1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-18 03:19:31 +02:00
FFmpeg/libavcodec/dovi_rpu.c
2024-04-03 16:16:55 +02:00

718 lines
24 KiB
C

/*
* Dolby Vision RPU decoder
*
* Copyright (C) 2021 Jan Ekström
* Copyright (C) 2021 Niklas Haas
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/buffer.h"
#include "libavutil/mem.h"
#include "libavutil/crc.h"
#include "avcodec.h"
#include "dovi_rpu.h"
#include "golomb.h"
#include "get_bits.h"
#include "refstruct.h"
enum {
RPU_COEFF_FIXED = 0,
RPU_COEFF_FLOAT = 1,
};
/**
* Private contents of vdr.
*/
typedef struct DOVIVdr {
AVDOVIDataMapping mapping;
AVDOVIColorMetadata color;
} DOVIVdr;
void ff_dovi_ctx_unref(DOVIContext *s)
{
for (int i = 0; i < FF_ARRAY_ELEMS(s->vdr); i++)
ff_refstruct_unref(&s->vdr[i]);
ff_refstruct_unref(&s->ext_blocks);
av_free(s->rpu_buf);
*s = (DOVIContext) {
.logctx = s->logctx,
};
}
void ff_dovi_ctx_flush(DOVIContext *s)
{
for (int i = 0; i < FF_ARRAY_ELEMS(s->vdr); i++)
ff_refstruct_unref(&s->vdr[i]);
ff_refstruct_unref(&s->ext_blocks);
*s = (DOVIContext) {
.logctx = s->logctx,
.dv_profile = s->dv_profile,
/* preserve temporary buffer */
.rpu_buf = s->rpu_buf,
.rpu_buf_sz = s->rpu_buf_sz,
};
}
void ff_dovi_ctx_replace(DOVIContext *s, const DOVIContext *s0)
{
s->logctx = s0->logctx;
s->mapping = s0->mapping;
s->color = s0->color;
s->dv_profile = s0->dv_profile;
for (int i = 0; i <= DOVI_MAX_DM_ID; i++)
ff_refstruct_replace(&s->vdr[i], s0->vdr[i]);
ff_refstruct_replace(&s->ext_blocks, s0->ext_blocks);
}
void ff_dovi_update_cfg(DOVIContext *s, const AVDOVIDecoderConfigurationRecord *cfg)
{
if (!cfg)
return;
s->dv_profile = cfg->dv_profile;
}
int ff_dovi_attach_side_data(DOVIContext *s, AVFrame *frame)
{
AVFrameSideData *sd;
AVBufferRef *buf;
AVDOVIMetadata *dovi;
size_t dovi_size, ext_sz;
if (!s->mapping || !s->color)
return 0; /* incomplete dovi metadata */
dovi = av_dovi_metadata_alloc(&dovi_size);
if (!dovi)
return AVERROR(ENOMEM);
buf = av_buffer_create((uint8_t *) dovi, dovi_size, NULL, NULL, 0);
if (!buf) {
av_free(dovi);
return AVERROR(ENOMEM);
}
sd = av_frame_new_side_data_from_buf(frame, AV_FRAME_DATA_DOVI_METADATA, buf);
if (!sd) {
av_buffer_unref(&buf);
return AVERROR(ENOMEM);
}
/* Copy only the parts of these structs known to us at compiler-time. */
#define COPY(t, a, b, last) memcpy(a, b, offsetof(t, last) + sizeof((b)->last))
COPY(AVDOVIRpuDataHeader, av_dovi_get_header(dovi), &s->header, disable_residual_flag);
COPY(AVDOVIDataMapping, av_dovi_get_mapping(dovi), s->mapping, nlq_pivots);
COPY(AVDOVIColorMetadata, av_dovi_get_color(dovi), s->color, source_diagonal);
ext_sz = FFMIN(sizeof(AVDOVIDmData), dovi->ext_block_size);
for (int i = 0; i < s->num_ext_blocks; i++)
memcpy(av_dovi_get_ext(dovi, i), &s->ext_blocks[i], ext_sz);
dovi->num_ext_blocks = s->num_ext_blocks;
return 0;
}
static int guess_profile(const AVDOVIRpuDataHeader *hdr)
{
switch (hdr->vdr_rpu_profile) {
case 0:
if (hdr->bl_video_full_range_flag)
return 5;
break;
case 1:
if (hdr->el_spatial_resampling_filter_flag && !hdr->disable_residual_flag) {
if (hdr->vdr_bit_depth == 12) {
return 7;
} else {
return 4;
}
} else {
return 8;
}
}
return 0; /* unknown */
}
static inline uint64_t get_ue_coef(GetBitContext *gb, const AVDOVIRpuDataHeader *hdr)
{
uint64_t ipart;
union { uint32_t u32; float f32; } fpart;
switch (hdr->coef_data_type) {
case RPU_COEFF_FIXED:
ipart = get_ue_golomb_long(gb);
fpart.u32 = get_bits_long(gb, hdr->coef_log2_denom);
return (ipart << hdr->coef_log2_denom) | fpart.u32;
case RPU_COEFF_FLOAT:
fpart.u32 = get_bits_long(gb, 32);
return fpart.f32 * (1LL << hdr->coef_log2_denom);
}
return 0; /* unreachable */
}
static inline int64_t get_se_coef(GetBitContext *gb, const AVDOVIRpuDataHeader *hdr)
{
int64_t ipart;
union { uint32_t u32; float f32; } fpart;
switch (hdr->coef_data_type) {
case RPU_COEFF_FIXED:
ipart = get_se_golomb_long(gb);
fpart.u32 = get_bits_long(gb, hdr->coef_log2_denom);
return ipart * (1LL << hdr->coef_log2_denom) | fpart.u32;
case RPU_COEFF_FLOAT:
fpart.u32 = get_bits_long(gb, 32);
return fpart.f32 * (1LL << hdr->coef_log2_denom);
}
return 0; /* unreachable */
}
static inline unsigned get_variable_bits(GetBitContext *gb, int n)
{
unsigned int value = get_bits(gb, n);
int read_more = get_bits1(gb);
while (read_more) {
value = (value + 1) << n;
value |= get_bits(gb, n);
read_more = get_bits1(gb);
}
return value;
}
#define VALIDATE(VAR, MIN, MAX) \
do { \
if (VAR < MIN || VAR > MAX) { \
av_log(s->logctx, AV_LOG_ERROR, "RPU validation failed: " \
#MIN" <= "#VAR" = %d <= "#MAX"\n", (int) VAR); \
goto fail; \
} \
} while (0)
static void parse_ext_v1(DOVIContext *s, GetBitContext *gb, AVDOVIDmData *dm)
{
switch (dm->level) {
case 1:
dm->l1.min_pq = get_bits(gb, 12);
dm->l1.max_pq = get_bits(gb, 12);
dm->l1.avg_pq = get_bits(gb, 12);
break;
case 2:
dm->l2.target_max_pq = get_bits(gb, 12);
dm->l2.trim_slope = get_bits(gb, 12);
dm->l2.trim_offset = get_bits(gb, 12);
dm->l2.trim_power = get_bits(gb, 12);
dm->l2.trim_chroma_weight = get_bits(gb, 12);
dm->l2.trim_saturation_gain = get_bits(gb, 12);
dm->l2.ms_weight = get_bits(gb, 13) - 8192;
break;
case 4:
dm->l4.anchor_pq = get_bits(gb, 12);
dm->l4.anchor_power = get_bits(gb, 12);
break;
case 5:
dm->l5.left_offset = get_bits(gb, 13);
dm->l5.right_offset = get_bits(gb, 13);
dm->l5.top_offset = get_bits(gb, 13);
dm->l5.bottom_offset = get_bits(gb, 13);
break;
case 6:
dm->l6.max_luminance = get_bits(gb, 16);
dm->l6.min_luminance = get_bits(gb, 16);
dm->l6.max_cll = get_bits(gb, 16);
dm->l6.max_fall = get_bits(gb, 16);
break;
case 255:
dm->l255.dm_run_mode = get_bits(gb, 8);
dm->l255.dm_run_version = get_bits(gb, 8);
for (int i = 0; i < 4; i++)
dm->l255.dm_debug[i] = get_bits(gb, 8);
break;
default:
av_log(s->logctx, AV_LOG_WARNING,
"Unknown Dolby Vision DM v1 level: %u\n", dm->level);
}
}
static AVCIExy get_cie_xy(GetBitContext *gb)
{
AVCIExy xy;
const int denom = 32767;
xy.x = av_make_q(get_sbits(gb, 16), denom);
xy.y = av_make_q(get_sbits(gb, 16), denom);
return xy;
}
static void parse_ext_v2(DOVIContext *s, GetBitContext *gb, AVDOVIDmData *dm,
int ext_block_length)
{
switch (dm->level) {
case 3:
dm->l3.min_pq_offset = get_bits(gb, 12);
dm->l3.max_pq_offset = get_bits(gb, 12);
dm->l3.avg_pq_offset = get_bits(gb, 12);
break;
case 8:
dm->l8.target_display_index = get_bits(gb, 8);
dm->l8.trim_slope = get_bits(gb, 12);
dm->l8.trim_offset = get_bits(gb, 12);
dm->l8.trim_power = get_bits(gb, 12);
dm->l8.trim_chroma_weight = get_bits(gb, 12);
dm->l8.trim_saturation_gain = get_bits(gb, 12);
dm->l8.ms_weight = get_bits(gb, 12) - 8192;
if (ext_block_length < 12)
break;
dm->l8.target_mid_contrast = get_bits(gb, 12);
if (ext_block_length < 13)
break;
dm->l8.clip_trim = get_bits(gb, 12);
if (ext_block_length < 19)
break;
for (int i = 0; i < 6; i++)
dm->l8.saturation_vector_field[i] = get_bits(gb, 8);
if (ext_block_length < 25)
break;
for (int i = 0; i < 6; i++)
dm->l8.hue_vector_field[i] = get_bits(gb, 8);
break;
case 9:
dm->l9.source_primary_index = get_bits(gb, 8);
if (ext_block_length < 17)
break;
dm->l9.source_display_primaries.prim.r = get_cie_xy(gb);
dm->l9.source_display_primaries.prim.g = get_cie_xy(gb);
dm->l9.source_display_primaries.prim.b = get_cie_xy(gb);
dm->l9.source_display_primaries.wp = get_cie_xy(gb);
break;
case 10:
dm->l10.target_display_index = get_bits(gb, 8);
dm->l10.target_max_pq = get_bits(gb, 12);
dm->l10.target_min_pq = get_bits(gb, 12);
dm->l10.target_primary_index = get_bits(gb, 8);
if (ext_block_length < 21)
break;
dm->l10.target_display_primaries.prim.r = get_cie_xy(gb);
dm->l10.target_display_primaries.prim.g = get_cie_xy(gb);
dm->l10.target_display_primaries.prim.b = get_cie_xy(gb);
dm->l10.target_display_primaries.wp = get_cie_xy(gb);
break;
case 11:
dm->l11.content_type = get_bits(gb, 8);
dm->l11.whitepoint = get_bits(gb, 4);
dm->l11.reference_mode_flag = get_bits1(gb);
skip_bits(gb, 3); /* reserved */
dm->l11.sharpness = get_bits(gb, 2);
dm->l11.noise_reduction = get_bits(gb, 2);
dm->l11.mpeg_noise_reduction = get_bits(gb, 2);
dm->l11.frame_rate_conversion = get_bits(gb, 2);
dm->l11.brightness = get_bits(gb, 2);
dm->l11.color = get_bits(gb, 2);
break;
case 254:
dm->l254.dm_mode = get_bits(gb, 8);
dm->l254.dm_version_index = get_bits(gb, 8);
break;
default:
av_log(s->logctx, AV_LOG_WARNING,
"Unknown Dolby Vision DM v2 level: %u\n", dm->level);
}
}
static int parse_ext_blocks(DOVIContext *s, GetBitContext *gb, int ver)
{
int num_ext_blocks, ext_block_length, start_pos, parsed_bits;
num_ext_blocks = get_ue_golomb_31(gb);
align_get_bits(gb);
if (s->num_ext_blocks + num_ext_blocks > AV_DOVI_MAX_EXT_BLOCKS)
return AVERROR_INVALIDDATA;
if (!s->ext_blocks) {
s->ext_blocks = ff_refstruct_allocz(sizeof(AVDOVIDmData) * AV_DOVI_MAX_EXT_BLOCKS);
if (!s->ext_blocks)
return AVERROR(ENOMEM);
}
while (num_ext_blocks--) {
AVDOVIDmData *dm = &s->ext_blocks[s->num_ext_blocks++];
ext_block_length = get_ue_golomb_31(gb);
dm->level = get_bits(gb, 8);
start_pos = get_bits_count(gb);
switch (ver) {
case 1: parse_ext_v1(s, gb, dm); break;
case 2: parse_ext_v2(s, gb, dm, ext_block_length); break;
}
parsed_bits = get_bits_count(gb) - start_pos;
if (parsed_bits > ext_block_length * 8)
return AVERROR_INVALIDDATA;
skip_bits(gb, ext_block_length * 8 - parsed_bits);
}
return 0;
}
int ff_dovi_rpu_parse(DOVIContext *s, const uint8_t *rpu, size_t rpu_size,
int err_recognition)
{
AVDOVIRpuDataHeader *hdr = &s->header;
GetBitContext *gb = &(GetBitContext){0};
DOVIVdr *vdr;
int ret;
uint8_t rpu_type;
uint8_t vdr_seq_info_present;
uint8_t vdr_dm_metadata_present;
uint8_t use_prev_vdr_rpu;
uint8_t use_nlq;
uint8_t profile;
if (rpu_size < 5)
goto fail;
/* Container */
if (s->dv_profile == 10 /* dav1.10 */) {
/* DV inside AV1 re-uses an EMDF container skeleton, but with fixed
* values - so we can effectively treat this as a magic byte sequence.
*
* The exact fields are, as follows:
* emdf_version : f(2) = 0
* key_id : f(3) = 6
* emdf_payload_id : f(5) = 31
* emdf_payload_id_ext : var(5) = 225
* smploffste : f(1) = 0
* duratione : f(1) = 0
* groupide : f(1) = 0
* codecdatae : f(1) = 0
* discard_unknown_payload : f(1) = 1
*/
const unsigned header_magic = 0x01be6841u;
unsigned emdf_header, emdf_payload_size, emdf_protection;
if ((ret = init_get_bits8(gb, rpu, rpu_size)) < 0)
return ret;
emdf_header = get_bits_long(gb, 27);
VALIDATE(emdf_header, header_magic, header_magic);
emdf_payload_size = get_variable_bits(gb, 8);
VALIDATE(emdf_payload_size, 6, 512);
if (emdf_payload_size * 8 > get_bits_left(gb))
return AVERROR_INVALIDDATA;
/* The payload is not byte-aligned (off by *one* bit, curse Dolby),
* so copy into a fresh buffer to preserve byte alignment of the
* RPU struct */
av_fast_padded_malloc(&s->rpu_buf, &s->rpu_buf_sz, emdf_payload_size);
if (!s->rpu_buf)
return AVERROR(ENOMEM);
for (int i = 0; i < emdf_payload_size; i++)
s->rpu_buf[i] = get_bits(gb, 8);
rpu = s->rpu_buf;
rpu_size = emdf_payload_size;
/* Validate EMDF footer */
emdf_protection = get_bits(gb, 5 + 12);
VALIDATE(emdf_protection, 0x400, 0x400);
} else {
/* NAL RBSP with prefix and trailing zeroes */
VALIDATE(rpu[0], 25, 25); /* NAL prefix */
rpu++;
rpu_size--;
/* Strip trailing padding bytes */
while (rpu_size && rpu[rpu_size - 1] == 0)
rpu_size--;
}
if (!rpu_size || rpu[rpu_size - 1] != 0x80)
goto fail;
if (err_recognition & AV_EF_CRCCHECK) {
uint32_t crc = av_bswap32(av_crc(av_crc_get_table(AV_CRC_32_IEEE),
-1, rpu, rpu_size - 1)); /* exclude 0x80 */
if (crc) {
av_log(s->logctx, AV_LOG_ERROR, "RPU CRC mismatch: %X\n", crc);
if (err_recognition & AV_EF_EXPLODE)
goto fail;
}
}
if ((ret = init_get_bits8(gb, rpu, rpu_size)) < 0)
return ret;
/* RPU header */
rpu_type = get_bits(gb, 6);
if (rpu_type != 2) {
av_log(s->logctx, AV_LOG_WARNING, "Unrecognized RPU type "
"%"PRIu8", ignoring\n", rpu_type);
return 0;
}
hdr->rpu_type = rpu_type;
hdr->rpu_format = get_bits(gb, 11);
/* Values specific to RPU type 2 */
hdr->vdr_rpu_profile = get_bits(gb, 4);
hdr->vdr_rpu_level = get_bits(gb, 4);
vdr_seq_info_present = get_bits1(gb);
if (vdr_seq_info_present) {
hdr->chroma_resampling_explicit_filter_flag = get_bits1(gb);
hdr->coef_data_type = get_bits(gb, 2);
VALIDATE(hdr->coef_data_type, RPU_COEFF_FIXED, RPU_COEFF_FLOAT);
switch (hdr->coef_data_type) {
case RPU_COEFF_FIXED:
hdr->coef_log2_denom = get_ue_golomb(gb);
VALIDATE(hdr->coef_log2_denom, 13, 32);
break;
case RPU_COEFF_FLOAT:
hdr->coef_log2_denom = 32; /* arbitrary, choose maximum precision */
break;
}
hdr->vdr_rpu_normalized_idc = get_bits(gb, 2);
hdr->bl_video_full_range_flag = get_bits1(gb);
if ((hdr->rpu_format & 0x700) == 0) {
int bl_bit_depth_minus8 = get_ue_golomb_31(gb);
int el_bit_depth_minus8 = get_ue_golomb_31(gb);
int vdr_bit_depth_minus8 = get_ue_golomb_31(gb);
VALIDATE(bl_bit_depth_minus8, 0, 8);
VALIDATE(el_bit_depth_minus8, 0, 8);
VALIDATE(vdr_bit_depth_minus8, 0, 8);
hdr->bl_bit_depth = bl_bit_depth_minus8 + 8;
hdr->el_bit_depth = el_bit_depth_minus8 + 8;
hdr->vdr_bit_depth = vdr_bit_depth_minus8 + 8;
hdr->spatial_resampling_filter_flag = get_bits1(gb);
skip_bits(gb, 3); /* reserved_zero_3bits */
hdr->el_spatial_resampling_filter_flag = get_bits1(gb);
hdr->disable_residual_flag = get_bits1(gb);
}
}
if (!hdr->bl_bit_depth) {
av_log(s->logctx, AV_LOG_ERROR, "Missing RPU VDR sequence info?\n");
goto fail;
}
vdr_dm_metadata_present = get_bits1(gb);
use_prev_vdr_rpu = get_bits1(gb);
use_nlq = (hdr->rpu_format & 0x700) == 0 && !hdr->disable_residual_flag;
profile = s->dv_profile ? s->dv_profile : guess_profile(hdr);
if (profile == 5 && use_nlq) {
av_log(s->logctx, AV_LOG_ERROR, "Profile 5 RPUs should not use NLQ\n");
goto fail;
}
if (use_prev_vdr_rpu) {
int prev_vdr_rpu_id = get_ue_golomb_31(gb);
VALIDATE(prev_vdr_rpu_id, 0, DOVI_MAX_DM_ID);
if (!s->vdr[prev_vdr_rpu_id]) {
av_log(s->logctx, AV_LOG_ERROR, "Unknown previous RPU ID: %u\n",
prev_vdr_rpu_id);
goto fail;
}
vdr = s->vdr[prev_vdr_rpu_id];
s->mapping = &vdr->mapping;
} else {
int vdr_rpu_id = get_ue_golomb_31(gb);
VALIDATE(vdr_rpu_id, 0, DOVI_MAX_DM_ID);
if (!s->vdr[vdr_rpu_id]) {
s->vdr[vdr_rpu_id] = ff_refstruct_allocz(sizeof(DOVIVdr));
if (!s->vdr[vdr_rpu_id])
return AVERROR(ENOMEM);
}
vdr = s->vdr[vdr_rpu_id];
s->mapping = &vdr->mapping;
vdr->mapping.vdr_rpu_id = vdr_rpu_id;
vdr->mapping.mapping_color_space = get_ue_golomb_31(gb);
vdr->mapping.mapping_chroma_format_idc = get_ue_golomb_31(gb);
for (int c = 0; c < 3; c++) {
AVDOVIReshapingCurve *curve = &vdr->mapping.curves[c];
int num_pivots_minus_2 = get_ue_golomb_31(gb);
int pivot = 0;
VALIDATE(num_pivots_minus_2, 0, AV_DOVI_MAX_PIECES - 1);
curve->num_pivots = num_pivots_minus_2 + 2;
for (int i = 0; i < curve->num_pivots; i++) {
pivot += get_bits(gb, hdr->bl_bit_depth);
curve->pivots[i] = av_clip_uint16(pivot);
}
}
if (use_nlq) {
int nlq_pivot = 0;
vdr->mapping.nlq_method_idc = get_bits(gb, 3);
for (int i = 0; i < 2; i++) {
nlq_pivot += get_bits(gb, hdr->bl_bit_depth);
vdr->mapping.nlq_pivots[i] = av_clip_uint16(nlq_pivot);
}
/**
* The patent mentions another legal value, NLQ_MU_LAW, but it's
* not documented anywhere how to parse or apply that type of NLQ.
*/
VALIDATE(vdr->mapping.nlq_method_idc, 0, AV_DOVI_NLQ_LINEAR_DZ);
} else {
vdr->mapping.nlq_method_idc = AV_DOVI_NLQ_NONE;
}
vdr->mapping.num_x_partitions = get_ue_golomb_long(gb) + 1;
vdr->mapping.num_y_partitions = get_ue_golomb_long(gb) + 1;
/* End of rpu_data_header(), start of vdr_rpu_data_payload() */
for (int c = 0; c < 3; c++) {
AVDOVIReshapingCurve *curve = &vdr->mapping.curves[c];
for (int i = 0; i < curve->num_pivots - 1; i++) {
int mapping_idc = get_ue_golomb_31(gb);
VALIDATE(mapping_idc, 0, 1);
curve->mapping_idc[i] = mapping_idc;
switch (mapping_idc) {
case AV_DOVI_MAPPING_POLYNOMIAL: {
int poly_order_minus1 = get_ue_golomb_31(gb);
VALIDATE(poly_order_minus1, 0, 1);
curve->poly_order[i] = poly_order_minus1 + 1;
if (poly_order_minus1 == 0) {
int linear_interp_flag = get_bits1(gb);
if (linear_interp_flag) {
/* lack of documentation/samples */
avpriv_request_sample(s->logctx, "Dolby Vision "
"linear interpolation");
ff_dovi_ctx_unref(s);
return AVERROR_PATCHWELCOME;
}
}
for (int k = 0; k <= curve->poly_order[i]; k++)
curve->poly_coef[i][k] = get_se_coef(gb, hdr);
break;
}
case AV_DOVI_MAPPING_MMR: {
int mmr_order_minus1 = get_bits(gb, 2);
VALIDATE(mmr_order_minus1, 0, 2);
curve->mmr_order[i] = mmr_order_minus1 + 1;
curve->mmr_constant[i] = get_se_coef(gb, hdr);
for (int j = 0; j < curve->mmr_order[i]; j++) {
for (int k = 0; k < 7; k++)
curve->mmr_coef[i][j][k] = get_se_coef(gb, hdr);
}
break;
}
}
}
}
if (use_nlq) {
for (int c = 0; c < 3; c++) {
AVDOVINLQParams *nlq = &vdr->mapping.nlq[c];
nlq->nlq_offset = get_bits(gb, hdr->el_bit_depth);
nlq->vdr_in_max = get_ue_coef(gb, hdr);
switch (vdr->mapping.nlq_method_idc) {
case AV_DOVI_NLQ_LINEAR_DZ:
nlq->linear_deadzone_slope = get_ue_coef(gb, hdr);
nlq->linear_deadzone_threshold = get_ue_coef(gb, hdr);
break;
}
}
}
}
if (vdr_dm_metadata_present) {
AVDOVIColorMetadata *color;
int affected_dm_id = get_ue_golomb_31(gb);
int current_dm_id = get_ue_golomb_31(gb);
VALIDATE(affected_dm_id, 0, DOVI_MAX_DM_ID);
VALIDATE(current_dm_id, 0, DOVI_MAX_DM_ID);
if (!s->vdr[affected_dm_id]) {
s->vdr[affected_dm_id] = ff_refstruct_allocz(sizeof(DOVIVdr));
if (!s->vdr[affected_dm_id])
return AVERROR(ENOMEM);
}
if (!s->vdr[current_dm_id]) {
av_log(s->logctx, AV_LOG_ERROR, "Unknown previous RPU DM ID: %u\n",
current_dm_id);
goto fail;
}
/* Update current pointer based on current_dm_id */
vdr = s->vdr[current_dm_id];
s->color = &vdr->color;
/* Update values of affected_dm_id */
vdr = s->vdr[affected_dm_id];
color = &vdr->color;
color->dm_metadata_id = affected_dm_id;
color->scene_refresh_flag = get_ue_golomb_31(gb);
for (int i = 0; i < 9; i++)
color->ycc_to_rgb_matrix[i] = av_make_q(get_sbits(gb, 16), 1 << 13);
for (int i = 0; i < 3; i++) {
int denom = profile == 4 ? (1 << 30) : (1 << 28);
unsigned offset = get_bits_long(gb, 32);
if (offset > INT_MAX) {
/* Ensure the result fits inside AVRational */
offset >>= 1;
denom >>= 1;
}
color->ycc_to_rgb_offset[i] = av_make_q(offset, denom);
}
for (int i = 0; i < 9; i++)
color->rgb_to_lms_matrix[i] = av_make_q(get_sbits(gb, 16), 1 << 14);
color->signal_eotf = get_bits(gb, 16);
color->signal_eotf_param0 = get_bits(gb, 16);
color->signal_eotf_param1 = get_bits(gb, 16);
color->signal_eotf_param2 = get_bits_long(gb, 32);
color->signal_bit_depth = get_bits(gb, 5);
VALIDATE(color->signal_bit_depth, 8, 16);
color->signal_color_space = get_bits(gb, 2);
color->signal_chroma_format = get_bits(gb, 2);
color->signal_full_range_flag = get_bits(gb, 2);
color->source_min_pq = get_bits(gb, 12);
color->source_max_pq = get_bits(gb, 12);
color->source_diagonal = get_bits(gb, 10);
}
/* Parse extension blocks */
s->num_ext_blocks = 0;
if ((ret = parse_ext_blocks(s, gb, 1)) < 0) {
ff_dovi_ctx_unref(s);
return ret;
}
if (get_bits_left(gb) > 48 /* padding + CRC32 + terminator */) {
if ((ret = parse_ext_blocks(s, gb, 2)) < 0) {
ff_dovi_ctx_unref(s);
return ret;
}
}
return 0;
fail:
ff_dovi_ctx_unref(s); /* don't leak potentially invalid state */
return AVERROR_INVALIDDATA;
}