1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/libavcodec/aacenc_utils.h
Claudio Freire 62dfe1d40d avcodec/aacenc_is: replace pow(x, 0.75) by x/sqrtf(sqrtf(x))
This is quite an accurate approximation; testing shows ~ 2ulp error in
the floating point result. Tested with FATE.

Alternatively, if one wants "full accuracy", one can use powf, or sqrt
instead of sqrtf. With powf, one gets 1 ulp error (theoretically should be 0, as
0.75 is exactly representable) on GNU libm, with sqrt, 0 ulp error.

Signed-off-by: Ganesh Ajjanagadde <gajjanagadde@gmail.com>

Abstracted into pos_pow34 utility function

Signed-off-by: Claudio Freire <klaussfreire@gmail.com>
2016-01-14 00:38:22 -03:00

264 lines
8.0 KiB
C

/*
* AAC encoder utilities
* Copyright (C) 2015 Rostislav Pehlivanov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC encoder utilities
* @author Rostislav Pehlivanov ( atomnuker gmail com )
*/
#ifndef AVCODEC_AACENC_UTILS_H
#define AVCODEC_AACENC_UTILS_H
#include "aac.h"
#include "aacenctab.h"
#include "aactab.h"
#define ROUND_STANDARD 0.4054f
#define ROUND_TO_ZERO 0.1054f
#define C_QUANT 0.4054f
static inline void abs_pow34_v(float *out, const float *in, const int size)
{
int i;
for (i = 0; i < size; i++) {
float a = fabsf(in[i]);
out[i] = sqrtf(a * sqrtf(a));
}
}
static inline float pos_pow34(float a)
{
return sqrtf(a * sqrtf(a));
}
/**
* Quantize one coefficient.
* @return absolute value of the quantized coefficient
* @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
*/
static inline int quant(float coef, const float Q, const float rounding)
{
float a = coef * Q;
return sqrtf(a * sqrtf(a)) + rounding;
}
static inline void quantize_bands(int *out, const float *in, const float *scaled,
int size, float Q34, int is_signed, int maxval,
const float rounding)
{
int i;
double qc;
for (i = 0; i < size; i++) {
qc = scaled[i] * Q34;
out[i] = (int)FFMIN(qc + rounding, (double)maxval);
if (is_signed && in[i] < 0.0f) {
out[i] = -out[i];
}
}
}
static inline float find_max_val(int group_len, int swb_size, const float *scaled)
{
float maxval = 0.0f;
int w2, i;
for (w2 = 0; w2 < group_len; w2++) {
for (i = 0; i < swb_size; i++) {
maxval = FFMAX(maxval, scaled[w2*128+i]);
}
}
return maxval;
}
static inline int find_min_book(float maxval, int sf)
{
float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
float Q34 = sqrtf(Q * sqrtf(Q));
int qmaxval, cb;
qmaxval = maxval * Q34 + C_QUANT;
if (qmaxval >= (FF_ARRAY_ELEMS(aac_maxval_cb)))
cb = 11;
else
cb = aac_maxval_cb[qmaxval];
return cb;
}
static inline float find_form_factor(int group_len, int swb_size, float thresh,
const float *scaled, float nzslope) {
const float iswb_size = 1.0f / swb_size;
const float iswb_sizem1 = 1.0f / (swb_size - 1);
const float ethresh = thresh;
float form = 0.0f, weight = 0.0f;
int w2, i;
for (w2 = 0; w2 < group_len; w2++) {
float e = 0.0f, e2 = 0.0f, var = 0.0f, maxval = 0.0f;
float nzl = 0;
for (i = 0; i < swb_size; i++) {
float s = fabsf(scaled[w2*128+i]);
maxval = FFMAX(maxval, s);
e += s;
e2 += s *= s;
/* We really don't want a hard non-zero-line count, since
* even below-threshold lines do add up towards band spectral power.
* So, fall steeply towards zero, but smoothly
*/
if (s >= ethresh) {
nzl += 1.0f;
} else {
nzl += powf(s / ethresh, nzslope);
}
}
if (e2 > thresh) {
float frm;
e *= iswb_size;
/** compute variance */
for (i = 0; i < swb_size; i++) {
float d = fabsf(scaled[w2*128+i]) - e;
var += d*d;
}
var = sqrtf(var * iswb_sizem1);
e2 *= iswb_size;
frm = e / FFMIN(e+4*var,maxval);
form += e2 * sqrtf(frm) / FFMAX(0.5f,nzl);
weight += e2;
}
}
if (weight > 0) {
return form / weight;
} else {
return 1.0f;
}
}
/** Return the minimum scalefactor where the quantized coef does not clip. */
static inline uint8_t coef2minsf(float coef)
{
return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
}
/** Return the maximum scalefactor where the quantized coef is not zero. */
static inline uint8_t coef2maxsf(float coef)
{
return av_clip_uint8(log2f(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
}
/*
* Returns the closest possible index to an array of float values, given a value.
*/
static inline int quant_array_idx(const float val, const float *arr, const int num)
{
int i, index = 0;
float quant_min_err = INFINITY;
for (i = 0; i < num; i++) {
float error = (val - arr[i])*(val - arr[i]);
if (error < quant_min_err) {
quant_min_err = error;
index = i;
}
}
return index;
}
/**
* approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f)))
*/
static av_always_inline float bval2bmax(float b)
{
return 0.001f + 0.0035f * (b*b*b) / (15.5f*15.5f*15.5f);
}
/*
* Compute a nextband map to be used with SF delta constraint utilities.
* The nextband array should contain 128 elements, and positions that don't
* map to valid, nonzero bands of the form w*16+g (with w being the initial
* window of the window group, only) are left indetermined.
*/
static inline void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband)
{
unsigned char prevband = 0;
int w, g;
/** Just a safe default */
for (g = 0; g < 128; g++)
nextband[g] = g;
/** Now really navigate the nonzero band chain */
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
if (!sce->zeroes[w*16+g] && sce->band_type[w*16+g] < RESERVED_BT)
prevband = nextband[prevband] = w*16+g;
}
}
nextband[prevband] = prevband; /* terminate */
}
/*
* Updates nextband to reflect a removed band (equivalent to
* calling ff_init_nextband_map after marking a band as zero)
*/
static inline void ff_nextband_remove(uint8_t *nextband, int prevband, int band)
{
nextband[prevband] = nextband[band];
}
/*
* Checks whether the specified band could be removed without inducing
* scalefactor delta that violates SF delta encoding constraints.
* prev_sf has to be the scalefactor of the previous nonzero, nonspecial
* band, in encoding order, or negative if there was no such band.
*/
static inline int ff_sfdelta_can_remove_band(const SingleChannelElement *sce,
const uint8_t *nextband, int prev_sf, int band)
{
return prev_sf >= 0
&& sce->sf_idx[nextband[band]] >= (prev_sf - SCALE_MAX_DIFF)
&& sce->sf_idx[nextband[band]] <= (prev_sf + SCALE_MAX_DIFF);
}
/*
* Checks whether the specified band's scalefactor could be replaced
* with another one without violating SF delta encoding constraints.
* prev_sf has to be the scalefactor of the previous nonzero, nonsepcial
* band, in encoding order, or negative if there was no such band.
*/
static inline int ff_sfdelta_can_replace(const SingleChannelElement *sce,
const uint8_t *nextband, int prev_sf, int new_sf, int band)
{
return new_sf >= (prev_sf - SCALE_MAX_DIFF)
&& new_sf <= (prev_sf + SCALE_MAX_DIFF)
&& sce->sf_idx[nextband[band]] >= (new_sf - SCALE_MAX_DIFF)
&& sce->sf_idx[nextband[band]] <= (new_sf + SCALE_MAX_DIFF);
}
#define ERROR_IF(cond, ...) \
if (cond) { \
av_log(avctx, AV_LOG_ERROR, __VA_ARGS__); \
return AVERROR(EINVAL); \
}
#define WARN_IF(cond, ...) \
if (cond) { \
av_log(avctx, AV_LOG_WARNING, __VA_ARGS__); \
}
#endif /* AVCODEC_AACENC_UTILS_H */