
|
|
{
|
|
return read_mv_component(c, p, 1);
|
|
}
|
|
|
|
static int vp8_read_mv_component(VPXRangeCoder *c, const uint8_t *p)
|
|
{
|
|
return read_mv_component(c, p, 0);
|
|
}
|
|
|
|
static av_always_inline
|
|
const uint8_t *get_submv_prob(uint32_t left, uint32_t top, int is_vp7)
|
|
{
|
|
if (is_vp7)
|
|
return vp7_submv_prob;
|
|
|
|
if (left == top)
|
|
return vp8_submv_prob[4 - !!left];
|
|
if (!top)
|
|
return vp8_submv_prob[2];
|
|
return vp8_submv_prob[1 - !!left];
|
|
}
|
|
|
|
/**
|
|
* Split motion vector prediction, 16.4.
|
|
* @returns the number of motion vectors parsed (2, 4 or 16)
|
|
*/
|
|
static av_always_inline
|
|
int decode_splitmvs(const VP8Context *s, VPXRangeCoder *c, VP8Macroblock *mb,
|
|
int layout, int is_vp7)
|
|
{
|
|
int part_idx;
|
|
int n, num;
|
|
const VP8Macroblock *top_mb;
|
|
const VP8Macroblock *left_mb = &mb[-1];
|
|
const uint8_t *mbsplits_left = vp8_mbsplits[left_mb->partitioning];
|
|
const uint8_t *mbsplits_top, *mbsplits_cur, *firstidx;
|
|
const VP8mv *top_mv;
|
|
const VP8mv *left_mv = left_mb->bmv;
|
|
const VP8mv *cur_mv = mb->bmv;
|
|
|
|
if (!layout) // layout is inlined, s->mb_layout is not
|
|
top_mb = &mb[2];
|
|
else
|
|
top_mb = &mb[-s->mb_width - 1];
|
|
mbsplits_top = vp8_mbsplits[top_mb->partitioning];
|
|
top_mv = top_mb->bmv;
|
|
|
|
if (vpx_rac_get_prob_branchy(c, vp8_mbsplit_prob[0])) {
|
|
if (vpx_rac_get_prob_branchy(c, vp8_mbsplit_prob[1]))
|
|
part_idx = VP8_SPLITMVMODE_16x8 + vpx_rac_get_prob(c, vp8_mbsplit_prob[2]);
|
|
else
|
|
part_idx = VP8_SPLITMVMODE_8x8;
|
|
} else {
|
|
part_idx = VP8_SPLITMVMODE_4x4;
|
|
}
|
|
|
|
num = vp8_mbsplit_count[part_idx];
|
|
mbsplits_cur = vp8_mbsplits[part_idx],
|
|
firstidx = vp8_mbfirstidx[part_idx];
|
|
mb->partitioning = part_idx;
|
|
|
|
for (n = 0; n < num; n++) {
|
|
int k = firstidx[n];
|
|
uint32_t left, above;
|
|
const uint8_t *submv_prob;
|
|
|
|
if (!(k & 3))
|
|
left = AV_RN32A(&left_mv[mbsplits_left[k + 3]]);
|
|
else
|
|
left = AV_RN32A(&cur_mv[mbsplits_cur[k - 1]]);
|
|
if (k <= 3)
|
|
above = AV_RN32A(&top_mv[mbsplits_top[k + 12]]);
|
|
else
|
|
above = AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]);
|
|
|
|
submv_prob = get_submv_prob(left, above, is_vp7);
|
|
|
|
if (vpx_rac_get_prob_branchy(c, submv_prob[0])) {
|
|
if (vpx_rac_get_prob_branchy(c, submv_prob[1])) {
|
|
if (vpx_rac_get_prob_branchy(c, submv_prob[2])) {
|
|
mb->bmv[n].y = mb->mv.y +
|
|
read_mv_component(c, s->prob->mvc[0], is_vp7);
|
|
mb->bmv[n].x = mb->mv.x +
|
|
read_mv_component(c, s->prob->mvc[1], is_vp7);
|
|
} else {
|
|
AV_ZERO32(&mb->bmv[n]);
|
|
}
|
|
} else {
|
|
AV_WN32A(&mb->bmv[n], above);
|
|
}
|
|
} else {
|
|
AV_WN32A(&mb->bmv[n], left);
|
|
}
|
|
}
|
|
|
|
return num;
|
|
}
|
|
|
|
/**
|
|
* The vp7 reference decoder uses a padding macroblock column (added to right
|
|
* edge of the frame) to guard against illegal macroblock offsets. The
|
|
* algorithm has bugs that permit offsets to straddle the padding column.
|
|
* This function replicates those bugs.
|
|
*
|
|
* @param[out] edge_x macroblock x address
|
|
* @param[out] edge_y macroblock y address
|
|
*
|
|
* @return macroblock offset legal (boolean)
|
|
*/
|
|
static int vp7_calculate_mb_offset(int mb_x, int mb_y, int mb_width,
|
|
int xoffset, int yoffset, int boundary,
|
|
int *edge_x, int *edge_y)
|
|
{
|
|
int vwidth = mb_width + 1;
|
|
int new = (mb_y + yoffset) * vwidth + mb_x + xoffset;
|
|
if (new < boundary || new % vwidth == vwidth - 1)
|
|
return 0;
|
|
*edge_y = new / vwidth;
|
|
*edge_x = new % vwidth;
|
|
return 1;
|
|
}
|
|
|
|
static const VP8mv *get_bmv_ptr(const VP8Macroblock *mb, int subblock)
|
|
{
|
|
return &mb->bmv[mb->mode == VP8_MVMODE_SPLIT ? vp8_mbsplits[mb->partitioning][subblock] : 0];
|
|
}
|
|
|
|
static av_always_inline
|
|
void vp7_decode_mvs(VP8Context *s, VP8Macroblock *mb,
|
|
int mb_x, int mb_y, int layout)
|
|
{
|
|
enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR };
|
|
enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT };
|
|
int idx = CNT_ZERO;
|
|
VP8mv near_mv[3];
|
|
uint8_t cnt[3] = { 0 };
|
|
VPXRangeCoder *c = &s->c;
|
|
int i;
|
|
|
|
AV_ZERO32(&near_mv[0]);
|
|
AV_ZERO32(&near_mv[1]);
|
|
AV_ZERO32(&near_mv[2]);
|
|
|
|
for (i = 0; i < VP7_MV_PRED_COUNT; i++) {
|
|
const VP7MVPred * pred = &vp7_mv_pred[i];
|
|
int edge_x, edge_y;
|
|
|
|
if (vp7_calculate_mb_offset(mb_x, mb_y, s->mb_width, pred->xoffset,
|
|
pred->yoffset, !s->profile, &edge_x, &edge_y)) {
|
|
const VP8Macroblock *edge = (s->mb_layout == 1)
|
|
? s->macroblocks_base + 1 + edge_x +
|
|
(s->mb_width + 1) * (edge_y + 1)
|
|
: s->macroblocks + edge_x +
|
|
(s->mb_height - edge_y - 1) * 2;
|
|
uint32_t mv = AV_RN32A(get_bmv_ptr(edge, vp7_mv_pred[i].subblock));
|
|
if (mv) {
|
|
if (AV_RN32A(&near_mv[CNT_NEAREST])) {
|
|
if (mv == AV_RN32A(&near_mv[CNT_NEAREST])) {
|
|
idx = CNT_NEAREST;
|
|
} else if (AV_RN32A(&near_mv[CNT_NEAR])) {
|
|
if (mv != AV_RN32A(&near_mv[CNT_NEAR]))
|
|
continue;
|
|
idx = CNT_NEAR;
|
|
} else {
|
|
AV_WN32A(&near_mv[CNT_NEAR], mv);
|
|
idx = CNT_NEAR;
|
|
}
|
|
} else {
|
|
AV_WN32A(&near_mv[CNT_NEAREST], mv);
|
|
idx = CNT_NEAREST;
|
|
}
|
|
} else {
|
|
idx = CNT_ZERO;
|
|
}
|
|
} else {
|
|
idx = CNT_ZERO;
|
|
}
|
|
cnt[idx] += vp7_mv_pred[i].score;
|
|
}
|
|
|
|
mb->partitioning = VP8_SPLITMVMODE_NONE;
|
|
|
|
if (vpx_rac_get_prob_branchy(c, vp7_mode_contexts[cnt[CNT_ZERO]][0])) {
|
|
mb->mode = VP8_MVMODE_MV;
|
|
|
|
if (vpx_rac_get_prob_branchy(c, vp7_mode_contexts[cnt[CNT_NEAREST]][1])) {
|
|
|
|
if (vpx_rac_get_prob_branchy(c, vp7_mode_contexts[cnt[CNT_NEAR]][2])) {
|
|
|
|
if (cnt[CNT_NEAREST] > cnt[CNT_NEAR])
|
|
AV_WN32A(&mb->mv, cnt[CNT_ZERO] > cnt[CNT_NEAREST] ? 0 : AV_RN32A(&near_mv[CNT_NEAREST]));
|
|
else
|
|
AV_WN32A(&mb->mv, cnt[CNT_ZERO] > cnt[CNT_NEAR] ? 0 : AV_RN32A(&near_mv[CNT_NEAR]));
|
|
|
|
if (vpx_rac_get_prob_branchy(c, vp7_mode_contexts[cnt[CNT_NEAR]][3])) {
|
|
mb->mode = VP8_MVMODE_SPLIT;
|
|
mb->mv = mb->bmv[decode_splitmvs(s, c, mb, layout, IS_VP7) - 1];
|
|
} else {
|
|
mb->mv.y += vp7_read_mv_component(c, s->prob->mvc[0]);
|
|
mb->mv.x += vp7_read_mv_component(c, s->prob->mvc[1]);
|
|
mb->bmv[0] = mb->mv;
|
|
}
|
|
} else {
|
|
mb->mv = near_mv[CNT_NEAR];
|
|
mb->bmv[0] = mb->mv;
|
|
}
|
|
} else {
|
|
mb->mv = near_mv[CNT_NEAREST];
|
|
mb->bmv[0] = mb->mv;
|
|
}
|
|
} else {
|
|
mb->mode = VP8_MVMODE_ZERO;
|
|
AV_ZERO32(&mb->mv);
|
|
mb->bmv[0] = mb->mv;
|
|
}
|
|
}
|
|
|
|
static av_always_inline
|
|
void vp8_decode_mvs(VP8Context *s, const VP8mvbounds *mv_bounds, VP8Macroblock *mb,
|
|
int mb_x, int mb_y, int layout)
|
|
{
|
|
VP8Macroblock *mb_edge[3] = { 0 /* top */,
|
|
mb - 1 /* left */,
|
|
0 /* top-left */ };
|
|
enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
|
|
enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT };
|
|
int idx = CNT_ZERO;
|
|
int cur_sign_bias = s->sign_bias[mb->ref_frame];
|
|
const int8_t *sign_bias = s->sign_bias;
|
|
VP8mv near_mv[4];
|
|
uint8_t cnt[4] = { 0 };
|
|
VPXRangeCoder *c = &s->c;
|
|
|
|
if (!layout) { // layout is inlined (s->mb_layout is not)
|
|
mb_edge[0] = mb + 2;
|
|
mb_edge[2] = mb + 1;
|
|
} else {
|
|
mb_edge[0] = mb - s->mb_width - 1;
|
|
mb_edge[2] = mb - s->mb_width - 2;
|
|
}
|
|
|
|
AV_ZERO32(&near_mv[0]);
|
|
AV_ZERO32(&near_mv[1]);
|
|
AV_ZERO32(&near_mv[2]);
|
|
|
|
/* Process MB on top, left and top-left */
|
|
#define MV_EDGE_CHECK(n) \
|
|
{ \
|
|
const VP8Macroblock *edge = mb_edge[n]; \
|
|
int edge_ref = edge->ref_frame; \
|
|
if (edge_ref != VP8_FRAME_CURRENT) { \
|
|
uint32_t mv = AV_RN32A(&edge->mv); \
|
|
if (mv) { \
|
|
if (cur_sign_bias != sign_bias[edge_ref]) { \
|
|
/* SWAR negate of the values in mv. */ \
|
|
mv = ~mv; \
|
|
mv = ((mv & 0x7fff7fff) + \
|
|
0x00010001) ^ (mv & 0x80008000); \
|
|
} \
|
|
if (!n || mv != AV_RN32A(&near_mv[idx])) \
|
|
AV_WN32A(&near_mv[++idx], mv); \
|
|
cnt[idx] += 1 + (n != 2); \
|
|
} else \
|
|
cnt[CNT_ZERO] += 1 + (n != 2); \
|
|
} \
|
|
}
|
|
|
|
MV_EDGE_CHECK(0)
|
|
MV_EDGE_CHECK(1)
|
|
MV_EDGE_CHECK(2)
|
|
|
|
mb->partitioning = VP8_SPLITMVMODE_NONE;
|
|
if (vpx_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_ZERO]][0])) {
|
|
mb->mode = VP8_MVMODE_MV;
|
|
|
|
/* If we have three distinct MVs, merge first and last if they're the same */
|
|
if (cnt[CNT_SPLITMV] &&
|
|
AV_RN32A(&near_mv[1 + VP8_EDGE_TOP]) == AV_RN32A(&near_mv[1 + VP8_EDGE_TOPLEFT]))
|
|
cnt[CNT_NEAREST] += 1;
|
|
|
|
/* Swap near and nearest if necessary */
|
|
if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
|
|
FFSWAP(uint8_t, cnt[CNT_NEAREST], cnt[CNT_NEAR]);
|
|
FFSWAP(VP8mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]);
|
|
}
|
|
|
|
if (vpx_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_NEAREST]][1])) {
|
|
if (vpx_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_NEAR]][2])) {
|
|
/* Choose the best mv out of 0,0 and the nearest mv */
|
|
clamp_mv(mv_bounds, &mb->mv, &near_mv[CNT_ZERO + (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])]);
|
|
cnt[CNT_SPLITMV] = ((mb_edge[VP8_EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) +
|
|
(mb_edge[VP8_EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 +
|
|
(mb_edge[VP8_EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT);
|
|
|
|
if (vpx_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_SPLITMV]][3])) {
|
|
mb->mode = VP8_MVMODE_SPLIT;
|
|
mb->mv = mb->bmv[decode_splitmvs(s, c, mb, layout, IS_VP8) - 1];
|
|
} else {
|
|
mb->mv.y += vp8_read_mv_component(c, s->prob->mvc[0]);
|
|
mb->mv.x += vp8_read_mv_component(c, s->prob->mvc[1]);
|
|
mb->bmv[0] = mb->mv;
|
|
}
|
|
} else {
|
|
clamp_mv(mv_bounds, &mb->mv, &near_mv[CNT_NEAR]);
|
|
mb->bmv[0] = mb->mv;
|
|
}
|
|
} else {
|
|
clamp_mv(mv_bounds, &mb->mv, &near_mv[CNT_NEAREST]);
|
|
mb->bmv[0] = mb->mv;
|
|
}
|
|
} else {
|
|
mb->mode = VP8_MVMODE_ZERO;
|
|
AV_ZERO32(&mb->mv);
|
|
mb->bmv[0] = mb->mv;
|
|
}
|
|
}
|
|
|
|
static av_always_inline
|
|
void decode_intra4x4_modes(VP8Context *s, VPXRangeCoder *c, VP8Macroblock *mb,
|
|
int mb_x, int keyframe, int layout)
|
|
{
|
|
uint8_t *intra4x4 = mb->intra4x4_pred_mode_mb;
|
|
|
|
if (layout) {
|
|
VP8Macroblock *mb_top = mb - s->mb_width - 1;
|
|
memcpy(mb->intra4x4_pred_mode_top, mb_top->intra4x4_pred_mode_top, 4);
|
|
}
|
|
if (keyframe) {
|
|
int x, y;
|
|
uint8_t *top;
|
|
uint8_t *const left = s->intra4x4_pred_mode_left;
|
|
if (layout)
|
|
top = mb->intra4x4_pred_mode_top;
|
|
else
|
|
top = s->intra4x4_pred_mode_top + 4 * mb_x;
|
|
for (y = 0; y < 4; y++) {
|
|
for (x = 0; x < 4; x++) {
|
|
const uint8_t *ctx;
|
|
ctx = vp8_pred4x4_prob_intra[top[x]][left[y]];
|
|
*intra4x4 = vp89_rac_get_tree(c, vp8_pred4x4_tree, ctx);
|
|
left[y] = top[x] = *intra4x4;
|
|
intra4x4++;
|
|
}
|
|
}
|
|
} else {
|
|
int i;
|
|
for (i = 0; i < 16; i++)
|
|
intra4x4[i] = vp89_rac_get_tree(c, vp8_pred4x4_tree,
|
|
vp8_pred4x4_prob_inter);
|
|
}
|
|
}
|
|
|
|
static av_always_inline
|
|
void decode_mb_mode(VP8Context *s, const VP8mvbounds *mv_bounds,
|
|
VP8Macroblock *mb, int mb_x, int mb_y,
|
|
uint8_t *segment, const uint8_t *ref, int layout, int is_vp7)
|
|
{
|
|
VPXRangeCoder *c = &s->c;
|
|
static const char * const vp7_feature_name[] = { "q-index",
|
|
"lf-delta",
|
|
"partial-golden-update",
|
|
"blit-pitch" };
|
|
if (is_vp7) {
|
|
int i;
|
|
*segment = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
if (s->feature_enabled[i]) {
|
|
if (vpx_rac_get_prob_branchy(c, s->feature_present_prob[i])) {
|
|
int index = vp89_rac_get_tree(c, vp7_feature_index_tree,
|
|
s->feature_index_prob[i]);
|
|
av_log(s->avctx, AV_LOG_WARNING,
|
|
"Feature %s present in macroblock (value 0x%x)\n",
|
|
vp7_feature_name[i], s->feature_value[i][index]);
|
|
}
|
|
}
|
|
}
|
|
} else if (s->segmentation.update_map) {
|
|
int bit = vpx_rac_get_prob(c, s->prob->segmentid[0]);
|
|
*segment = vpx_rac_get_prob(c, s->prob->segmentid[1+bit]) + 2*bit;
|
|
} else if (s->segmentation.enabled)
|
|
*segment = ref ? *ref : *segment;
|
|
mb->segment = *segment;
|
|
|
|
mb->skip = s->mbskip_enabled ? vpx_rac_get_prob(c, s->prob->mbskip) : 0;
|
|
|
|
if (s->keyframe) {
|
|
mb->mode = vp89_rac_get_tree(c, vp8_pred16x16_tree_intra,
|
|
vp8_pred16x16_prob_intra);
|
|
|
|
if (mb->mode == MODE_I4x4) {
|
|
decode_intra4x4_modes(s, c, mb, mb_x, 1, layout);
|
|
} else {
|
|
const uint32_t modes = (is_vp7 ? vp7_pred4x4_mode
|
|
: vp8_pred4x4_mode)[mb->mode] * 0x01010101u;
|
|
if (s->mb_layout)
|
|
AV_WN32A(mb->intra4x4_pred_mode_top, modes);
|
|
else
|
|
AV_WN32A(s->intra4x4_pred_mode_top + 4 * mb_x, modes);
|
|
AV_WN32A(s->intra4x4_pred_mode_left, modes);
|
|
}
|
|
|
|
mb->chroma_pred_mode = vp89_rac_get_tree(c, vp8_pred8x8c_tree,
|
|
vp8_pred8x8c_prob_intra);
|
|
mb->ref_frame = VP8_FRAME_CURRENT;
|
|
} else if (vpx_rac_get_prob_branchy(c, s->prob->intra)) {
|
|
// inter MB, 16.2
|
|
if (vpx_rac_get_prob_branchy(c, s->prob->last))
|
|
mb->ref_frame =
|
|
(!is_vp7 && vpx_rac_get_prob(c, s->prob->golden)) ? VP8_FRAME_ALTREF
|
|
: VP8_FRAME_GOLDEN;
|
|
else
|
|
mb->ref_frame = VP8_FRAME_PREVIOUS;
|
|
s->ref_count[mb->ref_frame - 1]++;
|
|
|
|
// motion vectors, 16.3
|
|
if (is_vp7)
|
|
vp7_decode_mvs(s, mb, mb_x, mb_y, layout);
|
|
else
|
|
vp8_decode_mvs(s, mv_bounds, mb, mb_x, mb_y, layout);
|
|
} else {
|
|
// intra MB, 16.1
|
|
mb->mode = vp89_rac_get_tree(c, vp8_pred16x16_tree_inter,
|
|
s->prob->pred16x16);
|
|
|
|
if (mb->mode == MODE_I4x4)
|
|
decode_intra4x4_modes(s, c, mb, mb_x, 0, layout);
|
|
|
|
mb->chroma_pred_mode = vp89_rac_get_tree(c, vp8_pred8x8c_tree,
|
|
s->prob->pred8x8c);
|
|
mb->ref_frame = VP8_FRAME_CURRENT;
|
|
mb->partitioning = VP8_SPLITMVMODE_NONE;
|
|
AV_ZERO32(&mb->bmv[0]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param r arithmetic bitstream reader context
|
|
* @param block destination for block coefficients
|
|
* @param probs probabilities to use when reading trees from the bitstream
|
|
* @param i initial coeff index, 0 unless a separate DC block is coded
|
|
* @param qmul array holding the dc/ac dequant factor at position 0/1
|
|
*
|
|
* @return 0 if no coeffs were decoded
|
|
* otherwise, the index of the last coeff decoded plus one
|
|
*/
|
|
static av_always_inline
|
|
int decode_block_coeffs_internal(VPXRangeCoder *r, int16_t block[16],
|
|
uint8_t probs[16][3][NUM_DCT_TOKENS - 1],
|
|
int i, const uint8_t *token_prob, const int16_t qmul[2],
|
|
const uint8_t scan[16], int vp7)
|
|
{
|
|
VPXRangeCoder c = *r;
|
|
goto skip_eob;
|
|
do {
|
|
int coeff;
|
|
restart:
|
|
if (!vpx_rac_get_prob_branchy(&c, token_prob[0])) // DCT_EOB
|
|
break;
|
|
|
|
skip_eob:
|
|
if (!vpx_rac_get_prob_branchy(&c, token_prob[1])) { // DCT_0
|
|
if (++i == 16)
|
|
break; // invalid input; blocks should end with EOB
|
|
token_prob = probs[i][0];
|
|
if (vp7)
|
|
goto restart;
|
|
goto skip_eob;
|
|
}
|
|
|
|
if (!vpx_rac_get_prob_branchy(&c, token_prob[2])) { // DCT_1
|
|
coeff = 1;
|
|
token_prob = probs[i + 1][1];
|
|
} else {
|
|
if (!vpx_rac_get_prob_branchy(&c, token_prob[3])) { // DCT 2,3,4
|
|
coeff = vpx_rac_get_prob_branchy(&c, token_prob[4]);
|
|
if (coeff)
|
|
coeff += vpx_rac_get_prob(&c, token_prob[5]);
|
|
coeff += 2;
|
|
} else {
|
|
// DCT_CAT*
|
|
if (!vpx_rac_get_prob_branchy(&c, token_prob[6])) {
|
|
if (!vpx_rac_get_prob_branchy(&c, token_prob[7])) { // DCT_CAT1
|
|
coeff = 5 + vpx_rac_get_prob(&c, vp8_dct_cat1_prob[0]);
|
|
} else { // DCT_CAT2
|
|
coeff = 7;
|
|
coeff += vpx_rac_get_prob(&c, vp8_dct_cat2_prob[0]) << 1;
|
|
coeff += vpx_rac_get_prob(&c, vp8_dct_cat2_prob[1]);
|
|
}
|
|
} else { // DCT_CAT3 and up
|
|
int a = vpx_rac_get_prob(&c, token_prob[8]);
|
|
int b = vpx_rac_get_prob(&c, token_prob[9 + a]);
|
|
int cat = (a << 1) + b;
|
|
coeff = 3 + (8 << cat);
|
|
coeff += vp8_rac_get_coeff(&c, ff_vp8_dct_cat_prob[cat]);
|
|
}
|
|
}
|
|
token_prob = probs[i + 1][2];
|
|
}
|
|
block[scan[i]] = (vp89_rac_get(&c) ? -coeff : coeff) * qmul[!!i];
|
|
} while (++i < 16);
|
|
|
|
*r = c;
|
|
return i;
|
|
}
|
|
|
|
static av_always_inline
|
|
int inter_predict_dc(int16_t block[16], int16_t pred[2])
|
|
{
|
|
int16_t dc = block[0];
|
|
int ret = 0;
|
|
|
|
if (pred[1] > 3) {
|
|
dc += pred[0];
|
|
ret = 1;
|
|
}
|
|
|
|
if (!pred[0] | !dc | ((int32_t)pred[0] ^ (int32_t)dc) >> 31) {
|
|
block[0] = pred[0] = dc;
|
|
pred[1] = 0;
|
|
} else {
|
|
if (pred[0] == dc)
|
|
pred[1]++;
|
|
block[0] = pred[0] = dc;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vp7_decode_block_coeffs_internal(VPXRangeCoder *r,
|
|
int16_t block[16],
|
|
uint8_t probs[16][3][NUM_DCT_TOKENS - 1],
|
|
int i, const uint8_t *token_prob,
|
|
const int16_t qmul[2],
|
|
const uint8_t scan[16])
|
|
{
|
|
return decode_block_coeffs_internal(r, block, probs, i,
|
|
token_prob, qmul, scan, IS_VP7);
|
|
}
|
|
|
|
#ifndef vp8_decode_block_coeffs_internal
|
|
static int vp8_decode_block_coeffs_internal(VPXRangeCoder *r,
|
|
int16_t block[16],
|
|
uint8_t probs[16][3][NUM_DCT_TOKENS - 1],
|
|
int i, const uint8_t *token_prob,
|
|
const int16_t qmul[2])
|
|
{
|
|
return decode_block_coeffs_internal(r, block, probs, i,
|
|
token_prob, qmul, ff_zigzag_scan, IS_VP8);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @param c arithmetic bitstream reader context
|
|
* @param block destination for block coefficients
|
|
* @param probs probabilities to use when reading trees from the bitstream
|
|
* @param i initial coeff index, 0 unless a separate DC block is coded
|
|
* @param zero_nhood the initial prediction context for number of surrounding
|
|
* all-zero blocks (only left/top, so 0-2)
|
|
* @param qmul array holding the dc/ac dequant factor at position 0/1
|
|
* @param scan scan pattern (VP7 only)
|
|
*
|
|
* @return 0 if no coeffs were decoded
|
|
* otherwise, the index of the last coeff decoded plus one
|
|
*/
|
|
static av_always_inline
|
|
int decode_block_coeffs(VPXRangeCoder *c, int16_t block[16],
|
|
uint8_t probs[16][3][NUM_DCT_TOKENS - 1],
|
|
int i, int zero_nhood, const int16_t qmul[2],
|
|
const uint8_t scan[16], int vp7)
|
|
{
|
|
const uint8_t *token_prob = probs[i][zero_nhood];
|
|
if (!vpx_rac_get_prob_branchy(c, token_prob[0])) // DCT_EOB
|
|
return 0;
|
|
return vp7 ? vp7_decode_block_coeffs_internal(c, block, probs, i,
|
|
token_prob, qmul, scan)
|
|
: vp8_decode_block_coeffs_internal(c, block, probs, i,
|
|
token_prob, qmul);
|
|
}
|
|
|
|
static av_always_inline
|
|
void decode_mb_coeffs(VP8Context *s, VP8ThreadData *td, VPXRangeCoder *c,
|
|
VP8Macroblock *mb, uint8_t t_nnz[9], uint8_t l_nnz[9],
|
|
int is_vp7)
|
|
{
|
|
int i, x, y, luma_start = 0, luma_ctx = 3;
|
|
int nnz_pred, nnz, nnz_total = 0;
|
|
int segment = mb->segment;
|
|
int block_dc = 0;
|
|
|
|
if (mb->mode != MODE_I4x4 && (is_vp7 || mb->mode != VP8_MVMODE_SPLIT)) {
|
|
nnz_pred = t_nnz[8] + l_nnz[8];
|
|
|
|
// decode DC values and do hadamard
|
|
nnz = decode_block_coeffs(c, td->block_dc, s->prob->token[1], 0,
|
|
nnz_pred, s->qmat[segment].luma_dc_qmul,
|
|
ff_zigzag_scan, is_vp7);
|
|
l_nnz[8] = t_nnz[8] = !!nnz;
|
|
|
|
if (is_vp7 && mb->mode > MODE_I4x4) {
|
|
nnz |= inter_predict_dc(td->block_dc,
|
|
s->inter_dc_pred[mb->ref_frame - 1]);
|
|
}
|
|
|
|
if (nnz) {
|
|
nnz_total += nnz;
|
|
block_dc = 1;
|
|
if (nnz == 1)
|
|
s->vp8dsp.vp8_luma_dc_wht_dc(td->block, td->block_dc);
|
|
else
|
|
s->vp8dsp.vp8_luma_dc_wht(td->block, td->block_dc);
|
|
}
|
|
luma_start = 1;
|
|
luma_ctx = 0;
|
|
}
|
|
|
|
// luma blocks
|
|
for (y = 0; y < 4; y++)
|
|
for (x = 0; x < 4; x++) {
|
|
nnz_pred = l_nnz[y] + t_nnz[x];
|
|
nnz = decode_block_coeffs(c, td->block[y][x],
|
|
s->prob->token[luma_ctx],
|
|
luma_start, nnz_pred,
|
|
s->qmat[segment].luma_qmul,
|
|
s->prob[0].scan, is_vp7);
|
|
/* nnz+block_dc may be one more than the actual last index,
|
|
* but we don't care */
|
|
td->non_zero_count_cache[y][x] = nnz + block_dc;
|
|
t_nnz[x] = l_nnz[y] = !!nnz;
|
|
nnz_total += nnz;
|
|
}
|
|
|
|
// chroma blocks
|
|
// TODO: what to do about dimensions? 2nd dim for luma is x,
|
|
// but for chroma it's (y<<1)|x
|
|
for (i = 4; i < 6; i++)
|
|
for (y = 0; y < 2; y++)
|
|
for (x = 0; x < 2; x++) {
|
|
nnz_pred = l_nnz[i + 2 * y] + t_nnz[i + 2 * x];
|
|
nnz = decode_block_coeffs(c, td->block[i][(y << 1) + x],
|
|
s->prob->token[2], 0, nnz_pred,
|
|
s->qmat[segment].chroma_qmul,
|
|
s->prob[0].scan, is_vp7);
|
|
td->non_zero_count_cache[i][(y << 1) + x] = nnz;
|
|
t_nnz[i + 2 * x] = l_nnz[i + 2 * y] = !!nnz;
|
|
nnz_total += nnz;
|
|
}
|
|
|
|
// if there were no coded coeffs despite the macroblock not being marked skip,
|
|
// we MUST not do the inner loop filter and should not do IDCT
|
|
// Since skip isn't used for bitstream prediction, just manually set it.
|
|
if (!nnz_total)
|
|
mb->skip = 1;
|
|
}
|
|
|
|
static av_always_inline
|
|
void backup_mb_border(uint8_t *top_border, const uint8_t *src_y,
|
|
const uint8_t *src_cb, const uint8_t *src_cr,
|
|
ptrdiff_t linesize, ptrdiff_t uvlinesize, int simple)
|
|
{
|
|
AV_COPY128(top_border, src_y + 15 * linesize);
|
|
if (!simple) {
|
|
AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
|
|
AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
|
|
}
|
|
}
|
|
|
|
static av_always_inline
|
|
void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb,
|
|
uint8_t *src_cr, ptrdiff_t linesize, ptrdiff_t uvlinesize, int mb_x,
|
|
int mb_y, int mb_width, int simple, int xchg)
|
|
{
|
|
uint8_t *top_border_m1 = top_border - 32; // for TL prediction
|
|
src_y -= linesize;
|
|
src_cb -= uvlinesize;
|
|
src_cr -= uvlinesize;
|
|
|
|
#define XCHG(a, b, xchg) \
|
|
do { \
|
|
if (xchg) \
|
|
AV_SWAP64(b, a); \
|
|
else \
|
|
AV_COPY64(b, a); \
|
|
} while (0)
|
|
|
|
XCHG(top_border_m1 + 8, src_y - 8, xchg);
|
|
XCHG(top_border, src_y, xchg);
|
|
XCHG(top_border + 8, src_y + 8, 1);
|
|
if (mb_x < mb_width - 1)
|
|
XCHG(top_border + 32, src_y + 16, 1);
|
|
|
|
// only copy chroma for normal loop filter
|
|
// or to initialize the top row to 127
|
|
if (!simple || !mb_y) {
|
|
XCHG(top_border_m1 + 16, src_cb - 8, xchg);
|
|
XCHG(top_border_m1 + 24, src_cr - 8, xchg);
|
|
XCHG(top_border + 16, src_cb, 1);
|
|
XCHG(top_border + 24, src_cr, 1);
|
|
}
|
|
}
|
|
|
|
static av_always_inline
|
|
int check_dc_pred8x8_mode(int mode, int mb_x, int mb_y)
|
|
{
|
|
if (!mb_x)
|
|
return mb_y ? TOP_DC_PRED8x8 : DC_128_PRED8x8;
|
|
else
|
|
return mb_y ? mode : LEFT_DC_PRED8x8;
|
|
}
|
|
|
|
static av_always_inline
|
|
int check_tm_pred8x8_mode(int mode, int mb_x, int mb_y, int vp7)
|
|
{
|
|
if (!mb_x)
|
|
return mb_y ? VERT_PRED8x8 : (vp7 ? DC_128_PRED8x8 : DC_129_PRED8x8);
|
|
else
|
|
return mb_y ? mode : HOR_PRED8x8;
|
|
}
|
|
|
|
static av_always_inline
|
|
int check_intra_pred8x8_mode_emuedge(int mode, int mb_x, int mb_y, int vp7)
|
|
{
|
|
switch (mode) {
|
|
case DC_PRED8x8:
|
|
return check_dc_pred8x8_mode(mode, mb_x, mb_y);
|
|
case VERT_PRED8x8:
|
|
return !mb_y ? (vp7 ? DC_128_PRED8x8 : DC_127_PRED8x8) : mode;
|
|
case HOR_PRED8x8:
|
|
return !mb_x ? (vp7 ? DC_128_PRED8x8 : DC_129_PRED8x8) : mode;
|
|
case PLANE_PRED8x8: /* TM */
|
|
return check_tm_pred8x8_mode(mode, mb_x, mb_y, vp7);
|
|
}
|
|
return mode;
|
|
}
|
|
|
|
static av_always_inline
|
|
int check_tm_pred4x4_mode(int mode, int mb_x, int mb_y, int vp7)
|
|
{
|
|
if (!mb_x) {
|
|
return mb_y ? VERT_VP8_PRED : (vp7 ? DC_128_PRED : DC_129_PRED);
|
|
} else {
|
|
return mb_y ? mode : HOR_VP8_PRED;
|
|
}
|
|
}
|
|
|
|
static av_always_inline
|
|
int check_intra_pred4x4_mode_emuedge(int mode, int mb_x, int mb_y,
|
|
int *copy_buf, int vp7)
|
|
{
|
|
switch (mode) {
|
|
case VERT_PRED:
|
|
if (!mb_x && mb_y) {
|
|
*copy_buf = 1;
|
|
return mode;
|
|
}
|
|
/* fall-through */
|
|
case DIAG_DOWN_LEFT_PRED:
|
|
case VERT_LEFT_PRED:
|
|
return !mb_y ? (vp7 ? DC_128_PRED : DC_127_PRED) : mode;
|
|
case HOR_PRED:
|
|
if (!mb_y) {
|
|
*copy_buf = 1;
|
|
return mode;
|
|
}
|
|
/* fall-through */
|
|
case HOR_UP_PRED:
|
|
return !mb_x ? (vp7 ? DC_128_PRED : DC_129_PRED) : mode;
|
|
case TM_VP8_PRED:
|
|
return check_tm_pred4x4_mode(mode, mb_x, mb_y, vp7);
|
|
case DC_PRED: /* 4x4 DC doesn't use the same "H.264-style" exceptions
|
|
* as 16x16/8x8 DC */
|
|
case DIAG_DOWN_RIGHT_PRED:
|
|
case VERT_RIGHT_PRED:
|
|
case HOR_DOWN_PRED:
|
|
if (!mb_y || !mb_x)
|
|
*copy_buf = 1;
|
|
return mode;
|
|
}
|
|
return mode;
|
|
}
|
|
|
|
static av_always_inline
|
|
void intra_predict(VP8Context *s, VP8ThreadData *td, uint8_t *const dst[3],
|
|
VP8Macroblock *mb, int mb_x, int mb_y, int is_vp7)
|
|
{
|
|
int x, y, mode, nnz;
|
|
uint32_t tr;
|
|
|
|
/* for the first row, we need to run xchg_mb_border to init the top edge
|
|
* to 127 otherwise, skip it if we aren't going to deblock */
|
|
if (mb_y && (s->deblock_filter || !mb_y) && td->thread_nr == 0)
|
|
xchg_mb_border(s->top_border[mb_x + 1], dst[0], dst[1], dst[2],
|
|
s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
|
|
s->filter.simple, 1);
|
|
|
|
if (mb->mode < MODE_I4x4) {
|
|
mode = check_intra_pred8x8_mode_emuedge(mb->mode, mb_x, mb_y, is_vp7);
|
|
s->hpc.pred16x16[mode](dst[0], s->linesize);
|
|
} else {
|
|
uint8_t *ptr = dst[0];
|
|
const uint8_t *intra4x4 = mb->intra4x4_pred_mode_mb;
|
|
const uint8_t lo = is_vp7 ? 128 : 127;
|
|
const uint8_t hi = is_vp7 ? 128 : 129;
|
|
const uint8_t tr_top[4] = { lo, lo, lo, lo };
|
|
|
|
// all blocks on the right edge of the macroblock use bottom edge
|
|
// the top macroblock for their topright edge
|
|
const uint8_t *tr_right = ptr - s->linesize + 16;
|
|
|
|
// if we're on the right edge of the frame, said edge is extended
|
|
// from the top macroblock
|
|
if (mb_y && mb_x == s->mb_width - 1) {
|
|
tr = tr_right[-1] * 0x01010101u;
|
|
tr_right = (uint8_t *) &tr;
|
|
}
|
|
|
|
if (mb->skip)
|
|
AV_ZERO128(td->non_zero_count_cache);
|
|
|
|
for (y = 0; y < 4; y++) {
|
|
const uint8_t *topright = ptr + 4 - s->linesize;
|
|
for (x = 0; x < 4; x++) {
|
|
int copy = 0;
|
|
ptrdiff_t linesize = s->linesize;
|
|
uint8_t *dst = ptr + 4 * x;
|
|
LOCAL_ALIGNED(4, uint8_t, copy_dst, [5 * 8]);
|
|
|
|
if ((y == 0 || x == 3) && mb_y == 0) {
|
|
topright = tr_top;
|
|
} else if (x == 3)
|
|
topright = tr_right;
|
|
|
|
mode = check_intra_pred4x4_mode_emuedge(intra4x4[x], mb_x + x,
|
|
mb_y + y, ©, is_vp7);
|
|
if (copy) {
|
|
dst = copy_dst + 12;
|
|
linesize = 8;
|
|
if (!(mb_y + y)) {
|
|
copy_dst[3] = lo;
|
|
AV_WN32A(copy_dst + 4, lo * 0x01010101U);
|
|
} else {
|
|
AV_COPY32(copy_dst + 4, ptr + 4 * x - s->linesize);
|
|
if (!(mb_x + x)) {
|
|
copy_dst[3] = hi;
|
|
} else {
|
|
copy_dst[3] = ptr[4 * x - s->linesize - 1];
|
|
}
|
|
}
|
|
if (!(mb_x + x)) {
|
|
copy_dst[11] =
|
|
copy_dst[19] =
|
|
copy_dst[27] =
|
|
copy_dst[35] = hi;
|
|
} else {
|
|
copy_dst[11] = ptr[4 * x - 1];
|
|
copy_dst[19] = ptr[4 * x + s->linesize - 1];
|
|
copy_dst[27] = ptr[4 * x + s->linesize * 2 - 1];
|
|
copy_dst[35] = ptr[4 * x + s->linesize * 3 - 1];
|
|
}
|
|
}
|
|
s->hpc.pred4x4[mode](dst, topright, linesize);
|
|
if (copy) {
|
|
AV_COPY32(ptr + 4 * x, copy_dst + 12);
|
|
AV_COPY32(ptr + 4 * x + s->linesize, copy_dst + 20);
|
|
AV_COPY32(ptr + 4 * x + s->linesize * 2, copy_dst + 28);
|
|
AV_COPY32(ptr + 4 * x + s->linesize * 3, copy_dst + 36);
|
|
}
|
|
|
|
nnz = td->non_zero_count_cache[y][x];
|
|
if (nnz) {
|
|
if (nnz == 1)
|
|
s->vp8dsp.vp8_idct_dc_add(ptr + 4 * x,
|
|
td->block[y][x], s->linesize);
|
|
else
|
|
s->vp8dsp.vp8_idct_add(ptr + 4 * x,
|
|
td->block[y][x], s->linesize);
|
|
}
|
|
topright += 4;
|
|
}
|
|
|
|
ptr += 4 * s->linesize;
|
|
intra4x4 += 4;
|
|
}
|
|
}
|
|
|
|
mode = check_intra_pred8x8_mode_emuedge(mb->chroma_pred_mode,
|
|
mb_x, mb_y, is_vp7);
|
|
s->hpc.pred8x8[mode](dst[1], s->uvlinesize);
|
|
s->hpc.pred8x8[mode](dst[2], s->uvlinesize);
|
|
|
|
if (mb_y && (s->deblock_filter || !mb_y) && td->thread_nr == 0)
|
|
xchg_mb_border(s->top_border[mb_x + 1], dst[0], dst[1], dst[2],
|
|
s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
|
|
s->filter.simple, 0);
|
|
}
|
|
|
|
static const uint8_t subpel_idx[3][8] = {
|
|
{ 0, 1, 2, 1, 2, 1, 2, 1 }, // nr. of left extra pixels,
|
|
// also function pointer index
|
|
{ 0, 3, 5, 3, 5, 3, 5, 3 }, // nr. of extra pixels required
|
|
{ 0, 2, 3, 2, 3, 2, 3, 2 }, // nr. of right extra pixels
|
|
};
|
|
|
|
/**
|
|
* luma MC function
|
|
*
|
|
* @param s VP8 decoding context
|
|
* @param dst target buffer for block data at block position
|
|
* @param ref reference picture buffer at origin (0, 0)
|
|
* @param mv motion vector (relative to block position) to get pixel data from
|
|
* @param x_off horizontal position of block from origin (0, 0)
|
|
* @param y_off vertical position of block from origin (0, 0)
|
|
* @param block_w width of block (16, 8 or 4)
|
|
* @param block_h height of block (always same as block_w)
|
|
* @param width width of src/dst plane data
|
|
* @param height height of src/dst plane data
|
|
* @param linesize size of a single line of plane data, including padding
|
|
* @param mc_func motion compensation function pointers (bilinear or sixtap MC)
|
|
*/
|
|
static av_always_inline
|
|
void vp8_mc_luma(VP8Context *s, VP8ThreadData *td, uint8_t *dst,
|
|
const ThreadFrame *ref, const VP8mv *mv,
|
|
int x_off, int y_off, int block_w, int block_h,
|
|
int width, int height, ptrdiff_t linesize,
|
|
vp8_mc_func mc_func[3][3])
|
|
{
|
|
const uint8_t *src = ref->f->data[0];
|
|
|
|
if (AV_RN32A(mv)) {
|
|
ptrdiff_t src_linesize = linesize;
|
|
|
|
int mx = (mv->x * 2) & 7, mx_idx = subpel_idx[0][mx];
|
|
int my = (mv->y * 2) & 7, my_idx = subpel_idx[0][my];
|
|
|
|
x_off += mv->x >> 2;
|
|
y_off += mv->y >> 2;
|
|
|
|
// edge emulation
|
|
ff_thread_await_progress(ref, (3 + y_off + block_h + subpel_idx[2][my]) >> 4, 0);
|
|
src += y_off * linesize + x_off;
|
|
if (x_off < mx_idx || x_off >= width - block_w - subpel_idx[2][mx] ||
|
|
y_off < my_idx || y_off >= height - block_h - subpel_idx[2][my]) {
|
|
s->vdsp.emulated_edge_mc(td->edge_emu_buffer,
|
|
src - my_idx * linesize - mx_idx,
|
|
EDGE_EMU_LINESIZE, linesize,
|
|
block_w + subpel_idx[1][mx],
|
|
block_h + subpel_idx[1][my],
|
|
x_off - mx_idx, y_off - my_idx,
|
|
width, height);
|
|
src = td->edge_emu_buffer + mx_idx + EDGE_EMU_LINESIZE * my_idx;
|
|
src_linesize = EDGE_EMU_LINESIZE;
|
|
}
|
|
mc_func[my_idx][mx_idx](dst, linesize, src, src_linesize, block_h, mx, my);
|
|
} else {
|
|
ff_thread_await_progress(ref, (3 + y_off + block_h) >> 4, 0);
|
|
mc_func[0][0](dst, linesize, src + y_off * linesize + x_off,
|
|
linesize, block_h, 0, 0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* chroma MC function
|
|
*
|
|
* @param s VP8 decoding context
|
|
* @param dst1 target buffer for block data at block position (U plane)
|
|
* @param dst2 target buffer for block data at block position (V plane)
|
|
* @param ref reference picture buffer at origin (0, 0)
|
|
* @param mv motion vector (relative to block position) to get pixel data from
|
|
* @param x_off horizontal position of block from origin (0, 0)
|
|
* @param y_off vertical position of block from origin (0, 0)
|
|
* @param block_w width of block (16, 8 or 4)
|
|
* @param block_h height of block (always same as block_w)
|
|
* @param width width of src/dst plane data
|
|
* @param height height of src/dst plane data
|
|
* @param linesize size of a single line of plane data, including padding
|
|
* @param mc_func motion compensation function pointers (bilinear or sixtap MC)
|
|
*/
|
|
static av_always_inline
|
|
void vp8_mc_chroma(VP8Context *s, VP8ThreadData *td, uint8_t *dst1,
|
|
uint8_t *dst2, const ThreadFrame *ref, const VP8mv *mv,
|
|
int x_off, int y_off, int block_w, int block_h,
|
|
int width, int height, ptrdiff_t linesize,
|
|
vp8_mc_func mc_func[3][3])
|
|
{
|
|
const uint8_t *src1 = ref->f->data[1], *src2 = ref->f->data[2];
|
|
|
|
if (AV_RN32A(mv)) {
|
|
int mx = mv->x & 7, mx_idx = subpel_idx[0][mx];
|
|
int my = mv->y & 7, my_idx = subpel_idx[0][my];
|
|
|
|
x_off += mv->x >> 3;
|
|
y_off += mv->y >> 3;
|
|
|
|
// edge emulation
|
|
src1 += y_off * linesize + x_off;
|
|
src2 += y_off * linesize + x_off;
|
|
ff_thread_await_progress(ref, (3 + y_off + block_h + subpel_idx[2][my]) >> 3, 0);
|
|
if (x_off < mx_idx || x_off >= width - block_w - subpel_idx[2][mx] ||
|
|
y_off < my_idx || y_off >= height - block_h - subpel_idx[2][my]) {
|
|
s->vdsp.emulated_edge_mc(td->edge_emu_buffer,
|
|
src1 - my_idx * linesize - mx_idx,
|
|
EDGE_EMU_LINESIZE, linesize,
|
|
block_w + subpel_idx[1][mx],
|
|
block_h + subpel_idx[1][my],
|
|
x_off - mx_idx, y_off - my_idx, width, height);
|
|
src1 = td->edge_emu_buffer + mx_idx + EDGE_EMU_LINESIZE * my_idx;
|
|
mc_func[my_idx][mx_idx](dst1, linesize, src1, EDGE_EMU_LINESIZE, block_h, mx, my);
|
|
|
|
s->vdsp.emulated_edge_mc(td->edge_emu_buffer,
|
|
src2 - my_idx * linesize - mx_idx,
|
|
EDGE_EMU_LINESIZE, linesize,
|
|
block_w + subpel_idx[1][mx],
|
|
block_h + subpel_idx[1][my],
|
|
x_off - mx_idx, y_off - my_idx, width, height);
|
|
src2 = td->edge_emu_buffer + mx_idx + EDGE_EMU_LINESIZE * my_idx;
|
|
mc_func[my_idx][mx_idx](dst2, linesize, src2, EDGE_EMU_LINESIZE, block_h, mx, my);
|
|
} else {
|
|
mc_func[my_idx][mx_idx](dst1, linesize, src1, linesize, block_h, mx, my);
|
|
mc_func[my_idx][mx_idx](dst2, linesize, src2, linesize, block_h, mx, my);
|
|
}
|
|
} else {
|
|
ff_thread_await_progress(ref, (3 + y_off + block_h) >> 3, 0);
|
|
mc_func[0][0](dst1, linesize, src1 + y_off * linesize + x_off, linesize, block_h, 0, 0);
|
|
mc_func[0][0](dst2, linesize, src2 + y_off * linesize + x_off, linesize, block_h, 0, 0);
|
|
}
|
|
}
|
|
|
|
static av_always_inline
|
|
void vp8_mc_part(VP8Context *s, VP8ThreadData *td, uint8_t *const dst[3],
|
|
const ThreadFrame *ref_frame, int x_off, int y_off,
|
|
int bx_off, int by_off, int block_w, int block_h,
|
|
int width, int height, const VP8mv *mv)
|
|
{
|
|
VP8mv uvmv = *mv;
|
|
|
|
/* Y */
|
|
vp8_mc_luma(s, td, dst[0] + by_off * s->linesize + bx_off,
|
|
ref_frame, mv, x_off + bx_off, y_off + by_off,
|
|
block_w, block_h, width, height, s->linesize,
|
|
s->put_pixels_tab[block_w == 8]);
|
|
|
|
/* U/V */
|
|
if (s->profile == 3) {
|
|
/* this block only applies VP8; it is safe to check
|
|
* only the profile, as VP7 profile <= 1 */
|
|
uvmv.x &= ~7;
|
|
uvmv.y &= ~7;
|
|
}
|
|
x_off >>= 1;
|
|
y_off >>= 1;
|
|
bx_off >>= 1;
|
|
by_off >>= 1;
|
|
width >>= 1;
|
|
height >>= 1;
|
|
block_w >>= 1;
|
|
block_h >>= 1;
|
|
vp8_mc_chroma(s, td, dst[1] + by_off * s->uvlinesize + bx_off,
|
|
dst[2] + by_off * s->uvlinesize + bx_off, ref_frame,
|
|
&uvmv, x_off + bx_off, y_off + by_off,
|
|
block_w, block_h, width, height, s->uvlinesize,
|
|
s->put_pixels_tab[1 + (block_w == 4)]);
|
|
}
|
|
|
|
/* Fetch pixels for estimated mv 4 macroblocks ahead.
|
|
* Optimized for 64-byte cache lines. Inspired by ffh264 prefetch_motion. */
|
|
static av_always_inline
|
|
void prefetch_motion(const VP8Context *s, const VP8Macroblock *mb,
|
|
int mb_x, int mb_y, int mb_xy, int ref)
|
|
{
|
|
/* Don't prefetch refs that haven't been used very often this frame. */
|
|
if (s->ref_count[ref - 1] > (mb_xy >> 5)) {
|
|
int x_off = mb_x << 4, y_off = mb_y << 4;
|
|
int mx = (mb->mv.x >> 2) + x_off + 8;
|
|
int my = (mb->mv.y >> 2) + y_off;
|
|
uint8_t **src = s->framep[ref]->tf.f->data;
|
|
int off = mx + (my + (mb_x & 3) * 4) * s->linesize + 64;
|
|
/* For threading, a ff_thread_await_progress here might be useful, but
|
|
* it actually slows down the decoder. Since a bad prefetch doesn't
|
|
* generate bad decoder output, we don't run it here. */
|
|
s->vdsp.prefetch(src[0] + off, s->linesize, 4);
|
|
off = (mx >> 1) + ((my >> 1) + (mb_x & 7)) * s->uvlinesize + 64;
|
|
s->vdsp.prefetch(src[1] + off, src[2] - src[1], 2);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Apply motion vectors to prediction buffer, chapter 18.
|
|
*/
|
|
static av_always_inline
|
|
void inter_predict(VP8Context *s, VP8ThreadData *td, uint8_t *const dst[3],
|
|
VP8Macroblock *mb, int mb_x, int mb_y)
|
|
{
|
|
int x_off = mb_x << 4, y_off = mb_y << 4;
|
|
int width = 16 * s->mb_width, height = 16 * s->mb_height;
|
|
const ThreadFrame *ref = &s->framep[mb->ref_frame]->tf;
|
|
const VP8mv *bmv = mb->bmv;
|
|
|
|
switch (mb->partitioning) {
|
|
case VP8_SPLITMVMODE_NONE:
|
|
vp8_mc_part(s, td, dst, ref, x_off, y_off,
|
|
0, 0, 16, 16, width, height, &mb->mv);
|
|
break;
|
|
case VP8_SPLITMVMODE_4x4: {
|
|
int x, y;
|
|
VP8mv uvmv;
|
|
|
|
/* Y */
|
|
for (y = 0; y < 4; y++) {
|
|
for (x = 0; x < 4; x++) {
|
|
vp8_mc_luma(s, td, dst[0] + 4 * y * s->linesize + x * 4,
|
|
ref, &bmv[4 * y + x],
|
|
4 * x + x_off, 4 * y + y_off, 4, 4,
|
|
width, height, s->linesize,
|
|
s->put_pixels_tab[2]);
|
|
}
|
|
}
|
|
|
|
/* U/V */
|
|
x_off >>= 1;
|
|
y_off >>= 1;
|
|
width >>= 1;
|
|
height >>= 1;
|
|
for (y = 0; y < 2; y++) {
|
|
for (x = 0; x < 2; x++) {
|
|
uvmv.x = mb->bmv[2 * y * 4 + 2 * x ].x +
|
|
mb->bmv[2 * y * 4 + 2 * x + 1].x +
|
|
mb->bmv[(2 * y + 1) * 4 + 2 * x ].x +
|
|
mb->bmv[(2 * y + 1) * 4 + 2 * x + 1].x;
|
|
uvmv.y = mb->bmv[2 * y * 4 + 2 * x ].y +
|
|
mb->bmv[2 * y * 4 + 2 * x + 1].y +
|
|
mb->bmv[(2 * y + 1) * 4 + 2 * x ].y +
|
|
mb->bmv[(2 * y + 1) * 4 + 2 * x + 1].y;
|
|
uvmv.x = (uvmv.x + 2 + FF_SIGNBIT(uvmv.x)) >> 2;
|
|
uvmv.y = (uvmv.y + 2 + FF_SIGNBIT(uvmv.y)) >> 2;
|
|
if (s->profile == 3) {
|
|
uvmv.x &= ~7;
|
|
uvmv.y &= ~7;
|
|
}
|
|
vp8_mc_chroma(s, td, dst[1] + 4 * y * s->uvlinesize + x * 4,
|
|
dst[2] + 4 * y * s->uvlinesize + x * 4, ref,
|
|
&uvmv, 4 * x + x_off, 4 * y + y_off, 4, 4,
|
|
width, height, s->uvlinesize,
|
|
s->put_pixels_tab[2]);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case VP8_SPLITMVMODE_16x8:
|
|
vp8_mc_part(s, td, dst, ref, x_off, y_off,
|
|
0, 0, 16, 8, width, height, &bmv[0]);
|
|
vp8_mc_part(s, td, dst, ref, x_off, y_off,
|
|
0, 8, 16, 8, width, height, &bmv[1]);
|
|
break;
|
|
case VP8_SPLITMVMODE_8x16:
|
|
vp8_mc_part(s, td, dst, ref, x_off, y_off,
|
|
0, 0, 8, 16, width, height, &bmv[0]);
|
|
vp8_mc_part(s, td, dst, ref, x_off, y_off,
|
|
8, 0, 8, 16, width, height, &bmv[1]);
|
|
break;
|
|
case VP8_SPLITMVMODE_8x8:
|
|
vp8_mc_part(s, td, dst, ref, x_off, y_off,
|
|
0, 0, 8, 8, width, height, &bmv[0]);
|
|
vp8_mc_part(s, td, dst, ref, x_off, y_off,
|
|
8, 0, 8, 8, width, height, &bmv[1]);
|
|
vp8_mc_part(s, td, dst, ref, x_off, y_off,
|
|
0, 8, 8, 8, width, height, &bmv[2]);
|
|
vp8_mc_part(s, td, dst, ref, x_off, y_off,
|
|
8, 8, 8, 8, width, height, &bmv[3]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static av_always_inline
|
|
void idct_mb(VP8Context *s, VP8ThreadData *td, uint8_t *const dst[3],
|
|
const VP8Macroblock *mb)
|
|
{
|
|
int x, y, ch;
|
|
|
|
if (mb->mode != MODE_I4x4) {
|
|
uint8_t *y_dst = dst[0];
|
|
for (y = 0; y < 4; y++) {
|
|
uint32_t nnz4 = AV_RL32(td->non_zero_count_cache[y]);
|
|
if (nnz4) {
|
|
if (nnz4 & ~0x01010101) {
|
|
for (x = 0; x < 4; x++) {
|
|
if ((uint8_t) nnz4 == 1)
|
|
s->vp8dsp.vp8_idct_dc_add(y_dst + 4 * x,
|
|
td->block[y][x],
|
|
s->linesize);
|
|
else if ((uint8_t) nnz4 > 1)
|
|
s->vp8dsp.vp8_idct_add(y_dst + 4 * x,
|
|
td->block[y][x],
|
|
s->linesize);
|
|
nnz4 >>= 8;
|
|
if (!nnz4)
|
|
break;
|
|
}
|
|
} else {
|
|
s->vp8dsp.vp8_idct_dc_add4y(y_dst, td->block[y], s->linesize);
|
|
}
|
|
}
|
|
y_dst += 4 * s->linesize;
|
|
}
|
|
}
|
|
|
|
for (ch = 0; ch < 2; ch++) {
|
|
uint32_t nnz4 = AV_RL32(td->non_zero_count_cache[4 + ch]);
|
|
if (nnz4) {
|
|
uint8_t *ch_dst = dst[1 + ch];
|
|
if (nnz4 & ~0x01010101) {
|
|
for (y = 0; y < 2; y++) {
|
|
for (x = 0; x < 2; x++) {
|
|
if ((uint8_t) nnz4 == 1)
|
|
s->vp8dsp.vp8_idct_dc_add(ch_dst + 4 * x,
|
|
td->block[4 + ch][(y << 1) + x],
|
|
s->uvlinesize);
|
|
else if ((uint8_t) nnz4 > 1)
|
|
s->vp8dsp.vp8_idct_add(ch_dst + 4 * x,
|
|
td->block[4 + ch][(y << 1) + x],
|
|
s->uvlinesize);
|
|
nnz4 >>= 8;
|
|
if (!nnz4)
|
|
goto chroma_idct_end;
|
|
}
|
|
ch_dst += 4 * s->uvlinesize;
|
|
}
|
|
} else {
|
|
s->vp8dsp.vp8_idct_dc_add4uv(ch_dst, td->block[4 + ch], s->uvlinesize);
|
|
}
|
|
}
|
|
chroma_idct_end:
|
|
;
|
|
}
|
|
}
|
|
|
|
static av_always_inline
|
|
void filter_level_for_mb(const VP8Context *s, const VP8Macroblock *mb,
|
|
VP8FilterStrength *f, int is_vp7)
|
|
{
|
|
int interior_limit, filter_level;
|
|
|
|
if (s->segmentation.enabled) {
|
|
filter_level = s->segmentation.filter_level[mb->segment];
|
|
if (!s->segmentation.absolute_vals)
|
|
filter_level += s->filter.level;
|
|
} else
|
|
filter_level = s->filter.level;
|
|
|
|
if (s->lf_delta.enabled) {
|
|
filter_level += s->lf_delta.ref[mb->ref_frame];
|
|
filter_level += s->lf_delta.mode[mb->mode];
|
|
}
|
|
|
|
filter_level = av_clip_uintp2(filter_level, 6);
|
|
|
|
interior_limit = filter_level;
|
|
if (s->filter.sharpness) {
|
|
interior_limit >>= (s->filter.sharpness + 3) >> 2;
|
|
interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness);
|
|
}
|
|
interior_limit = FFMAX(interior_limit, 1);
|
|
|
|
f->filter_level = filter_level;
|
|
f->inner_limit = interior_limit;
|
|
f->inner_filter = is_vp7 || !mb->skip || mb->mode == MODE_I4x4 ||
|
|
mb->mode == VP8_MVMODE_SPLIT;
|
|
}
|
|
|
|
static av_always_inline
|
|
void filter_mb(const VP8Context *s, uint8_t *const dst[3], const VP8FilterStrength *f,
|
|
int mb_x, int mb_y, int is_vp7)
|
|
{
|
|
int mbedge_lim, bedge_lim_y, bedge_lim_uv, hev_thresh;
|
|
int filter_level = f->filter_level;
|
|
int inner_limit = f->inner_limit;
|
|
int inner_filter = f->inner_filter;
|
|
ptrdiff_t linesize = s->linesize;
|
|
ptrdiff_t uvlinesize = s->uvlinesize;
|
|
static const uint8_t hev_thresh_lut[2][64] = {
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
|
3, 3, 3, 3 },
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
2, 2, 2, 2 }
|
|
};
|
|
|
|
if (!filter_level)
|
|
return;
|
|
|
|
if (is_vp7) {
|
|
bedge_lim_y = filter_level;
|
|
bedge_lim_uv = filter_level * 2;
|
|
mbedge_lim = filter_level + 2;
|
|
} else {
|
|
bedge_lim_y =
|
|
bedge_lim_uv = filter_level * 2 + inner_limit;
|
|
mbedge_lim = bedge_lim_y + 4;
|
|
}
|
|
|
|
hev_thresh = hev_thresh_lut[s->keyframe][filter_level];
|
|
|
|
if (mb_x) {
|
|
s->vp8dsp.vp8_h_loop_filter16y(dst[0], linesize,
|
|
mbedge_lim, inner_limit, hev_thresh);
|
|
s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], uvlinesize,
|
|
mbedge_lim, inner_limit, hev_thresh);
|
|
}
|
|
|
|
#define H_LOOP_FILTER_16Y_INNER(cond) \
|
|
if (cond && inner_filter) { \
|
|
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 4, linesize, \
|
|
bedge_lim_y, inner_limit, \
|
|
hev_thresh); \
|
|
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 8, linesize, \
|
|
bedge_lim_y, inner_limit, \
|
|
hev_thresh); \
|
|
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 12, linesize, \
|
|
bedge_lim_y, inner_limit, \
|
|
hev_thresh); \
|
|
s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4, \
|
|
uvlinesize, bedge_lim_uv, \
|
|
inner_limit, hev_thresh); \
|
|
}
|
|
|
|
H_LOOP_FILTER_16Y_INNER(!is_vp7)
|
|
|
|
if (mb_y) {
|
|
s->vp8dsp.vp8_v_loop_filter16y(dst[0], linesize,
|
|
mbedge_lim, inner_limit, hev_thresh);
|
|
s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], uvlinesize,
|
|
mbedge_lim, inner_limit, hev_thresh);
|
|
}
|
|
|
|
if (inner_filter) {
|
|
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 4 * linesize,
|
|
linesize, bedge_lim_y,
|
|
inner_limit, hev_thresh);
|
|
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 8 * linesize,
|
|
linesize, bedge_lim_y,
|
|
inner_limit, hev_thresh);
|
|
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 12 * linesize,
|
|
linesize, bedge_lim_y,
|
|
inner_limit, hev_thresh);
|
|
s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * uvlinesize,
|
|
dst[2] + 4 * uvlinesize,
|
|
uvlinesize, bedge_lim_uv,
|
|
inner_limit, hev_thresh);
|
|
}
|
|
|
|
H_LOOP_FILTER_16Y_INNER(is_vp7)
|
|
}
|
|
|
|
static av_always_inline
|
|
void filter_mb_simple(const VP8Context *s, uint8_t *dst, const VP8FilterStrength *f,
|
|
int mb_x, int mb_y)
|
|
{
|
|
int mbedge_lim, bedge_lim;
|
|
int filter_level = f->filter_level;
|
|
int inner_limit = f->inner_limit;
|
|
int inner_filter = f->inner_filter;
|
|
ptrdiff_t linesize = s->linesize;
|
|
|
|
if (!filter_level)
|
|
return;
|
|
|
|
bedge_lim = 2 * filter_level + inner_limit;
|
|
mbedge_lim = bedge_lim + 4;
|
|
|
|
if (mb_x)
|
|
s->vp8dsp.vp8_h_loop_filter_simple(dst, linesize, mbedge_lim);
|
|
if (inner_filter) {
|
|
s->vp8dsp.vp8_h_loop_filter_simple(dst + 4, linesize, bedge_lim);
|
|
s->vp8dsp.vp8_h_loop_filter_simple(dst + 8, linesize, bedge_lim);
|
|
s->vp8dsp.vp8_h_loop_filter_simple(dst + 12, linesize, bedge_lim);
|
|
}
|
|
|
|
if (mb_y)
|
|
s->vp8dsp.vp8_v_loop_filter_simple(dst, linesize, mbedge_lim);
|
|
if (inner_filter) {
|
|
s->vp8dsp.vp8_v_loop_filter_simple(dst + 4 * linesize, linesize, bedge_lim);
|
|
s->vp8dsp.vp8_v_loop_filter_simple(dst + 8 * linesize, linesize, bedge_lim);
|
|
s->vp8dsp.vp8_v_loop_filter_simple(dst + 12 * linesize, linesize, bedge_lim);
|
|
}
|
|
}
|
|
|
|
#define MARGIN (16 << 2)
|
|
static av_always_inline
|
|
int vp78_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *curframe,
|
|
const VP8Frame *prev_frame, int is_vp7)
|
|
{
|
|
VP8Context *s = avctx->priv_data;
|
|
int mb_x, mb_y;
|
|
|
|
s->mv_bounds.mv_min.y = -MARGIN;
|
|
s->mv_bounds.mv_max.y = ((s->mb_height - 1) << 6) + MARGIN;
|
|
for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
|
|
VP8Macroblock *mb = s->macroblocks_base +
|
|
((s->mb_width + 1) * (mb_y + 1) + 1);
|
|
int mb_xy = mb_y * s->mb_width;
|
|
|
|
AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED * 0x01010101);
|
|
|
|
s->mv_bounds.mv_min.x = -MARGIN;
|
|
s->mv_bounds.mv_max.x = ((s->mb_width - 1) << 6) + MARGIN;
|
|
|
|
for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) {
|
|
if (vpx_rac_is_end(&s->c)) {
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if (mb_y == 0)
|
|
AV_WN32A((mb - s->mb_width - 1)->intra4x4_pred_mode_top,
|
|
DC_PRED * 0x01010101);
|
|
decode_mb_mode(s, &s->mv_bounds, mb, mb_x, mb_y, curframe->seg_map->data + mb_xy,
|
|
prev_frame && prev_frame->seg_map ?
|
|
prev_frame->seg_map->data + mb_xy : NULL, 1, is_vp7);
|
|
s->mv_bounds.mv_min.x -= 64;
|
|
s->mv_bounds.mv_max.x -= 64;
|
|
}
|
|
s->mv_bounds.mv_min.y -= 64;
|
|
s->mv_bounds.mv_max.y -= 64;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int vp7_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *cur_frame,
|
|
const VP8Frame *prev_frame)
|
|
{
|
|
return vp78_decode_mv_mb_modes(avctx, cur_frame, prev_frame, IS_VP7);
|
|
}
|
|
|
|
static int vp8_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *cur_frame,
|
|
const VP8Frame *prev_frame)
|
|
{
|
|
return vp78_decode_mv_mb_modes(avctx, cur_frame, prev_frame, IS_VP8);
|
|
}
|
|
|
|
#if HAVE_THREADS
|
|
#define check_thread_pos(td, otd, mb_x_check, mb_y_check) \
|
|
do { \
|
|
int tmp = (mb_y_check << 16) | (mb_x_check & 0xFFFF); \
|
|
if (atomic_load(&otd->thread_mb_pos) < tmp) { \
|
|
pthread_mutex_lock(&otd->lock); \
|
|
atomic_store(&td->wait_mb_pos, tmp); \
|
|
do { \
|
|
if (atomic_load(&otd->thread_mb_pos) >= tmp) \
|
|
break; \
|
|
pthread_cond_wait(&otd->cond, &otd->lock); \
|
|
} while (1); \
|
|
atomic_store(&td->wait_mb_pos, INT_MAX); \
|
|
pthread_mutex_unlock(&otd->lock); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define update_pos(td, mb_y, mb_x) \
|
|
do { \
|
|
int pos = (mb_y << 16) | (mb_x & 0xFFFF); \
|
|
int sliced_threading = (avctx->active_thread_type == FF_THREAD_SLICE) && \
|
|
(num_jobs > 1); \
|
|
int is_null = !next_td || !prev_td; \
|
|
int pos_check = (is_null) ? 1 : \
|
|
(next_td != td && pos >= atomic_load(&next_td->wait_mb_pos)) || \
|
|
(prev_td != td && pos >= atomic_load(&prev_td->wait_mb_pos)); \
|
|
atomic_store(&td->thread_mb_pos, pos); \
|
|
if (sliced_threading && pos_check) { \
|
|
pthread_mutex_lock(&td->lock); \
|
|
pthread_cond_broadcast(&td->cond); \
|
|
pthread_mutex_unlock(&td->lock); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define check_thread_pos(td, otd, mb_x_check, mb_y_check) while(0)
|
|
#define update_pos(td, mb_y, mb_x) while(0)
|
|
#endif
|
|
|
|
static av_always_inline int decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata,
|
|
int jobnr, int threadnr, int is_vp7)
|
|
{
|
|
VP8Context *s = avctx->priv_data;
|
|
VP8ThreadData *prev_td, *next_td, *td = &s->thread_data[threadnr];
|
|
int mb_y = atomic_load(&td->thread_mb_pos) >> 16;
|
|
int mb_x, mb_xy = mb_y * s->mb_width;
|
|
int num_jobs = s->num_jobs;
|
|
const VP8Frame *prev_frame = s->prev_frame;
|
|
VP8Frame *curframe = s->curframe;
|
|
VPXRangeCoder *coeff_c = &s->coeff_partition[mb_y & (s->num_coeff_partitions - 1)];
|
|
|
|
VP8Macroblock *mb;
|
|
uint8_t *dst[3] = {
|
|
curframe->tf.f->data[0] + 16 * mb_y * s->linesize,
|
|
curframe->tf.f->data[1] + 8 * mb_y * s->uvlinesize,
|
|
curframe->tf.f->data[2] + 8 * mb_y * s->uvlinesize
|
|
};
|
|
|
|
if (vpx_rac_is_end(&s->c))
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
if (mb_y == 0)
|
|
prev_td = td;
|
|
else
|
|
prev_td = &s->thread_data[(jobnr + num_jobs - 1) % num_jobs];
|
|
if (mb_y == s->mb_height - 1)
|
|
next_td = td;
|
|
else
|
|
next_td = &s->thread_data[(jobnr + 1) % num_jobs];
|
|
if (s->mb_layout == 1)
|
|
mb = s->macroblocks_base + ((s->mb_width + 1) * (mb_y + 1) + 1);
|
|
else {
|
|
// Make sure the previous frame has read its segmentation map,
|
|
// if we re-use the same map.
|
|
if (prev_frame && s->segmentation.enabled &&
|
|
!s->segmentation.update_map)
|
|
ff_thread_await_progress(&prev_frame->tf, mb_y, 0);
|
|
mb = s->macroblocks + (s->mb_height - mb_y - 1) * 2;
|
|
memset(mb - 1, 0, sizeof(*mb)); // zero left macroblock
|
|
AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED * 0x01010101);
|
|
}
|
|
|
|
if (!is_vp7 || mb_y == 0)
|
|
memset(td->left_nnz, 0, sizeof(td->left_nnz));
|
|
|
|
td->mv_bounds.mv_min.x = -MARGIN;
|
|
td->mv_bounds.mv_max.x = ((s->mb_width - 1) << 6) + MARGIN;
|
|
|
|
for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) {
|
|
if (vpx_rac_is_end(&s->c))
|
|
return AVERROR_INVALIDDATA;
|
|
// Wait for previous thread to read mb_x+2, and reach mb_y-1.
|
|
if (prev_td != td) {
|
|
if (threadnr != 0) {
|
|
check_thread_pos(td, prev_td,
|
|
mb_x + (is_vp7 ? 2 : 1),
|
|
mb_y - (is_vp7 ? 2 : 1));
|
|
} else {
|
|
check_thread_pos(td, prev_td,
|
|
mb_x + (is_vp7 ? 2 : 1) + s->mb_width + 3,
|
|
mb_y - (is_vp7 ? 2 : 1));
|
|
}
|
|
}
|
|
|
|
s->vdsp.prefetch(dst[0] + (mb_x & 3) * 4 * s->linesize + 64,
|
|
s->linesize, 4);
|
|
s->vdsp.prefetch(dst[1] + (mb_x & 7) * s->uvlinesize + 64,
|
|
dst[2] - dst[1], 2);
|
|
|
|
if (!s->mb_layout)
|
|
decode_mb_mode(s, &td->mv_bounds, mb, mb_x, mb_y, curframe->seg_map->data + mb_xy,
|
|
prev_frame && prev_frame->seg_map ?
|
|
prev_frame->seg_map->data + mb_xy : NULL, 0, is_vp7);
|
|
|
|
prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP8_FRAME_PREVIOUS);
|
|
|
|
if (!mb->skip) {
|
|
if (vpx_rac_is_end(coeff_c))
|
|
return AVERROR_INVALIDDATA;
|
|
decode_mb_coeffs(s, td, coeff_c, mb, s->top_nnz[mb_x], td->left_nnz, is_vp7);
|
|
}
|
|
|
|
if (mb->mode <= MODE_I4x4)
|
|
intra_predict(s, td, dst, mb, mb_x, mb_y, is_vp7);
|
|
else
|
|
inter_predict(s, td, dst, mb, mb_x, mb_y);
|
|
|
|
prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP8_FRAME_GOLDEN);
|
|
|
|
if (!mb->skip) {
|
|
idct_mb(s, td, dst, mb);
|
|
} else {
|
|
AV_ZERO64(td->left_nnz);
|
|
AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned
|
|
|
|
/* Reset DC block predictors if they would exist
|
|
* if the mb had coefficients */
|
|
if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
|
|
td->left_nnz[8] = 0;
|
|
s->top_nnz[mb_x][8] = 0;
|
|
}
|
|
}
|
|
|
|
if (s->deblock_filter)
|
|
filter_level_for_mb(s, mb, &td->filter_strength[mb_x], is_vp7);
|
|
|
|
if (s->deblock_filter && num_jobs != 1 && threadnr == num_jobs - 1) {
|
|
if (s->filter.simple)
|
|
backup_mb_border(s->top_border[mb_x + 1], dst[0],
|
|
NULL, NULL, s->linesize, 0, 1);
|
|
else
|
|
backup_mb_border(s->top_border[mb_x + 1], dst[0],
|
|
dst[1], dst[2], s->linesize, s->uvlinesize, 0);
|
|
}
|
|
|
|
prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP8_FRAME_ALTREF);
|
|
|
|
dst[0] += 16;
|
|
dst[1] += 8;
|
|
dst[2] += 8;
|
|
td->mv_bounds.mv_min.x -= 64;
|
|
td->mv_bounds.mv_max.x -= 64;
|
|
|
|
if (mb_x == s->mb_width + 1) {
|
|
update_pos(td, mb_y, s->mb_width + 3);
|
|
} else {
|
|
update_pos(td, mb_y, mb_x);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int vp7_decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata,
|
|
int jobnr, int threadnr)
|
|
{
|
|
return decode_mb_row_no_filter(avctx, tdata, jobnr, threadnr, 1);
|
|
}
|
|
|
|
static int vp8_decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata,
|
|
int jobnr, int threadnr)
|
|
{
|
|
return decode_mb_row_no_filter(avctx, tdata, jobnr, threadnr, 0);
|
|
}
|
|
|
|
static av_always_inline void filter_mb_row(AVCodecContext *avctx, void *tdata,
|
|
int jobnr, int threadnr, int is_vp7)
|
|
{
|
|
VP8Context *s = avctx->priv_data;
|
|
VP8ThreadData *td = &s->thread_data[threadnr];
|
|
int mb_x, mb_y = atomic_load(&td->thread_mb_pos) >> 16, num_jobs = s->num_jobs;
|
|
AVFrame *curframe = s->curframe->tf.f;
|
|
VP8Macroblock *mb;
|
|
VP8ThreadData *prev_td, *next_td;
|
|
uint8_t *dst[3] = {
|
|
curframe->data[0] + 16 * mb_y * s->linesize,
|
|
curframe->data[1] + 8 * mb_y * s->uvlinesize,
|
|
curframe->data[2] + 8 * mb_y * s->uvlinesize
|
|
};
|
|
|
|
if (s->mb_layout == 1)
|
|
mb = s->macroblocks_base + ((s->mb_width + 1) * (mb_y + 1) + 1);
|
|
else
|
|
mb = s->macroblocks + (s->mb_height - mb_y - 1) * 2;
|
|
|
|
if (mb_y == 0)
|
|
prev_td = td;
|
|
else
|
|
prev_td = &s->thread_data[(jobnr + num_jobs - 1) % num_jobs];
|
|
if (mb_y == s->mb_height - 1)
|
|
next_td = td;
|
|
else
|
|
next_td = &s->thread_data[(jobnr + 1) % num_jobs];
|
|
|
|
for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb++) {
|
|
const VP8FilterStrength *f = &td->filter_strength[mb_x];
|
|
if (prev_td != td)
|
|
check_thread_pos(td, prev_td,
|
|
(mb_x + 1) + (s->mb_width + 3), mb_y - 1);
|
|
if (next_td != td)
|
|
if (next_td != &s->thread_data[0])
|
|
check_thread_pos(td, next_td, mb_x + 1, mb_y + 1);
|
|
|
|
if (num_jobs == 1) {
|
|
if (s->filter.simple)
|
|
backup_mb_border(s->top_border[mb_x + 1], dst[0],
|
|
NULL, NULL, s->linesize, 0, 1);
|
|
else
|
|
backup_mb_border(s->top_border[mb_x + 1], dst[0],
|
|
dst[1], dst[2], s->linesize, s->uvlinesize, 0);
|
|
}
|
|
|
|
if (s->filter.simple)
|
|
filter_mb_simple(s, dst[0], f, mb_x, mb_y);
|
|
else
|
|
filter_mb(s, dst, f, mb_x, mb_y, is_vp7);
|
|
dst[0] += 16;
|
|
dst[1] += 8;
|
|
dst[2] += 8;
|
|
|
|
update_pos(td, mb_y, (s->mb_width + 3) + mb_x);
|
|
}
|
|
}
|
|
|
|
static void vp7_filter_mb_row(AVCodecContext *avctx, void *tdata,
|
|
int jobnr, int threadnr)
|
|
{
|
|
filter_mb_row(avctx, tdata, jobnr, threadnr, 1);
|
|
}
|
|
|
|
static void vp8_filter_mb_row(AVCodecContext *avctx, void *tdata,
|
|
int jobnr, int threadnr)
|
|
{
|
|
filter_mb_row(avctx, tdata, jobnr, threadnr, 0);
|
|
}
|
|
|
|
static av_always_inline
|
|
int vp78_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata, int jobnr,
|
|
int threadnr, int is_vp7)
|
|
{
|
|
const VP8Context *s = avctx->priv_data;
|
|
VP8ThreadData *td = &s->thread_data[jobnr];
|
|
VP8ThreadData *next_td = NULL, *prev_td = NULL;
|
|
VP8Frame *curframe = s->curframe;
|
|
int mb_y, num_jobs = s->num_jobs;
|
|
int ret;
|
|
|
|
td->thread_nr = threadnr;
|
|
td->mv_bounds.mv_min.y = -MARGIN - 64 * threadnr;
|
|
td->mv_bounds.mv_max.y = ((s->mb_height - 1) << 6) + MARGIN - 64 * threadnr;
|
|
for (mb_y = jobnr; mb_y < s->mb_height; mb_y += num_jobs) {
|
|
atomic_store(&td->thread_mb_pos, mb_y << 16);
|
|
ret = s->decode_mb_row_no_filter(avctx, tdata, jobnr, threadnr);
|
|
if (ret < 0) {
|
|
update_pos(td, s->mb_height, INT_MAX & 0xFFFF);
|
|
return ret;
|
|
}
|
|
if (s->deblock_filter)
|
|
s->filter_mb_row(avctx, tdata, jobnr, threadnr);
|
|
update_pos(td, mb_y, INT_MAX & 0xFFFF);
|
|
|
|
td->mv_bounds.mv_min.y -= 64 * num_jobs;
|
|
td->mv_bounds.mv_max.y -= 64 * num_jobs;
|
|
|
|
if (avctx->active_thread_type == FF_THREAD_FRAME)
|
|
ff_thread_report_progress(&curframe->tf, mb_y, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vp7_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata,
|
|
int jobnr, int threadnr)
|
|
{
|
|
return vp78_decode_mb_row_sliced(avctx, tdata, jobnr, threadnr, IS_VP7);
|
|
}
|
|
|
|
static int vp8_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata,
|
|
int jobnr, int threadnr)
|
|
{
|
|
return vp78_decode_mb_row_sliced(avctx, tdata, jobnr, threadnr, IS_VP8);
|
|
}
|
|
|
|
static av_always_inline
|
|
int vp78_decode_frame(AVCodecContext *avctx, AVFrame *rframe, int *got_frame,
|
|
const AVPacket *avpkt, int is_vp7)
|
|
{
|
|
VP8Context *s = avctx->priv_data;
|
|
int ret, i, referenced, num_jobs;
|
|
enum AVDiscard skip_thresh;
|
|
VP8Frame *av_uninit(curframe), *prev_frame;
|
|
|
|
if (is_vp7)
|
|
ret = vp7_decode_frame_header(s, avpkt->data, avpkt->size);
|
|
else
|
|
ret = vp8_decode_frame_header(s, avpkt->data, avpkt->size);
|
|
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
if (s->actually_webp) {
|
|
// avctx->pix_fmt already set in caller.
|
|
} else if (!is_vp7 && s->pix_fmt == AV_PIX_FMT_NONE) {
|
|
s->pix_fmt = get_pixel_format(s);
|
|
if (s->pix_fmt < 0) {
|
|
ret = AVERROR(EINVAL);
|
|
goto err;
|
|
}
|
|
avctx->pix_fmt = s->pix_fmt;
|
|
}
|
|
|
|
prev_frame = s->framep[VP8_FRAME_CURRENT];
|
|
|
|
referenced = s->update_last || s->update_golden == VP8_FRAME_CURRENT ||
|
|
s->update_altref == VP8_FRAME_CURRENT;
|
|
|
|
skip_thresh = !referenced ? AVDISCARD_NONREF
|
|
: !s->keyframe ? AVDISCARD_NONKEY
|
|
: AVDISCARD_ALL;
|
|
|
|
if (avctx->skip_frame >= skip_thresh) {
|
|
s->invisible = 1;
|
|
memcpy(&s->next_framep[0], &s->framep[0], sizeof(s->framep[0]) * 4);
|
|
goto skip_decode;
|
|
}
|
|
s->deblock_filter = s->filter.level && avctx->skip_loop_filter < skip_thresh;
|
|
|
|
// release no longer referenced frames
|
|
for (i = 0; i < 5; i++)
|
|
if (s->frames[i].tf.f->buf[0] &&
|
|
&s->frames[i] != prev_frame &&
|
|
&s->frames[i] != s->framep[VP8_FRAME_PREVIOUS] &&
|
|
&s->frames[i] != s->framep[VP8_FRAME_GOLDEN] &&
|
|
&s->frames[i] != s->framep[VP8_FRAME_ALTREF])
|
|
vp8_release_frame(s, &s->frames[i]);
|
|
|
|
curframe = s->framep[VP8_FRAME_CURRENT] = vp8_find_free_buffer(s);
|
|
|
|
if (!s->colorspace)
|
|
avctx->colorspace = AVCOL_SPC_BT470BG;
|
|
if (s->fullrange)
|
|
avctx->color_range = AVCOL_RANGE_JPEG;
|
|
else
|
|
avctx->color_range = AVCOL_RANGE_MPEG;
|
|
|
|
/* Given that arithmetic probabilities are updated every frame, it's quite
|
|
* likely that the values we have on a random interframe are complete
|
|
* junk if we didn't start decode on a keyframe. So just don't display
|
|
* anything rather than junk. */
|
|
if (!s->keyframe && (!s->framep[VP8_FRAME_PREVIOUS] ||
|
|
!s->framep[VP8_FRAME_GOLDEN] ||
|
|
!s->framep[VP8_FRAME_ALTREF])) {
|
|
av_log(avctx, AV_LOG_WARNING,
|
|
"Discarding interframe without a prior keyframe!\n");
|
|
ret = AVERROR_INVALIDDATA;
|
|
goto err;
|
|
}
|
|
|
|
if (s->keyframe)
|
|
curframe->tf.f->flags |= AV_FRAME_FLAG_KEY;
|
|
else
|
|
curframe->tf.f->flags &= ~AV_FRAME_FLAG_KEY;
|
|
curframe->tf.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I
|
|
: AV_PICTURE_TYPE_P;
|
|
if ((ret = vp8_alloc_frame(s, curframe, referenced)) < 0)
|
|
goto err;
|
|
|
|
// check if golden and altref are swapped
|
|
if (s->update_altref != VP8_FRAME_NONE)
|
|
s->next_framep[VP8_FRAME_ALTREF] = s->framep[s->update_altref];
|
|
else
|
|
s->next_framep[VP8_FRAME_ALTREF] = s->framep[VP8_FRAME_ALTREF];
|
|
|
|
if (s->update_golden != VP8_FRAME_NONE)
|
|
s->next_framep[VP8_FRAME_GOLDEN] = s->framep[s->update_golden];
|
|
else
|
|
s->next_framep[VP8_FRAME_GOLDEN] = s->framep[VP8_FRAME_GOLDEN];
|
|
|
|
if (s->update_last)
|
|
s->next_framep[VP8_FRAME_PREVIOUS] = curframe;
|
|
else
|
|
s->next_framep[VP8_FRAME_PREVIOUS] = s->framep[VP8_FRAME_PREVIOUS];
|
|
|
|
s->next_framep[VP8_FRAME_CURRENT] = curframe;
|
|
|
|
if (ffcodec(avctx->codec)->update_thread_context)
|
|
ff_thread_finish_setup(avctx);
|
|
|
|
if (avctx->hwaccel) {
|
|
ret = avctx->hwaccel->start_frame(avctx, avpkt->data, avpkt->size);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
ret = avctx->hwaccel->decode_slice(avctx, avpkt->data, avpkt->size);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
ret = avctx->hwaccel->end_frame(avctx);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
} else {
|
|
s->linesize = curframe->tf.f->linesize[0];
|
|
s->uvlinesize = curframe->tf.f->linesize[1];
|
|
|
|
memset(s->top_nnz, 0, s->mb_width * sizeof(*s->top_nnz));
|
|
/* Zero macroblock structures for top/top-left prediction
|
|
* from outside the frame. */
|
|
if (!s->mb_layout)
|
|
memset(s->macroblocks + s->mb_height * 2 - 1, 0,
|
|
(s->mb_width + 1) * sizeof(*s->macroblocks));
|
|
if (!s->mb_layout && s->keyframe)
|
|
memset(s->intra4x4_pred_mode_top, DC_PRED, s->mb_width * 4);
|
|
|
|
memset(s->ref_count, 0, sizeof(s->ref_count));
|
|
|
|
if (s->mb_layout == 1) {
|
|
// Make sure the previous frame has read its segmentation map,
|
|
// if we re-use the same map.
|
|
if (prev_frame && s->segmentation.enabled &&
|
|
!s->segmentation.update_map)
|
|
ff_thread_await_progress(&prev_frame->tf, 1, 0);
|
|
if (is_vp7)
|
|
ret = vp7_decode_mv_mb_modes(avctx, curframe, prev_frame);
|
|
else
|
|
ret = vp8_decode_mv_mb_modes(avctx, curframe, prev_frame);
|
|
if (ret < 0)
|
|
goto err;
|
|
}
|
|
|
|
if (avctx->active_thread_type == FF_THREAD_FRAME)
|
|
num_jobs = 1;
|
|
else
|
|
num_jobs = FFMIN(s->num_coeff_partitions, avctx->thread_count);
|
|
s->num_jobs = num_jobs;
|
|
s->curframe = curframe;
|
|
s->prev_frame = prev_frame;
|
|
s->mv_bounds.mv_min.y = -MARGIN;
|
|
s->mv_bounds.mv_max.y = ((s->mb_height - 1) << 6) + MARGIN;
|
|
for (i = 0; i < MAX_THREADS; i++) {
|
|
VP8ThreadData *td = &s->thread_data[i];
|
|
atomic_init(&td->thread_mb_pos, 0);
|
|
atomic_init(&td->wait_mb_pos, INT_MAX);
|
|
}
|
|
if (is_vp7)
|
|
avctx->execute2(avctx, vp7_decode_mb_row_sliced, s->thread_data, NULL,
|
|
num_jobs);
|
|
else
|
|
avctx->execute2(avctx, vp8_decode_mb_row_sliced, s->thread_data, NULL,
|
|
num_jobs);
|
|
}
|
|
|
|
ff_thread_report_progress(&curframe->tf, INT_MAX, 0);
|
|
memcpy(&s->framep[0], &s->next_framep[0], sizeof(s->framep[0]) * 4);
|
|
|
|
skip_decode:
|
|
// if future frames don't use the updated probabilities,
|
|
// reset them to the values we saved
|
|
if (!s->update_probabilities)
|
|
s->prob[0] = s->prob[1];
|
|
|
|
if (!s->invisible) {
|
|
if ((ret = av_frame_ref(rframe, curframe->tf.f)) < 0)
|
|
return ret;
|
|
*got_frame = 1;
|
|
}
|
|
|
|
return avpkt->size;
|
|
err:
|
|
memcpy(&s->next_framep[0], &s->framep[0], sizeof(s->framep[0]) * 4);
|
|
return ret;
|
|
}
|
|
|
|
int ff_vp8_decode_frame(AVCodecContext *avctx, AVFrame *frame,
|
|
int *got_frame, AVPacket *avpkt)
|
|
{
|
|
return vp78_decode_frame(avctx, frame, got_frame, avpkt, IS_VP8);
|
|
}
|
|
|
|
#if CONFIG_VP7_DECODER
|
|
static int vp7_decode_frame(AVCodecContext *avctx, AVFrame *frame,
|
|
int *got_frame, AVPacket *avpkt)
|
|
{
|
|
return vp78_decode_frame(avctx, frame, got_frame, avpkt, IS_VP7);
|
|
}
|
|
#endif /* CONFIG_VP7_DECODER */
|
|
|
|
av_cold int ff_vp8_decode_free(AVCodecContext *avctx)
|
|
{
|
|
VP8Context *s = avctx->priv_data;
|
|
int i;
|
|
|
|
vp8_decode_flush_impl(avctx, 1);
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++)
|
|
av_frame_free(&s->frames[i].tf.f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_cold int vp8_init_frames(VP8Context *s)
|
|
{
|
|
int i;
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++) {
|
|
s->frames[i].tf.f = av_frame_alloc();
|
|
if (!s->frames[i].tf.f)
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static av_always_inline
|
|
int vp78_decode_init(AVCodecContext *avctx, int is_vp7)
|
|
{
|
|
VP8Context *s = avctx->priv_data;
|
|
int ret;
|
|
|
|
s->avctx = avctx;
|
|
s->vp7 = avctx->codec->id == AV_CODEC_ID_VP7;
|
|
s->pix_fmt = AV_PIX_FMT_NONE;
|
|
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
|
|
|
|
ff_videodsp_init(&s->vdsp, 8);
|
|
|
|
ff_vp78dsp_init(&s->vp8dsp);
|
|
if (CONFIG_VP7_DECODER && is_vp7) {
|
|
ff_h264_pred_init(&s->hpc, AV_CODEC_ID_VP7, 8, 1);
|
|
ff_vp7dsp_init(&s->vp8dsp);
|
|
s->decode_mb_row_no_filter = vp7_decode_mb_row_no_filter;
|
|
s->filter_mb_row = vp7_filter_mb_row;
|
|
} else if (CONFIG_VP8_DECODER && !is_vp7) {
|
|
ff_h264_pred_init(&s->hpc, AV_CODEC_ID_VP8, 8, 1);
|
|
ff_vp8dsp_init(&s->vp8dsp);
|
|
s->decode_mb_row_no_filter = vp8_decode_mb_row_no_filter;
|
|
s->filter_mb_row = vp8_filter_mb_row;
|
|
}
|
|
|
|
/* does not change for VP8 */
|
|
memcpy(s->prob[0].scan, ff_zigzag_scan, sizeof(s->prob[0].scan));
|
|
|
|
if ((ret = vp8_init_frames(s)) < 0) {
|
|
ff_vp8_decode_free(avctx);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if CONFIG_VP7_DECODER
|
|
static int vp7_decode_init(AVCodecContext *avctx)
|
|
{
|
|
return vp78_decode_init(avctx, IS_VP7);
|
|
}
|
|
#endif /* CONFIG_VP7_DECODER */
|
|
|
|
av_cold int ff_vp8_decode_init(AVCodecContext *avctx)
|
|
{
|
|
return vp78_decode_init(avctx, IS_VP8);
|
|
}
|
|
|
|
#if CONFIG_VP8_DECODER
|
|
#if HAVE_THREADS
|
|
#define REBASE(pic) ((pic) ? (pic) - &s_src->frames[0] + &s->frames[0] : NULL)
|
|
|
|
static int vp8_decode_update_thread_context(AVCodecContext *dst,
|
|
const AVCodecContext *src)
|
|
{
|
|
VP8Context *s = dst->priv_data, *s_src = src->priv_data;
|
|
int i;
|
|
|
|
if (s->macroblocks_base &&
|
|
(s_src->mb_width != s->mb_width || s_src->mb_height != s->mb_height)) {
|
|
free_buffers(s);
|
|
s->mb_width = s_src->mb_width;
|
|
s->mb_height = s_src->mb_height;
|
|
}
|
|
|
|
s->pix_fmt = s_src->pix_fmt;
|
|
s->prob[0] = s_src->prob[!s_src->update_probabilities];
|
|
s->segmentation = s_src->segmentation;
|
|
s->lf_delta = s_src->lf_delta;
|
|
memcpy(s->sign_bias, s_src->sign_bias, sizeof(s->sign_bias));
|
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s_src->frames); i++) {
|
|
if (s_src->frames[i].tf.f->buf[0]) {
|
|
int ret = vp8_ref_frame(s, &s->frames[i], &s_src->frames[i]);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
s->framep[0] = REBASE(s_src->next_framep[0]);
|
|
s->framep[1] = REBASE(s_src->next_framep[1]);
|
|
s->framep[2] = REBASE(s_src->next_framep[2]);
|
|
s->framep[3] = REBASE(s_src->next_framep[3]);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* HAVE_THREADS */
|
|
#endif /* CONFIG_VP8_DECODER */
|
|
|
|
#if CONFIG_VP7_DECODER
|
|
const FFCodec ff_vp7_decoder = {
|
|
.p.name = "vp7",
|
|
CODEC_LONG_NAME("On2 VP7"),
|
|
.p.type = AVMEDIA_TYPE_VIDEO,
|
|
.p.id = AV_CODEC_ID_VP7,
|
|
.priv_data_size = sizeof(VP8Context),
|
|
.init = vp7_decode_init,
|
|
.close = ff_vp8_decode_free,
|
|
FF_CODEC_DECODE_CB(vp7_decode_frame),
|
|
.p.capabilities = AV_CODEC_CAP_DR1,
|
|
.flush = vp8_decode_flush,
|
|
};
|
|
#endif /* CONFIG_VP7_DECODER */
|
|
|
|
#if CONFIG_VP8_DECODER
|
|
const FFCodec ff_vp8_decoder = {
|
|
.p.name = "vp8",
|
|
CODEC_LONG_NAME("On2 VP8"),
|
|
.p.type = AVMEDIA_TYPE_VIDEO,
|
|
.p.id = AV_CODEC_ID_VP8,
|
|
.priv_data_size = sizeof(VP8Context),
|
|
.init = ff_vp8_decode_init,
|
|
.close = ff_vp8_decode_free,
|
|
FF_CODEC_DECODE_CB(ff_vp8_decode_frame),
|
|
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
|
|
AV_CODEC_CAP_SLICE_THREADS,
|
|
.caps_internal = FF_CODEC_CAP_ALLOCATE_PROGRESS,
|
|
.flush = vp8_decode_flush,
|
|
UPDATE_THREAD_CONTEXT(vp8_decode_update_thread_context),
|
|
.hw_configs = (const AVCodecHWConfigInternal *const []) {
|
|
#if CONFIG_VP8_VAAPI_HWACCEL
|
|
HWACCEL_VAAPI(vp8),
|
|
#endif
|
|
#if CONFIG_VP8_NVDEC_HWACCEL
|
|
HWACCEL_NVDEC(vp8),
|
|
#endif
|
|
NULL
|
|
},
|
|
};
|
|
#endif /* CONFIG_VP7_DECODER */
|