1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-12 19:18:44 +02:00
FFmpeg/libavcodec/dvenc.c
Anton Khirnov f7b3fc4afe lavc/dv: rename constants to follow our naming conventions
CamelCase for enum tags, ALL_CAPS for enum values.
2022-09-05 08:10:26 +02:00

1252 lines
46 KiB
C

/*
* DV encoder
* Copyright (c) 2003 Roman Shaposhnik
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* quant_deadzone code and fixes sponsored by NOA GmbH
*/
/**
* @file
* DV encoder
*/
#include "config.h"
#include "libavutil/attributes.h"
#include "libavutil/internal.h"
#include "libavutil/mem_internal.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/thread.h"
#include "avcodec.h"
#include "codec_internal.h"
#include "dv.h"
#include "dv_internal.h"
#include "dv_profile_internal.h"
#include "dv_tablegen.h"
#include "encode.h"
#include "fdctdsp.h"
#include "mathops.h"
#include "me_cmp.h"
#include "pixblockdsp.h"
#include "put_bits.h"
typedef struct DVEncContext {
const AVClass *class;
const AVDVProfile *sys;
const AVFrame *frame;
AVCodecContext *avctx;
uint8_t *buf;
void (*get_pixels)(int16_t *block, const uint8_t *pixels, ptrdiff_t linesize);
void (*fdct[2])(int16_t *block);
me_cmp_func ildct_cmp;
DVwork_chunk work_chunks[4 * 12 * 27];
int quant_deadzone;
} DVEncContext;
static av_cold int dvvideo_encode_init(AVCodecContext *avctx)
{
DVEncContext *s = avctx->priv_data;
FDCTDSPContext fdsp;
MECmpContext mecc;
PixblockDSPContext pdsp;
int ret;
s->avctx = avctx;
if (avctx->chroma_sample_location != AVCHROMA_LOC_TOPLEFT) {
const char *name = av_chroma_location_name(avctx->chroma_sample_location);
av_log(avctx, AV_LOG_WARNING, "Only top-left chroma location is supported "
"in DV, input value is: %s\n", name ? name : "unknown");
if (avctx->strict_std_compliance > FF_COMPLIANCE_NORMAL)
return AVERROR(EINVAL);
}
s->sys = av_dv_codec_profile2(avctx->width, avctx->height, avctx->pix_fmt, avctx->time_base);
if (!s->sys) {
av_log(avctx, AV_LOG_ERROR, "Found no DV profile for %ix%i %s video. "
"Valid DV profiles are:\n",
avctx->width, avctx->height, av_get_pix_fmt_name(avctx->pix_fmt));
ff_dv_print_profiles(avctx, AV_LOG_ERROR);
return AVERROR(EINVAL);
}
ret = ff_dv_init_dynamic_tables(s->work_chunks, s->sys);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "Error initializing work tables.\n");
return ret;
}
memset(&fdsp,0, sizeof(fdsp));
memset(&mecc,0, sizeof(mecc));
memset(&pdsp,0, sizeof(pdsp));
ff_fdctdsp_init(&fdsp, avctx);
ff_me_cmp_init(&mecc, avctx);
ff_pixblockdsp_init(&pdsp, avctx);
ff_set_cmp(&mecc, mecc.ildct_cmp, avctx->ildct_cmp);
s->get_pixels = pdsp.get_pixels;
s->ildct_cmp = mecc.ildct_cmp[5];
s->fdct[0] = fdsp.fdct;
s->fdct[1] = fdsp.fdct248;
#if !CONFIG_HARDCODED_TABLES
{
static AVOnce init_static_once = AV_ONCE_INIT;
ff_thread_once(&init_static_once, dv_vlc_map_tableinit);
}
#endif
return 0;
}
/* bit budget for AC only in 5 MBs */
static const int vs_total_ac_bits_hd = (68 * 6 + 52*2) * 5;
static const int vs_total_ac_bits = (100 * 4 + 68 * 2) * 5;
static const int mb_area_start[5] = { 1, 6, 21, 43, 64 };
#if CONFIG_SMALL
/* Convert run and level (where level != 0) pair into VLC, returning bit size */
static av_always_inline int dv_rl2vlc(int run, int level, int sign,
uint32_t *vlc)
{
int size;
if (run < DV_VLC_MAP_RUN_SIZE && level < DV_VLC_MAP_LEV_SIZE) {
*vlc = dv_vlc_map[run][level].vlc | sign;
size = dv_vlc_map[run][level].size;
} else {
if (level < DV_VLC_MAP_LEV_SIZE) {
*vlc = dv_vlc_map[0][level].vlc | sign;
size = dv_vlc_map[0][level].size;
} else {
*vlc = 0xfe00 | (level << 1) | sign;
size = 16;
}
if (run) {
*vlc |= ((run < 16) ? dv_vlc_map[run - 1][0].vlc :
(0x1f80 | (run - 1))) << size;
size += (run < 16) ? dv_vlc_map[run - 1][0].size : 13;
}
}
return size;
}
static av_always_inline int dv_rl2vlc_size(int run, int level)
{
int size;
if (run < DV_VLC_MAP_RUN_SIZE && level < DV_VLC_MAP_LEV_SIZE) {
size = dv_vlc_map[run][level].size;
} else {
size = (level < DV_VLC_MAP_LEV_SIZE) ? dv_vlc_map[0][level].size : 16;
if (run)
size += (run < 16) ? dv_vlc_map[run - 1][0].size : 13;
}
return size;
}
#else
static av_always_inline int dv_rl2vlc(int run, int l, int sign, uint32_t *vlc)
{
*vlc = dv_vlc_map[run][l].vlc | sign;
return dv_vlc_map[run][l].size;
}
static av_always_inline int dv_rl2vlc_size(int run, int l)
{
return dv_vlc_map[run][l].size;
}
#endif
typedef struct EncBlockInfo {
int area_q[4];
int bit_size[4];
int prev[5];
int cur_ac;
int cno;
int dct_mode;
int16_t mb[64];
uint8_t next[64];
uint8_t sign[64];
uint8_t partial_bit_count;
uint32_t partial_bit_buffer; /* we can't use uint16_t here */
/* used by DV100 only: a copy of the weighted and classified but
not-yet-quantized AC coefficients. This is necessary for
re-quantizing at different steps. */
int16_t save[64];
int min_qlevel; /* DV100 only: minimum qlevel (for AC coefficients >255) */
} EncBlockInfo;
static av_always_inline PutBitContext *dv_encode_ac(EncBlockInfo *bi,
PutBitContext *pb_pool,
PutBitContext *pb_end)
{
int prev, bits_left;
PutBitContext *pb = pb_pool;
int size = bi->partial_bit_count;
uint32_t vlc = bi->partial_bit_buffer;
bi->partial_bit_count =
bi->partial_bit_buffer = 0;
for (;;) {
/* Find suitable storage space */
for (; size > (bits_left = put_bits_left(pb)); pb++) {
if (bits_left) {
size -= bits_left;
put_bits(pb, bits_left, vlc >> size);
vlc = av_mod_uintp2(vlc, size);
}
if (pb + 1 >= pb_end) {
bi->partial_bit_count = size;
bi->partial_bit_buffer = vlc;
return pb;
}
}
/* Store VLC */
put_bits(pb, size, vlc);
if (bi->cur_ac >= 64)
break;
/* Construct the next VLC */
prev = bi->cur_ac;
bi->cur_ac = bi->next[prev];
if (bi->cur_ac < 64) {
size = dv_rl2vlc(bi->cur_ac - prev - 1, bi->mb[bi->cur_ac],
bi->sign[bi->cur_ac], &vlc);
} else {
size = 4;
vlc = 6; /* End Of Block stamp */
}
}
return pb;
}
static av_always_inline int dv_guess_dct_mode(DVEncContext *s, const uint8_t *data,
ptrdiff_t linesize)
{
if (s->avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
int ps = s->ildct_cmp(NULL, data, NULL, linesize, 8) - 400;
if (ps > 0) {
int is = s->ildct_cmp(NULL, data, NULL, linesize * 2, 4) +
s->ildct_cmp(NULL, data + linesize, NULL, linesize * 2, 4);
return ps > is;
}
}
return 0;
}
static const int dv_weight_bits = 18;
static const int dv_weight_88[64] = {
131072, 257107, 257107, 242189, 252167, 242189, 235923, 237536,
237536, 235923, 229376, 231390, 223754, 231390, 229376, 222935,
224969, 217965, 217965, 224969, 222935, 200636, 218652, 211916,
212325, 211916, 218652, 200636, 188995, 196781, 205965, 206433,
206433, 205965, 196781, 188995, 185364, 185364, 200636, 200704,
200636, 185364, 185364, 174609, 180568, 195068, 195068, 180568,
174609, 170091, 175557, 189591, 175557, 170091, 165371, 170627,
170627, 165371, 160727, 153560, 160727, 144651, 144651, 136258,
};
static const int dv_weight_248[64] = {
131072, 262144, 257107, 257107, 242189, 242189, 242189, 242189,
237536, 237536, 229376, 229376, 200636, 200636, 224973, 224973,
223754, 223754, 235923, 235923, 229376, 229376, 217965, 217965,
211916, 211916, 196781, 196781, 185364, 185364, 206433, 206433,
211916, 211916, 222935, 222935, 200636, 200636, 205964, 205964,
200704, 200704, 180568, 180568, 175557, 175557, 195068, 195068,
185364, 185364, 188995, 188995, 174606, 174606, 175557, 175557,
170627, 170627, 153560, 153560, 165371, 165371, 144651, 144651,
};
/* setting this to 1 results in a faster codec but
* somewhat lower image quality */
#define DV100_SACRIFICE_QUALITY_FOR_SPEED 1
#define DV100_ENABLE_FINER 1
/* pack combination of QNO and CNO into a single 8-bit value */
#define DV100_MAKE_QLEVEL(qno,cno) ((qno<<2) | (cno))
#define DV100_QLEVEL_QNO(qlevel) (qlevel>>2)
#define DV100_QLEVEL_CNO(qlevel) (qlevel&0x3)
#define DV100_NUM_QLEVELS 31
/* The quantization step is determined by a combination of QNO and
CNO. We refer to these combinations as "qlevels" (this term is our
own, it's not mentioned in the spec). We use CNO, a multiplier on
the quantization step, to "fill in the gaps" between quantization
steps associated with successive values of QNO. e.g. there is no
QNO for a quantization step of 10, but we can use QNO=5 CNO=1 to
get the same result. The table below encodes combinations of QNO
and CNO in order of increasing quantization coarseness. */
static const uint8_t dv100_qlevels[DV100_NUM_QLEVELS] = {
DV100_MAKE_QLEVEL( 1,0), // 1*1= 1
DV100_MAKE_QLEVEL( 1,0), // 1*1= 1
DV100_MAKE_QLEVEL( 2,0), // 2*1= 2
DV100_MAKE_QLEVEL( 3,0), // 3*1= 3
DV100_MAKE_QLEVEL( 4,0), // 4*1= 4
DV100_MAKE_QLEVEL( 5,0), // 5*1= 5
DV100_MAKE_QLEVEL( 6,0), // 6*1= 6
DV100_MAKE_QLEVEL( 7,0), // 7*1= 7
DV100_MAKE_QLEVEL( 8,0), // 8*1= 8
DV100_MAKE_QLEVEL( 5,1), // 5*2=10
DV100_MAKE_QLEVEL( 6,1), // 6*2=12
DV100_MAKE_QLEVEL( 7,1), // 7*2=14
DV100_MAKE_QLEVEL( 9,0), // 16*1=16
DV100_MAKE_QLEVEL(10,0), // 18*1=18
DV100_MAKE_QLEVEL(11,0), // 20*1=20
DV100_MAKE_QLEVEL(12,0), // 22*1=22
DV100_MAKE_QLEVEL(13,0), // 24*1=24
DV100_MAKE_QLEVEL(14,0), // 28*1=28
DV100_MAKE_QLEVEL( 9,1), // 16*2=32
DV100_MAKE_QLEVEL(10,1), // 18*2=36
DV100_MAKE_QLEVEL(11,1), // 20*2=40
DV100_MAKE_QLEVEL(12,1), // 22*2=44
DV100_MAKE_QLEVEL(13,1), // 24*2=48
DV100_MAKE_QLEVEL(15,0), // 52*1=52
DV100_MAKE_QLEVEL(14,1), // 28*2=56
DV100_MAKE_QLEVEL( 9,2), // 16*4=64
DV100_MAKE_QLEVEL(10,2), // 18*4=72
DV100_MAKE_QLEVEL(11,2), // 20*4=80
DV100_MAKE_QLEVEL(12,2), // 22*4=88
DV100_MAKE_QLEVEL(13,2), // 24*4=96
// ...
DV100_MAKE_QLEVEL(15,3), // 52*8=416
};
static const int dv100_min_bias = 0;
static const int dv100_chroma_bias = 0;
static const int dv100_starting_qno = 1;
#if DV100_SACRIFICE_QUALITY_FOR_SPEED
static const int dv100_qlevel_inc = 4;
#else
static const int dv100_qlevel_inc = 1;
#endif
// 1/qstep, shifted up by 16 bits
static const int dv100_qstep_bits = 16;
static const int dv100_qstep_inv[16] = {
65536, 65536, 32768, 21845, 16384, 13107, 10923, 9362, 8192, 4096, 3641, 3277, 2979, 2731, 2341, 1260,
};
/* DV100 weights are pre-zigzagged, inverted and multiplied by 2^16
(in DV100 the AC components are divided by the spec weights) */
static const int dv_weight_1080[2][64] = {
{ 8192, 65536, 65536, 61681, 61681, 61681, 58254, 58254,
58254, 58254, 58254, 58254, 55188, 58254, 58254, 55188,
55188, 55188, 55188, 55188, 55188, 24966, 27594, 26214,
26214, 26214, 27594, 24966, 23831, 24385, 25575, 25575,
25575, 25575, 24385, 23831, 23302, 23302, 24966, 24966,
24966, 23302, 23302, 21845, 22795, 24385, 24385, 22795,
21845, 21400, 21845, 23831, 21845, 21400, 10382, 10700,
10700, 10382, 10082, 9620, 10082, 9039, 9039, 8525, },
{ 8192, 65536, 65536, 61681, 61681, 61681, 41943, 41943,
41943, 41943, 40330, 41943, 40330, 41943, 40330, 40330,
40330, 38836, 38836, 40330, 40330, 24966, 27594, 26214,
26214, 26214, 27594, 24966, 23831, 24385, 25575, 25575,
25575, 25575, 24385, 23831, 11523, 11523, 12483, 12483,
12483, 11523, 11523, 10923, 11275, 12193, 12193, 11275,
10923, 5323, 5490, 5924, 5490, 5323, 5165, 5323,
5323, 5165, 5017, 4788, 5017, 4520, 4520, 4263, }
};
static const int dv_weight_720[2][64] = {
{ 8192, 65536, 65536, 61681, 61681, 61681, 58254, 58254,
58254, 58254, 58254, 58254, 55188, 58254, 58254, 55188,
55188, 55188, 55188, 55188, 55188, 24966, 27594, 26214,
26214, 26214, 27594, 24966, 23831, 24385, 25575, 25575,
25575, 25575, 24385, 23831, 15420, 15420, 16644, 16644,
16644, 15420, 15420, 10923, 11398, 12193, 12193, 11398,
10923, 10700, 10923, 11916, 10923, 10700, 5191, 5350,
5350, 5191, 5041, 4810, 5041, 4520, 4520, 4263, },
{ 8192, 43691, 43691, 40330, 40330, 40330, 29127, 29127,
29127, 29127, 29127, 29127, 27594, 29127, 29127, 27594,
27594, 27594, 27594, 27594, 27594, 12483, 13797, 13107,
13107, 13107, 13797, 12483, 11916, 12193, 12788, 12788,
12788, 12788, 12193, 11916, 5761, 5761, 6242, 6242,
6242, 5761, 5761, 5461, 5638, 5461, 6096, 5638,
5461, 2661, 2745, 2962, 2745, 2661, 2583, 2661,
2661, 2583, 2509, 2394, 2509, 2260, 2260, 2131, }
};
static av_always_inline int dv_set_class_number_sd(DVEncContext *s,
int16_t *blk, EncBlockInfo *bi,
const uint8_t *zigzag_scan,
const int *weight, int bias)
{
int i, area;
/* We offer two different methods for class number assignment: the
* method suggested in SMPTE 314M Table 22, and an improved
* method. The SMPTE method is very conservative; it assigns class
* 3 (i.e. severe quantization) to any block where the largest AC
* component is greater than 36. FFmpeg's DV encoder tracks AC bit
* consumption precisely, so there is no need to bias most blocks
* towards strongly lossy compression. Instead, we assign class 2
* to most blocks, and use class 3 only when strictly necessary
* (for blocks whose largest AC component exceeds 255). */
#if 0 /* SMPTE spec method */
static const int classes[] = { 12, 24, 36, 0xffff };
#else /* improved FFmpeg method */
static const int classes[] = { -1, -1, 255, 0xffff };
#endif
int max = classes[0];
int prev = 0;
const unsigned deadzone = s->quant_deadzone;
const unsigned threshold = 2 * deadzone;
bi->mb[0] = blk[0];
for (area = 0; area < 4; area++) {
bi->prev[area] = prev;
bi->bit_size[area] = 1; // 4 areas 4 bits for EOB :)
for (i = mb_area_start[area]; i < mb_area_start[area + 1]; i++) {
int level = blk[zigzag_scan[i]];
if (level + deadzone > threshold) {
bi->sign[i] = (level >> 31) & 1;
/* Weight it and shift down into range, adding for rounding.
* The extra division by a factor of 2^4 reverses the 8x
* expansion of the DCT AND the 2x doubling of the weights. */
level = (FFABS(level) * weight[i] + (1 << (dv_weight_bits + 3))) >>
(dv_weight_bits + 4);
if (!level)
continue;
bi->mb[i] = level;
if (level > max)
max = level;
bi->bit_size[area] += dv_rl2vlc_size(i - prev - 1, level);
bi->next[prev] = i;
prev = i;
}
}
}
bi->next[prev] = i;
for (bi->cno = 0; max > classes[bi->cno]; bi->cno++)
;
bi->cno += bias;
if (bi->cno >= 3) {
bi->cno = 3;
prev = 0;
i = bi->next[prev];
for (area = 0; area < 4; area++) {
bi->prev[area] = prev;
bi->bit_size[area] = 1; // 4 areas 4 bits for EOB :)
for (; i < mb_area_start[area + 1]; i = bi->next[i]) {
bi->mb[i] >>= 1;
if (bi->mb[i]) {
bi->bit_size[area] += dv_rl2vlc_size(i - prev - 1, bi->mb[i]);
bi->next[prev] = i;
prev = i;
}
}
}
bi->next[prev] = i;
}
return bi->bit_size[0] + bi->bit_size[1] +
bi->bit_size[2] + bi->bit_size[3];
}
/* this function just copies the DCT coefficients and performs
the initial (non-)quantization. */
static inline void dv_set_class_number_hd(DVEncContext *s,
int16_t *blk, EncBlockInfo *bi,
const uint8_t *zigzag_scan,
const int *weight, int bias)
{
int i, max = 0;
/* the first quantization (none at all) */
bi->area_q[0] = 1;
/* weigh AC components and store to save[] */
/* (i=0 is the DC component; we only include it to make the
number of loop iterations even, for future possible SIMD optimization) */
for (i = 0; i < 64; i += 2) {
int level0, level1;
/* get the AC component (in zig-zag order) */
level0 = blk[zigzag_scan[i+0]];
level1 = blk[zigzag_scan[i+1]];
/* extract sign and make it the lowest bit */
bi->sign[i+0] = (level0>>31)&1;
bi->sign[i+1] = (level1>>31)&1;
/* take absolute value of the level */
level0 = FFABS(level0);
level1 = FFABS(level1);
/* weigh it */
level0 = (level0*weight[i+0] + 4096 + (1<<17)) >> 18;
level1 = (level1*weight[i+1] + 4096 + (1<<17)) >> 18;
/* save unquantized value */
bi->save[i+0] = level0;
bi->save[i+1] = level1;
/* find max component */
if (bi->save[i+0] > max)
max = bi->save[i+0];
if (bi->save[i+1] > max)
max = bi->save[i+1];
}
/* copy DC component */
bi->mb[0] = blk[0];
/* the EOB code is 4 bits */
bi->bit_size[0] = 4;
bi->bit_size[1] = bi->bit_size[2] = bi->bit_size[3] = 0;
/* ensure that no AC coefficients are cut off */
bi->min_qlevel = ((max+256) >> 8);
bi->area_q[0] = 25; /* set to an "impossible" value */
bi->cno = 0;
}
static av_always_inline int dv_init_enc_block(EncBlockInfo* bi, const uint8_t *data, int linesize,
DVEncContext *s, int chroma)
{
LOCAL_ALIGNED_16(int16_t, blk, [64]);
bi->area_q[0] = bi->area_q[1] = bi->area_q[2] = bi->area_q[3] = 0;
bi->partial_bit_count = 0;
bi->partial_bit_buffer = 0;
bi->cur_ac = 0;
if (data) {
if (DV_PROFILE_IS_HD(s->sys)) {
s->get_pixels(blk, data, linesize * (1 << bi->dct_mode));
s->fdct[0](blk);
} else {
bi->dct_mode = dv_guess_dct_mode(s, data, linesize);
s->get_pixels(blk, data, linesize);
s->fdct[bi->dct_mode](blk);
}
} else {
/* We rely on the fact that encoding all zeros leads to an immediate EOB,
which is precisely what the spec calls for in the "dummy" blocks. */
memset(blk, 0, 64*sizeof(*blk));
bi->dct_mode = 0;
}
if (DV_PROFILE_IS_HD(s->sys)) {
const int *weights;
if (s->sys->height == 1080) {
weights = dv_weight_1080[chroma];
} else { /* 720p */
weights = dv_weight_720[chroma];
}
dv_set_class_number_hd(s, blk, bi,
ff_zigzag_direct,
weights,
dv100_min_bias+chroma*dv100_chroma_bias);
} else {
dv_set_class_number_sd(s, blk, bi,
bi->dct_mode ? ff_dv_zigzag248_direct : ff_zigzag_direct,
bi->dct_mode ? dv_weight_248 : dv_weight_88,
chroma);
}
return bi->bit_size[0] + bi->bit_size[1] + bi->bit_size[2] + bi->bit_size[3];
}
/* DV100 quantize
Perform quantization by divinding the AC component by the qstep.
As an optimization we use a fixed-point integer multiply instead
of a divide. */
static av_always_inline int dv100_quantize(int level, int qsinv)
{
/* this code is equivalent to */
/* return (level + qs/2) / qs; */
return (level * qsinv + 1024 + (1<<(dv100_qstep_bits-1))) >> dv100_qstep_bits;
/* the extra +1024 is needed to make the rounding come out right. */
/* I (DJM) have verified that the results are exactly the same as
division for level 0-2048 at all QNOs. */
}
static int dv100_actual_quantize(EncBlockInfo *b, int qlevel)
{
int prev, k, qsinv;
int qno = DV100_QLEVEL_QNO(dv100_qlevels[qlevel]);
int cno = DV100_QLEVEL_CNO(dv100_qlevels[qlevel]);
if (b->area_q[0] == qno && b->cno == cno)
return b->bit_size[0];
qsinv = dv100_qstep_inv[qno];
/* record the new qstep */
b->area_q[0] = qno;
b->cno = cno;
/* reset encoded size (EOB = 4 bits) */
b->bit_size[0] = 4;
/* visit nonzero components and quantize */
prev = 0;
for (k = 1; k < 64; k++) {
/* quantize */
int ac = dv100_quantize(b->save[k], qsinv) >> cno;
if (ac) {
if (ac > 255)
ac = 255;
b->mb[k] = ac;
b->bit_size[0] += dv_rl2vlc_size(k - prev - 1, ac);
b->next[prev] = k;
prev = k;
}
}
b->next[prev] = k;
return b->bit_size[0];
}
static inline void dv_guess_qnos_hd(EncBlockInfo *blks, int *qnos)
{
EncBlockInfo *b;
int min_qlevel[5];
int qlevels[5];
int size[5];
int i, j;
/* cache block sizes at hypothetical qlevels */
uint16_t size_cache[5*8][DV100_NUM_QLEVELS] = {{0}};
/* get minimum qlevels */
for (i = 0; i < 5; i++) {
min_qlevel[i] = 1;
for (j = 0; j < 8; j++) {
if (blks[8*i+j].min_qlevel > min_qlevel[i])
min_qlevel[i] = blks[8*i+j].min_qlevel;
}
}
/* initialize sizes */
for (i = 0; i < 5; i++) {
qlevels[i] = dv100_starting_qno;
if (qlevels[i] < min_qlevel[i])
qlevels[i] = min_qlevel[i];
qnos[i] = DV100_QLEVEL_QNO(dv100_qlevels[qlevels[i]]);
size[i] = 0;
for (j = 0; j < 8; j++) {
size_cache[8*i+j][qlevels[i]] = dv100_actual_quantize(&blks[8*i+j], qlevels[i]);
size[i] += size_cache[8*i+j][qlevels[i]];
}
}
/* must we go coarser? */
if (size[0]+size[1]+size[2]+size[3]+size[4] > vs_total_ac_bits_hd) {
int largest = size[0] % 5; /* 'random' number */
int qlevels_done = 0;
do {
/* find the macroblock with the lowest qlevel */
for (i = 0; i < 5; i++) {
if (qlevels[i] < qlevels[largest])
largest = i;
}
i = largest;
/* ensure that we don't enter infinite loop */
largest = (largest+1) % 5;
/* quantize a little bit more */
qlevels[i] += dv100_qlevel_inc;
if (qlevels[i] > DV100_NUM_QLEVELS-1) {
qlevels[i] = DV100_NUM_QLEVELS-1;
qlevels_done++;
}
qnos[i] = DV100_QLEVEL_QNO(dv100_qlevels[qlevels[i]]);
size[i] = 0;
/* for each block */
b = &blks[8*i];
for (j = 0; j < 8; j++, b++) {
/* accumulate block size into macroblock */
if(size_cache[8*i+j][qlevels[i]] == 0) {
/* it is safe to use actual_quantize() here because we only go from finer to coarser,
and it saves the final actual_quantize() down below */
size_cache[8*i+j][qlevels[i]] = dv100_actual_quantize(b, qlevels[i]);
}
size[i] += size_cache[8*i+j][qlevels[i]];
} /* for each block */
} while (vs_total_ac_bits_hd < size[0] + size[1] + size[2] + size[3] + size[4] && qlevels_done < 5);
// can we go finer?
} else if (DV100_ENABLE_FINER &&
size[0]+size[1]+size[2]+size[3]+size[4] < vs_total_ac_bits_hd) {
int save_qlevel;
int largest = size[0] % 5; /* 'random' number */
while (qlevels[0] > min_qlevel[0] ||
qlevels[1] > min_qlevel[1] ||
qlevels[2] > min_qlevel[2] ||
qlevels[3] > min_qlevel[3] ||
qlevels[4] > min_qlevel[4]) {
/* find the macroblock with the highest qlevel */
for (i = 0; i < 5; i++) {
if (qlevels[i] > min_qlevel[i] && qlevels[i] > qlevels[largest])
largest = i;
}
i = largest;
/* ensure that we don't enter infinite loop */
largest = (largest+1) % 5;
if (qlevels[i] <= min_qlevel[i]) {
/* can't unquantize any more */
continue;
}
/* quantize a little bit less */
save_qlevel = qlevels[i];
qlevels[i] -= dv100_qlevel_inc;
if (qlevels[i] < min_qlevel[i])
qlevels[i] = min_qlevel[i];
qnos[i] = DV100_QLEVEL_QNO(dv100_qlevels[qlevels[i]]);
size[i] = 0;
/* for each block */
b = &blks[8*i];
for (j = 0; j < 8; j++, b++) {
/* accumulate block size into macroblock */
if(size_cache[8*i+j][qlevels[i]] == 0) {
size_cache[8*i+j][qlevels[i]] = dv100_actual_quantize(b, qlevels[i]);
}
size[i] += size_cache[8*i+j][qlevels[i]];
} /* for each block */
/* did we bust the limit? */
if (vs_total_ac_bits_hd < size[0] + size[1] + size[2] + size[3] + size[4]) {
/* go back down and exit */
qlevels[i] = save_qlevel;
qnos[i] = DV100_QLEVEL_QNO(dv100_qlevels[qlevels[i]]);
break;
}
}
}
/* now do the actual quantization */
for (i = 0; i < 5; i++) {
/* for each block */
b = &blks[8*i];
size[i] = 0;
for (j = 0; j < 8; j++, b++) {
/* accumulate block size into macroblock */
size[i] += dv100_actual_quantize(b, qlevels[i]);
} /* for each block */
}
}
static inline void dv_guess_qnos(EncBlockInfo *blks, int *qnos)
{
int size[5];
int i, j, k, a, prev, a2;
EncBlockInfo *b;
size[0] =
size[1] =
size[2] =
size[3] =
size[4] = 1 << 24;
do {
b = blks;
for (i = 0; i < 5; i++) {
if (!qnos[i])
continue;
qnos[i]--;
size[i] = 0;
for (j = 0; j < 6; j++, b++) {
for (a = 0; a < 4; a++) {
if (b->area_q[a] != ff_dv_quant_shifts[qnos[i] + ff_dv_quant_offset[b->cno]][a]) {
b->bit_size[a] = 1; // 4 areas 4 bits for EOB :)
b->area_q[a]++;
prev = b->prev[a];
av_assert2(b->next[prev] >= mb_area_start[a + 1] || b->mb[prev]);
for (k = b->next[prev]; k < mb_area_start[a + 1]; k = b->next[k]) {
b->mb[k] >>= 1;
if (b->mb[k]) {
b->bit_size[a] += dv_rl2vlc_size(k - prev - 1, b->mb[k]);
prev = k;
} else {
if (b->next[k] >= mb_area_start[a + 1] && b->next[k] < 64) {
for (a2 = a + 1; b->next[k] >= mb_area_start[a2 + 1]; a2++)
b->prev[a2] = prev;
av_assert2(a2 < 4);
av_assert2(b->mb[b->next[k]]);
b->bit_size[a2] += dv_rl2vlc_size(b->next[k] - prev - 1, b->mb[b->next[k]]) -
dv_rl2vlc_size(b->next[k] - k - 1, b->mb[b->next[k]]);
av_assert2(b->prev[a2] == k && (a2 + 1 >= 4 || b->prev[a2 + 1] != k));
b->prev[a2] = prev;
}
b->next[prev] = b->next[k];
}
}
b->prev[a + 1] = prev;
}
size[i] += b->bit_size[a];
}
}
if (vs_total_ac_bits >= size[0] + size[1] + size[2] + size[3] + size[4])
return;
}
} while (qnos[0] | qnos[1] | qnos[2] | qnos[3] | qnos[4]);
for (a = 2; a == 2 || vs_total_ac_bits < size[0]; a += a) {
b = blks;
size[0] = 5 * 6 * 4; // EOB
for (j = 0; j < 6 * 5; j++, b++) {
prev = b->prev[0];
for (k = b->next[prev]; k < 64; k = b->next[k]) {
if (b->mb[k] < a && b->mb[k] > -a) {
b->next[prev] = b->next[k];
} else {
size[0] += dv_rl2vlc_size(k - prev - 1, b->mb[k]);
prev = k;
}
}
}
}
}
/* update all cno values into the blocks, over-writing the old values without
touching anything else. (only used for DV100) */
static inline void dv_revise_cnos(uint8_t *dif, EncBlockInfo *blk, const AVDVProfile *profile)
{
uint8_t *data;
int mb_index, i;
for (mb_index = 0; mb_index < 5; mb_index++) {
data = dif + mb_index*80 + 4;
for (i = 0; i < profile->bpm; i++) {
/* zero out the class number */
data[1] &= 0xCF;
/* add the new one */
data[1] |= blk[profile->bpm*mb_index+i].cno << 4;
data += profile->block_sizes[i] >> 3;
}
}
}
static int dv_encode_video_segment(AVCodecContext *avctx, void *arg)
{
DVEncContext *s = avctx->priv_data;
DVwork_chunk *work_chunk = arg;
int mb_index, i, j;
int mb_x, mb_y, c_offset;
ptrdiff_t linesize, y_stride;
const uint8_t *y_ptr;
uint8_t *dif, *p;
LOCAL_ALIGNED_8(uint8_t, scratch, [128]);
EncBlockInfo enc_blks[5 * DV_MAX_BPM];
PutBitContext pbs[5 * DV_MAX_BPM];
PutBitContext *pb;
EncBlockInfo *enc_blk;
int vs_bit_size = 0;
int qnos[5];
int *qnosp = &qnos[0];
p = dif = &s->buf[work_chunk->buf_offset * 80];
enc_blk = &enc_blks[0];
for (mb_index = 0; mb_index < 5; mb_index++) {
dv_calculate_mb_xy(s->sys, s->buf, work_chunk, mb_index, &mb_x, &mb_y);
qnos[mb_index] = DV_PROFILE_IS_HD(s->sys) ? 1 : 15;
y_ptr = s->frame->data[0] + (mb_y * s->frame->linesize[0] + mb_x) * 8;
linesize = s->frame->linesize[0];
if (s->sys->height == 1080 && mb_y < 134)
enc_blk->dct_mode = dv_guess_dct_mode(s, y_ptr, linesize);
else
enc_blk->dct_mode = 0;
for (i = 1; i < 8; i++)
enc_blk[i].dct_mode = enc_blk->dct_mode;
/* initializing luminance blocks */
if ((s->sys->pix_fmt == AV_PIX_FMT_YUV420P) ||
(s->sys->pix_fmt == AV_PIX_FMT_YUV411P && mb_x >= (704 / 8)) ||
(s->sys->height >= 720 && mb_y != 134)) {
y_stride = s->frame->linesize[0] * (1 << (3*!enc_blk->dct_mode));
} else {
y_stride = 16;
}
y_ptr = s->frame->data[0] +
(mb_y * s->frame->linesize[0] + mb_x) * 8;
linesize = s->frame->linesize[0];
if (s->sys->video_stype == 4) { /* SD 422 */
vs_bit_size +=
dv_init_enc_block(enc_blk + 0, y_ptr, linesize, s, 0) +
dv_init_enc_block(enc_blk + 1, NULL, linesize, s, 0) +
dv_init_enc_block(enc_blk + 2, y_ptr + 8, linesize, s, 0) +
dv_init_enc_block(enc_blk + 3, NULL, linesize, s, 0);
} else {
vs_bit_size +=
dv_init_enc_block(enc_blk + 0, y_ptr, linesize, s, 0) +
dv_init_enc_block(enc_blk + 1, y_ptr + 8, linesize, s, 0) +
dv_init_enc_block(enc_blk + 2, y_ptr + y_stride, linesize, s, 0) +
dv_init_enc_block(enc_blk + 3, y_ptr + 8 + y_stride, linesize, s, 0);
}
enc_blk += 4;
/* initializing chrominance blocks */
c_offset = ((mb_y >> (s->sys->pix_fmt == AV_PIX_FMT_YUV420P)) * s->frame->linesize[1] +
(mb_x >> ((s->sys->pix_fmt == AV_PIX_FMT_YUV411P) ? 2 : 1))) * 8;
for (j = 2; j; j--) {
const uint8_t *c_ptr = s->frame->data[j] + c_offset;
linesize = s->frame->linesize[j];
y_stride = (mb_y == 134) ? 8 : (s->frame->linesize[j] * (1 << (3*!enc_blk->dct_mode)));
if (s->sys->pix_fmt == AV_PIX_FMT_YUV411P && mb_x >= (704 / 8)) {
uint8_t *b = scratch;
for (i = 0; i < 8; i++) {
const uint8_t *d = c_ptr + linesize * 8;
b[0] = c_ptr[0];
b[1] = c_ptr[1];
b[2] = c_ptr[2];
b[3] = c_ptr[3];
b[4] = d[0];
b[5] = d[1];
b[6] = d[2];
b[7] = d[3];
c_ptr += linesize;
b += 16;
}
c_ptr = scratch;
linesize = 16;
}
vs_bit_size += dv_init_enc_block(enc_blk++, c_ptr, linesize, s, 1);
if (s->sys->bpm == 8)
vs_bit_size += dv_init_enc_block(enc_blk++, c_ptr + y_stride,
linesize, s, 1);
}
}
if (DV_PROFILE_IS_HD(s->sys)) {
/* unconditional */
dv_guess_qnos_hd(&enc_blks[0], qnosp);
} else if (vs_total_ac_bits < vs_bit_size) {
dv_guess_qnos(&enc_blks[0], qnosp);
}
/* DIF encoding process */
for (j = 0; j < 5 * s->sys->bpm;) {
int start_mb = j;
p[3] = *qnosp++;
p += 4;
/* First pass over individual cells only */
for (i = 0; i < s->sys->bpm; i++, j++) {
int sz = s->sys->block_sizes[i] >> 3;
init_put_bits(&pbs[j], p, sz);
put_sbits(&pbs[j], 9, ((enc_blks[j].mb[0] >> 3) - 1024 + 2) >> 2);
put_bits(&pbs[j], 1, DV_PROFILE_IS_HD(s->sys) && i ? 1 : enc_blks[j].dct_mode);
put_bits(&pbs[j], 2, enc_blks[j].cno);
dv_encode_ac(&enc_blks[j], &pbs[j], &pbs[j + 1]);
p += sz;
}
/* Second pass over each MB space */
pb = &pbs[start_mb];
for (i = 0; i < s->sys->bpm; i++)
if (enc_blks[start_mb + i].partial_bit_count)
pb = dv_encode_ac(&enc_blks[start_mb + i], pb,
&pbs[start_mb + s->sys->bpm]);
}
/* Third and final pass over the whole video segment space */
pb = &pbs[0];
for (j = 0; j < 5 * s->sys->bpm; j++) {
if (enc_blks[j].partial_bit_count)
pb = dv_encode_ac(&enc_blks[j], pb, &pbs[s->sys->bpm * 5]);
if (enc_blks[j].partial_bit_count)
av_log(avctx, AV_LOG_ERROR, "ac bitstream overflow\n");
}
for (j = 0; j < 5 * s->sys->bpm; j++) {
flush_put_bits(&pbs[j]);
memset(put_bits_ptr(&pbs[j]), 0xff, put_bytes_left(&pbs[j], 0));
}
if (DV_PROFILE_IS_HD(s->sys))
dv_revise_cnos(dif, enc_blks, s->sys);
return 0;
}
static inline int dv_write_pack(enum DVPackType pack_id, DVEncContext *c,
uint8_t *buf)
{
/*
* Here's what SMPTE314M says about these two:
* (page 6) APTn, AP1n, AP2n, AP3n: These data shall be identical
* as track application IDs (APTn = 001, AP1n =
* 001, AP2n = 001, AP3n = 001), if the source signal
* comes from a digital VCR. If the signal source is
* unknown, all bits for these data shall be set to 1.
* (page 12) STYPE: STYPE defines a signal type of video signal
* 00000b = 4:1:1 compression
* 00100b = 4:2:2 compression
* XXXXXX = Reserved
* Now, I've got two problems with these statements:
* 1. it looks like APT == 111b should be a safe bet, but it isn't.
* It seems that for PAL as defined in IEC 61834 we have to set
* APT to 000 and for SMPTE314M to 001.
* 2. It is not at all clear what STYPE is used for 4:2:0 PAL
* compression scheme (if any).
*/
uint8_t aspect = 0;
int apt = (c->sys->pix_fmt == AV_PIX_FMT_YUV420P ? 0 : 1);
int fs;
if (c->avctx->height >= 720)
fs = c->avctx->height == 720 || c->frame->top_field_first ? 0x40 : 0x00;
else
fs = c->frame->top_field_first ? 0x00 : 0x40;
if (DV_PROFILE_IS_HD(c->sys) ||
(int)(av_q2d(c->avctx->sample_aspect_ratio) *
c->avctx->width / c->avctx->height * 10) >= 17)
/* HD formats are always 16:9 */
aspect = 0x02;
buf[0] = (uint8_t) pack_id;
switch (pack_id) {
case DV_HEADER525: /* I can't imagine why these two weren't defined as real */
case DV_HEADER625: /* packs in SMPTE314M -- they definitely look like ones */
buf[1] = 0xf8 | /* reserved -- always 1 */
(apt & 0x07); /* APT: Track application ID */
buf[2] = (0 << 7) | /* TF1: audio data is 0 - valid; 1 - invalid */
(0x0f << 3) | /* reserved -- always 1 */
(apt & 0x07); /* AP1: Audio application ID */
buf[3] = (0 << 7) | /* TF2: video data is 0 - valid; 1 - invalid */
(0x0f << 3) | /* reserved -- always 1 */
(apt & 0x07); /* AP2: Video application ID */
buf[4] = (0 << 7) | /* TF3: subcode(SSYB) is 0 - valid; 1 - invalid */
(0x0f << 3) | /* reserved -- always 1 */
(apt & 0x07); /* AP3: Subcode application ID */
break;
case DV_VIDEO_SOURCE:
buf[1] = 0xff; /* reserved -- always 1 */
buf[2] = (1 << 7) | /* B/W: 0 - b/w, 1 - color */
(1 << 6) | /* following CLF is valid - 0, invalid - 1 */
(3 << 4) | /* CLF: color frames ID (see ITU-R BT.470-4) */
0xf; /* reserved -- always 1 */
buf[3] = (3 << 6) | /* reserved -- always 1 */
(c->sys->dsf << 5) | /* system: 60fields/50fields */
c->sys->video_stype; /* signal type video compression */
buf[4] = 0xff; /* VISC: 0xff -- no information */
break;
case DV_VIDEO_CONTROL:
buf[1] = (0 << 6) | /* Copy generation management (CGMS) 0 -- free */
0x3f; /* reserved -- always 1 */
buf[2] = 0xc8 | /* reserved -- always b11001xxx */
aspect;
buf[3] = (1 << 7) | /* frame/field flag 1 -- frame, 0 -- field */
fs | /* first/second field flag 0 -- field 2, 1 -- field 1 */
(1 << 5) | /* frame change flag 0 -- same picture as before, 1 -- different */
(1 << 4) | /* 1 - interlaced, 0 - noninterlaced */
0xc; /* reserved -- always b1100 */
buf[4] = 0xff; /* reserved -- always 1 */
break;
default:
buf[1] =
buf[2] =
buf[3] =
buf[4] = 0xff;
}
return 5;
}
static inline int dv_write_dif_id(enum DVSectionType t, uint8_t chan_num,
uint8_t seq_num, uint8_t dif_num,
uint8_t *buf)
{
int fsc = chan_num & 1;
int fsp = 1 - (chan_num >> 1);
buf[0] = (uint8_t) t; /* Section type */
buf[1] = (seq_num << 4) | /* DIF seq number 0-9 for 525/60; 0-11 for 625/50 */
(fsc << 3) | /* FSC: for 50 and 100Mb/s 0 - first channel; 1 - second */
(fsp << 2) | /* FSP: for 100Mb/s 1 - channels 0-1; 0 - channels 2-3 */
3; /* reserved -- always 1 */
buf[2] = dif_num; /* DIF block number Video: 0-134, Audio: 0-8 */
return 3;
}
static inline int dv_write_ssyb_id(uint8_t syb_num, uint8_t fr, uint8_t *buf)
{
if (syb_num == 0 || syb_num == 6) {
buf[0] = (fr << 7) | /* FR ID 1 - first half of each channel; 0 - second */
(0 << 4) | /* AP3 (Subcode application ID) */
0x0f; /* reserved -- always 1 */
} else if (syb_num == 11) {
buf[0] = (fr << 7) | /* FR ID 1 - first half of each channel; 0 - second */
0x7f; /* reserved -- always 1 */
} else {
buf[0] = (fr << 7) | /* FR ID 1 - first half of each channel; 0 - second */
(0 << 4) | /* APT (Track application ID) */
0x0f; /* reserved -- always 1 */
}
buf[1] = 0xf0 | /* reserved -- always 1 */
(syb_num & 0x0f); /* SSYB number 0 - 11 */
buf[2] = 0xff; /* reserved -- always 1 */
return 3;
}
static void dv_format_frame(DVEncContext *c, uint8_t *buf)
{
int chan, i, j, k;
/* We work with 720p frames split in half. The odd half-frame is chan 2,3 */
int chan_offset = 2*(c->sys->height == 720 && c->avctx->frame_number & 1);
for (chan = 0; chan < c->sys->n_difchan; chan++) {
for (i = 0; i < c->sys->difseg_size; i++) {
memset(buf, 0xff, 80 * 6); /* first 6 DIF blocks are for control data */
/* DV header: 1DIF */
buf += dv_write_dif_id(DV_SECT_HEADER, chan+chan_offset, i, 0, buf);
buf += dv_write_pack((c->sys->dsf ? DV_HEADER625 : DV_HEADER525),
c, buf);
buf += 72; /* unused bytes */
/* DV subcode: 2DIFs */
for (j = 0; j < 2; j++) {
buf += dv_write_dif_id(DV_SECT_SUBCODE, chan+chan_offset, i, j, buf);
for (k = 0; k < 6; k++)
buf += dv_write_ssyb_id(k, (i < c->sys->difseg_size / 2), buf) + 5;
buf += 29; /* unused bytes */
}
/* DV VAUX: 3DIFS */
for (j = 0; j < 3; j++) {
buf += dv_write_dif_id(DV_SECT_VAUX, chan+chan_offset, i, j, buf);
buf += dv_write_pack(DV_VIDEO_SOURCE, c, buf);
buf += dv_write_pack(DV_VIDEO_CONTROL, c, buf);
buf += 7 * 5;
buf += dv_write_pack(DV_VIDEO_SOURCE, c, buf);
buf += dv_write_pack(DV_VIDEO_CONTROL, c, buf);
buf += 4 * 5 + 2; /* unused bytes */
}
/* DV Audio/Video: 135 Video DIFs + 9 Audio DIFs */
for (j = 0; j < 135; j++) {
if (j % 15 == 0) {
memset(buf, 0xff, 80);
buf += dv_write_dif_id(DV_SECT_AUDIO, chan+chan_offset, i, j/15, buf);
buf += 77; /* audio control & shuffled PCM audio */
}
buf += dv_write_dif_id(DV_SECT_VIDEO, chan+chan_offset, i, j, buf);
buf += 77; /* 1 video macroblock: 1 bytes control
* 4 * 14 bytes Y 8x8 data
* 10 bytes Cr 8x8 data
* 10 bytes Cb 8x8 data */
}
}
}
}
static int dvvideo_encode_frame(AVCodecContext *c, AVPacket *pkt,
const AVFrame *frame, int *got_packet)
{
DVEncContext *s = c->priv_data;
int ret;
if ((ret = ff_get_encode_buffer(c, pkt, s->sys->frame_size, 0)) < 0)
return ret;
/* Fixme: Only zero the part that is not overwritten later. */
memset(pkt->data, 0, pkt->size);
c->pix_fmt = s->sys->pix_fmt;
s->frame = frame;
s->buf = pkt->data;
dv_format_frame(s, pkt->data);
c->execute(c, dv_encode_video_segment, s->work_chunks, NULL,
dv_work_pool_size(s->sys), sizeof(DVwork_chunk));
emms_c();
*got_packet = 1;
return 0;
}
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
#define OFFSET(x) offsetof(DVEncContext, x)
static const AVOption dv_options[] = {
{ "quant_deadzone", "Quantizer dead zone", OFFSET(quant_deadzone), AV_OPT_TYPE_INT, { .i64 = 7 }, 0, 1024, VE },
{ NULL },
};
static const AVClass dvvideo_encode_class = {
.class_name = "dvvideo encoder",
.item_name = av_default_item_name,
.option = dv_options,
.version = LIBAVUTIL_VERSION_INT,
};
const FFCodec ff_dvvideo_encoder = {
.p.name = "dvvideo",
CODEC_LONG_NAME("DV (Digital Video)"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_DVVIDEO,
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
AV_CODEC_CAP_SLICE_THREADS,
.priv_data_size = sizeof(DVEncContext),
.init = dvvideo_encode_init,
FF_CODEC_ENCODE_CB(dvvideo_encode_frame),
.p.pix_fmts = (const enum AVPixelFormat[]) {
AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE
},
.p.priv_class = &dvvideo_encode_class,
};