1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libswresample/resample_template.c
James Almer cdac3ab59f swresample: add swri_resample_double_sse2
Signed-off-by: James Almer <jamrial@gmail.com>
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
2014-04-25 16:46:07 +02:00

244 lines
7.8 KiB
C

/*
* audio resampling
* Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* audio resampling
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#if defined(TEMPLATE_RESAMPLE_DBL) \
|| defined(TEMPLATE_RESAMPLE_DBL_SSE2)
# define FILTER_SHIFT 0
# define DELEM double
# define FELEM double
# define FELEM2 double
# define FELEML double
# define OUT(d, v) d = v
# if defined(TEMPLATE_RESAMPLE_DBL)
# define RENAME(N) N ## _double
# elif defined(TEMPLATE_RESAMPLE_DBL_SSE2)
# define COMMON_CORE COMMON_CORE_DBL_SSE2
# define LINEAR_CORE LINEAR_CORE_DBL_SSE2
# define RENAME(N) N ## _double_sse2
# endif
#elif defined(TEMPLATE_RESAMPLE_FLT) \
|| defined(TEMPLATE_RESAMPLE_FLT_SSE)
# define FILTER_SHIFT 0
# define DELEM float
# define FELEM float
# define FELEM2 float
# define FELEML float
# define OUT(d, v) d = v
# if defined(TEMPLATE_RESAMPLE_FLT)
# define RENAME(N) N ## _float
# elif defined(TEMPLATE_RESAMPLE_FLT_SSE)
# define COMMON_CORE COMMON_CORE_FLT_SSE
# define LINEAR_CORE LINEAR_CORE_FLT_SSE
# define RENAME(N) N ## _float_sse
# endif
#elif defined(TEMPLATE_RESAMPLE_S32)
# define RENAME(N) N ## _int32
# define FILTER_SHIFT 30
# define DELEM int32_t
# define FELEM int32_t
# define FELEM2 int64_t
# define FELEML int64_t
# define FELEM_MAX INT32_MAX
# define FELEM_MIN INT32_MIN
# define OUT(d, v) v = (v + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;\
d = (uint64_t)(v + 0x80000000) > 0xFFFFFFFF ? (v>>63) ^ 0x7FFFFFFF : v
#elif defined(TEMPLATE_RESAMPLE_S16) \
|| defined(TEMPLATE_RESAMPLE_S16_MMX2) \
|| defined(TEMPLATE_RESAMPLE_S16_SSE2)
# define FILTER_SHIFT 15
# define DELEM int16_t
# define FELEM int16_t
# define FELEM2 int32_t
# define FELEML int64_t
# define FELEM_MAX INT16_MAX
# define FELEM_MIN INT16_MIN
# define OUT(d, v) v = (v + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;\
d = (unsigned)(v + 32768) > 65535 ? (v>>31) ^ 32767 : v
# if defined(TEMPLATE_RESAMPLE_S16)
# define RENAME(N) N ## _int16
# elif defined(TEMPLATE_RESAMPLE_S16_MMX2)
# define COMMON_CORE COMMON_CORE_INT16_MMX2
# define LINEAR_CORE LINEAR_CORE_INT16_MMX2
# define RENAME(N) N ## _int16_mmx2
# elif defined(TEMPLATE_RESAMPLE_S16_SSE2)
# define COMMON_CORE COMMON_CORE_INT16_SSE2
# define LINEAR_CORE LINEAR_CORE_INT16_SSE2
# define RENAME(N) N ## _int16_sse2
# endif
#endif
int RENAME(swri_resample)(ResampleContext *c, DELEM *dst, const DELEM *src, int *consumed, int src_size, int dst_size, int update_ctx){
int dst_index, i;
int index= c->index;
int frac= c->frac;
int dst_incr_frac= c->dst_incr % c->src_incr;
int dst_incr= c->dst_incr / c->src_incr;
int compensation_distance= c->compensation_distance;
av_assert1(c->filter_shift == FILTER_SHIFT);
av_assert1(c->felem_size == sizeof(FELEM));
if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*index;
int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
int new_size = (src_size * (int64_t)c->src_incr - frac + c->dst_incr - 1) / c->dst_incr;
dst_size= FFMIN(dst_size, new_size);
for(dst_index=0; dst_index < dst_size; dst_index++){
dst[dst_index] = src[index2>>32];
index2 += incr;
}
index += dst_index * dst_incr;
index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr;
frac = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr;
av_assert2(index >= 0);
*consumed= index;
index = 0;
}else if(compensation_distance == 0 && !c->linear && index >= 0){
int sample_index = 0;
for(dst_index=0; dst_index < dst_size; dst_index++){
FELEM *filter;
sample_index += index >> c->phase_shift;
index &= c->phase_mask;
filter= ((FELEM*)c->filter_bank) + c->filter_alloc*index;
if(sample_index + c->filter_length > src_size){
break;
}else{
#ifdef COMMON_CORE
COMMON_CORE
#else
FELEM2 val=0;
for(i=0; i<c->filter_length; i++){
val += src[sample_index + i] * (FELEM2)filter[i];
}
OUT(dst[dst_index], val);
#endif
}
frac += dst_incr_frac;
index += dst_incr;
if(frac >= c->src_incr){
frac -= c->src_incr;
index++;
}
}
*consumed = sample_index;
}else{
int sample_index = 0;
for(dst_index=0; dst_index < dst_size; dst_index++){
FELEM *filter;
FELEM2 val=0;
sample_index += index >> c->phase_shift;
index &= c->phase_mask;
filter = ((FELEM*)c->filter_bank) + c->filter_alloc*index;
if(sample_index + c->filter_length > src_size || -sample_index >= src_size){
break;
}else if(sample_index < 0){
for(i=0; i<c->filter_length; i++)
val += src[FFABS(sample_index + i)] * (FELEM2)filter[i];
OUT(dst[dst_index], val);
}else if(c->linear){
FELEM2 v2=0;
#ifdef LINEAR_CORE
LINEAR_CORE
#else
for(i=0; i<c->filter_length; i++){
val += src[sample_index + i] * (FELEM2)filter[i];
v2 += src[sample_index + i] * (FELEM2)filter[i + c->filter_alloc];
}
#endif
val+=(v2-val)*(FELEML)frac / c->src_incr;
OUT(dst[dst_index], val);
}else{
#ifdef COMMON_CORE
COMMON_CORE
#else
for(i=0; i<c->filter_length; i++){
val += src[sample_index + i] * (FELEM2)filter[i];
}
OUT(dst[dst_index], val);
#endif
}
frac += dst_incr_frac;
index += dst_incr;
if(frac >= c->src_incr){
frac -= c->src_incr;
index++;
}
if(dst_index + 1 == compensation_distance){
compensation_distance= 0;
dst_incr_frac= c->ideal_dst_incr % c->src_incr;
dst_incr= c->ideal_dst_incr / c->src_incr;
}
}
*consumed= FFMAX(sample_index, 0);
index += FFMIN(sample_index, 0) << c->phase_shift;
if(compensation_distance){
compensation_distance -= dst_index;
av_assert1(compensation_distance > 0);
}
}
if(update_ctx){
c->frac= frac;
c->index= index;
c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
c->compensation_distance= compensation_distance;
}
return dst_index;
}
#undef COMMON_CORE
#undef LINEAR_CORE
#undef RENAME
#undef FILTER_SHIFT
#undef DELEM
#undef FELEM
#undef FELEM2
#undef FELEML
#undef FELEM_MAX
#undef FELEM_MIN
#undef OUT