1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libavfilter/vf_vibrance.c
2023-02-11 10:36:56 +01:00

454 lines
17 KiB
C

/*
* Copyright (c) 2018 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/opt.h"
#include "libavutil/imgutils.h"
#include "avfilter.h"
#include "drawutils.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#define R 0
#define G 1
#define B 2
#define A 3
typedef struct VibranceContext {
const AVClass *class;
float intensity;
float balance[3];
float lcoeffs[3];
int alternate;
int step;
int depth;
uint8_t rgba_map[4];
int (*do_slice)(AVFilterContext *s, void *arg,
int jobnr, int nb_jobs);
} VibranceContext;
static inline float lerpf(float v0, float v1, float f)
{
return v0 + (v1 - v0) * f;
}
typedef struct ThreadData {
AVFrame *out, *in;
} ThreadData;
static int vibrance_slice8(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
{
VibranceContext *s = avctx->priv;
ThreadData *td = arg;
AVFrame *frame = td->out;
AVFrame *in = td->in;
const int width = frame->width;
const int height = frame->height;
const float scale = 1.f / 255.f;
const float gc = s->lcoeffs[0];
const float bc = s->lcoeffs[1];
const float rc = s->lcoeffs[2];
const float intensity = s->intensity;
const float alternate = s->alternate ? 1.f : -1.f;
const float gintensity = intensity * s->balance[0];
const float bintensity = intensity * s->balance[1];
const float rintensity = intensity * s->balance[2];
const float sgintensity = alternate * FFSIGN(gintensity);
const float sbintensity = alternate * FFSIGN(bintensity);
const float srintensity = alternate * FFSIGN(rintensity);
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr + 1)) / nb_jobs;
const int glinesize = frame->linesize[0];
const int blinesize = frame->linesize[1];
const int rlinesize = frame->linesize[2];
const int alinesize = frame->linesize[3];
const int gslinesize = in->linesize[0];
const int bslinesize = in->linesize[1];
const int rslinesize = in->linesize[2];
const int aslinesize = in->linesize[3];
const uint8_t *gsrc = in->data[0] + slice_start * glinesize;
const uint8_t *bsrc = in->data[1] + slice_start * blinesize;
const uint8_t *rsrc = in->data[2] + slice_start * rlinesize;
uint8_t *gptr = frame->data[0] + slice_start * glinesize;
uint8_t *bptr = frame->data[1] + slice_start * blinesize;
uint8_t *rptr = frame->data[2] + slice_start * rlinesize;
const uint8_t *asrc = in->data[3];
uint8_t *aptr = frame->data[3];
for (int y = slice_start; y < slice_end; y++) {
for (int x = 0; x < width; x++) {
float g = gsrc[x] * scale;
float b = bsrc[x] * scale;
float r = rsrc[x] * scale;
float max_color = FFMAX3(r, g, b);
float min_color = FFMIN3(r, g, b);
float color_saturation = max_color - min_color;
float luma = g * gc + r * rc + b * bc;
const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
g = lerpf(luma, g, cg);
b = lerpf(luma, b, cb);
r = lerpf(luma, r, cr);
gptr[x] = av_clip_uint8(g * 255.f);
bptr[x] = av_clip_uint8(b * 255.f);
rptr[x] = av_clip_uint8(r * 255.f);
}
if (aptr && alinesize && frame != in)
memcpy(aptr + alinesize * y, asrc + aslinesize * y, width);
gsrc += gslinesize;
bsrc += bslinesize;
rsrc += rslinesize;
gptr += glinesize;
bptr += blinesize;
rptr += rlinesize;
}
return 0;
}
static int vibrance_slice16(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
{
VibranceContext *s = avctx->priv;
ThreadData *td = arg;
AVFrame *frame = td->out;
AVFrame *in = td->in;
const int depth = s->depth;
const float max = (1 << depth) - 1;
const float scale = 1.f / max;
const float gc = s->lcoeffs[0];
const float bc = s->lcoeffs[1];
const float rc = s->lcoeffs[2];
const int width = frame->width;
const int height = frame->height;
const float intensity = s->intensity;
const float alternate = s->alternate ? 1.f : -1.f;
const float gintensity = intensity * s->balance[0];
const float bintensity = intensity * s->balance[1];
const float rintensity = intensity * s->balance[2];
const float sgintensity = alternate * FFSIGN(gintensity);
const float sbintensity = alternate * FFSIGN(bintensity);
const float srintensity = alternate * FFSIGN(rintensity);
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr + 1)) / nb_jobs;
const int gslinesize = in->linesize[0] / 2;
const int bslinesize = in->linesize[1] / 2;
const int rslinesize = in->linesize[2] / 2;
const int aslinesize = in->linesize[3] / 2;
const int glinesize = frame->linesize[0] / 2;
const int blinesize = frame->linesize[1] / 2;
const int rlinesize = frame->linesize[2] / 2;
const int alinesize = frame->linesize[3] / 2;
const uint16_t *gsrc = (const uint16_t *)in->data[0] + slice_start * gslinesize;
const uint16_t *bsrc = (const uint16_t *)in->data[1] + slice_start * bslinesize;
const uint16_t *rsrc = (const uint16_t *)in->data[2] + slice_start * rslinesize;
uint16_t *gptr = (uint16_t *)frame->data[0] + slice_start * glinesize;
uint16_t *bptr = (uint16_t *)frame->data[1] + slice_start * blinesize;
uint16_t *rptr = (uint16_t *)frame->data[2] + slice_start * rlinesize;
const uint16_t *asrc = (const uint16_t *)in->data[3];
uint16_t *aptr = (uint16_t *)frame->data[3];
for (int y = slice_start; y < slice_end; y++) {
for (int x = 0; x < width; x++) {
float g = gsrc[x] * scale;
float b = bsrc[x] * scale;
float r = rsrc[x] * scale;
float max_color = FFMAX3(r, g, b);
float min_color = FFMIN3(r, g, b);
float color_saturation = max_color - min_color;
float luma = g * gc + r * rc + b * bc;
const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
g = lerpf(luma, g, cg);
b = lerpf(luma, b, cb);
r = lerpf(luma, r, cr);
gptr[x] = av_clip_uintp2_c(g * max, depth);
bptr[x] = av_clip_uintp2_c(b * max, depth);
rptr[x] = av_clip_uintp2_c(r * max, depth);
}
if (aptr && alinesize && frame != in)
memcpy(aptr + alinesize * y, asrc + aslinesize * y, width * 2);
gsrc += gslinesize;
bsrc += bslinesize;
rsrc += rslinesize;
gptr += glinesize;
bptr += blinesize;
rptr += rlinesize;
}
return 0;
}
static int vibrance_slice8p(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
{
VibranceContext *s = avctx->priv;
ThreadData *td = arg;
AVFrame *frame = td->out;
AVFrame *in = td->in;
const int step = s->step;
const int width = frame->width;
const int height = frame->height;
const float scale = 1.f / 255.f;
const float gc = s->lcoeffs[0];
const float bc = s->lcoeffs[1];
const float rc = s->lcoeffs[2];
const uint8_t roffset = s->rgba_map[R];
const uint8_t goffset = s->rgba_map[G];
const uint8_t boffset = s->rgba_map[B];
const uint8_t aoffset = s->rgba_map[A];
const float intensity = s->intensity;
const float alternate = s->alternate ? 1.f : -1.f;
const float gintensity = intensity * s->balance[0];
const float bintensity = intensity * s->balance[1];
const float rintensity = intensity * s->balance[2];
const float sgintensity = alternate * FFSIGN(gintensity);
const float sbintensity = alternate * FFSIGN(bintensity);
const float srintensity = alternate * FFSIGN(rintensity);
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr + 1)) / nb_jobs;
const int linesize = frame->linesize[0];
const int slinesize = in->linesize[0];
const uint8_t *src = in->data[0] + slice_start * slinesize;
uint8_t *ptr = frame->data[0] + slice_start * linesize;
for (int y = slice_start; y < slice_end; y++) {
for (int x = 0; x < width; x++) {
float g = src[x * step + goffset] * scale;
float b = src[x * step + boffset] * scale;
float r = src[x * step + roffset] * scale;
float max_color = FFMAX3(r, g, b);
float min_color = FFMIN3(r, g, b);
float color_saturation = max_color - min_color;
float luma = g * gc + r * rc + b * bc;
const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
g = lerpf(luma, g, cg);
b = lerpf(luma, b, cb);
r = lerpf(luma, r, cr);
ptr[x * step + goffset] = av_clip_uint8(g * 255.f);
ptr[x * step + boffset] = av_clip_uint8(b * 255.f);
ptr[x * step + roffset] = av_clip_uint8(r * 255.f);
if (frame != in)
ptr[x * step + aoffset] = src[x * step + aoffset];
}
ptr += linesize;
src += slinesize;
}
return 0;
}
static int vibrance_slice16p(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
{
VibranceContext *s = avctx->priv;
ThreadData *td = arg;
AVFrame *frame = td->out;
AVFrame *in = td->in;
const int step = s->step;
const int depth = s->depth;
const float max = (1 << depth) - 1;
const float scale = 1.f / max;
const float gc = s->lcoeffs[0];
const float bc = s->lcoeffs[1];
const float rc = s->lcoeffs[2];
const uint8_t roffset = s->rgba_map[R];
const uint8_t goffset = s->rgba_map[G];
const uint8_t boffset = s->rgba_map[B];
const uint8_t aoffset = s->rgba_map[A];
const int width = frame->width;
const int height = frame->height;
const float intensity = s->intensity;
const float alternate = s->alternate ? 1.f : -1.f;
const float gintensity = intensity * s->balance[0];
const float bintensity = intensity * s->balance[1];
const float rintensity = intensity * s->balance[2];
const float sgintensity = alternate * FFSIGN(gintensity);
const float sbintensity = alternate * FFSIGN(bintensity);
const float srintensity = alternate * FFSIGN(rintensity);
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr + 1)) / nb_jobs;
const int linesize = frame->linesize[0] / 2;
const int slinesize = in->linesize[0] / 2;
const uint16_t *src = (const uint16_t *)in->data[0] + slice_start * slinesize;
uint16_t *ptr = (uint16_t *)frame->data[0] + slice_start * linesize;
for (int y = slice_start; y < slice_end; y++) {
for (int x = 0; x < width; x++) {
float g = src[x * step + goffset] * scale;
float b = src[x * step + boffset] * scale;
float r = src[x * step + roffset] * scale;
float max_color = FFMAX3(r, g, b);
float min_color = FFMIN3(r, g, b);
float color_saturation = max_color - min_color;
float luma = g * gc + r * rc + b * bc;
const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
g = lerpf(luma, g, cg);
b = lerpf(luma, b, cb);
r = lerpf(luma, r, cr);
ptr[x * step + goffset] = av_clip_uintp2_c(g * max, depth);
ptr[x * step + boffset] = av_clip_uintp2_c(b * max, depth);
ptr[x * step + roffset] = av_clip_uintp2_c(r * max, depth);
if (frame != in)
ptr[x * step + aoffset] = src[x * step + aoffset];
}
ptr += linesize;
src += slinesize;
}
return 0;
}
static int filter_frame(AVFilterLink *link, AVFrame *in)
{
AVFilterContext *avctx = link->dst;
AVFilterLink *outlink = avctx->outputs[0];
VibranceContext *s = avctx->priv;
ThreadData td;
AVFrame *out;
int res;
if (av_frame_is_writable(in)) {
out = in;
} else {
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
}
td.out = out;
td.in = in;
if (res = ff_filter_execute(avctx, s->do_slice, &td, NULL,
FFMIN(out->height, ff_filter_get_nb_threads(avctx))))
return res;
if (out != in)
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static const enum AVPixelFormat pixel_fmts[] = {
AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA,
AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR,
AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR,
AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48,
AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
AV_PIX_FMT_NONE
};
static av_cold int config_input(AVFilterLink *inlink)
{
AVFilterContext *avctx = inlink->dst;
VibranceContext *s = avctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
int planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
s->step = desc->nb_components;
if (inlink->format == AV_PIX_FMT_RGB0 ||
inlink->format == AV_PIX_FMT_0RGB ||
inlink->format == AV_PIX_FMT_BGR0 ||
inlink->format == AV_PIX_FMT_0BGR)
s->step = 4;
s->depth = desc->comp[0].depth;
s->do_slice = s->depth <= 8 ? vibrance_slice8 : vibrance_slice16;
if (!planar)
s->do_slice = s->depth <= 8 ? vibrance_slice8p : vibrance_slice16p;
ff_fill_rgba_map(s->rgba_map, inlink->format);
return 0;
}
static const AVFilterPad vibrance_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
static const AVFilterPad vibrance_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
};
#define OFFSET(x) offsetof(VibranceContext, x)
#define VF AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption vibrance_options[] = {
{ "intensity", "set the intensity value", OFFSET(intensity), AV_OPT_TYPE_FLOAT, {.dbl=0}, -2, 2, VF },
{ "rbal", "set the red balance value", OFFSET(balance[2]), AV_OPT_TYPE_FLOAT, {.dbl=1}, -10, 10, VF },
{ "gbal", "set the green balance value", OFFSET(balance[0]), AV_OPT_TYPE_FLOAT, {.dbl=1}, -10, 10, VF },
{ "bbal", "set the blue balance value", OFFSET(balance[1]), AV_OPT_TYPE_FLOAT, {.dbl=1}, -10, 10, VF },
{ "rlum", "set the red luma coefficient", OFFSET(lcoeffs[2]), AV_OPT_TYPE_FLOAT, {.dbl=0.072186}, 0, 1, VF },
{ "glum", "set the green luma coefficient", OFFSET(lcoeffs[0]), AV_OPT_TYPE_FLOAT, {.dbl=0.715158}, 0, 1, VF },
{ "blum", "set the blue luma coefficient", OFFSET(lcoeffs[1]), AV_OPT_TYPE_FLOAT, {.dbl=0.212656}, 0, 1, VF },
{ "alternate", "use alternate colors", OFFSET(alternate), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, VF },
{ NULL }
};
AVFILTER_DEFINE_CLASS(vibrance);
const AVFilter ff_vf_vibrance = {
.name = "vibrance",
.description = NULL_IF_CONFIG_SMALL("Boost or alter saturation."),
.priv_size = sizeof(VibranceContext),
.priv_class = &vibrance_class,
FILTER_INPUTS(vibrance_inputs),
FILTER_OUTPUTS(vibrance_outputs),
FILTER_PIXFMTS_ARRAY(pixel_fmts),
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
.process_command = ff_filter_process_command,
};