1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00
FFmpeg/libavfilter/vulkan.c
Lynne 97b526c192 hwcontext_vulkan: only use one semaphore per image
The idea was to allow separate planes to be filtered independently, however,
in hindsight, literaly nothing uses separate per-plane semaphores and it
would only work when each plane is backed by separate device memory.
2020-04-07 12:52:56 +01:00

1245 lines
42 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "formats.h"
#include "vulkan.h"
#include "glslang.h"
/* Generic macro for creating contexts which need to keep their addresses
* if another context is created. */
#define FN_CREATING(ctx, type, shortname, array, num) \
static av_always_inline type *create_ ##shortname(ctx *dctx) \
{ \
type **array, *sctx = av_mallocz(sizeof(*sctx)); \
if (!sctx) \
return NULL; \
\
array = av_realloc_array(dctx->array, sizeof(*dctx->array), dctx->num + 1);\
if (!array) { \
av_free(sctx); \
return NULL; \
} \
\
dctx->array = array; \
dctx->array[dctx->num++] = sctx; \
\
return sctx; \
}
const VkComponentMapping ff_comp_identity_map = {
.r = VK_COMPONENT_SWIZZLE_IDENTITY,
.g = VK_COMPONENT_SWIZZLE_IDENTITY,
.b = VK_COMPONENT_SWIZZLE_IDENTITY,
.a = VK_COMPONENT_SWIZZLE_IDENTITY,
};
/* Converts return values to strings */
const char *ff_vk_ret2str(VkResult res)
{
#define CASE(VAL) case VAL: return #VAL
switch (res) {
CASE(VK_SUCCESS);
CASE(VK_NOT_READY);
CASE(VK_TIMEOUT);
CASE(VK_EVENT_SET);
CASE(VK_EVENT_RESET);
CASE(VK_INCOMPLETE);
CASE(VK_ERROR_OUT_OF_HOST_MEMORY);
CASE(VK_ERROR_OUT_OF_DEVICE_MEMORY);
CASE(VK_ERROR_INITIALIZATION_FAILED);
CASE(VK_ERROR_DEVICE_LOST);
CASE(VK_ERROR_MEMORY_MAP_FAILED);
CASE(VK_ERROR_LAYER_NOT_PRESENT);
CASE(VK_ERROR_EXTENSION_NOT_PRESENT);
CASE(VK_ERROR_FEATURE_NOT_PRESENT);
CASE(VK_ERROR_INCOMPATIBLE_DRIVER);
CASE(VK_ERROR_TOO_MANY_OBJECTS);
CASE(VK_ERROR_FORMAT_NOT_SUPPORTED);
CASE(VK_ERROR_FRAGMENTED_POOL);
CASE(VK_ERROR_SURFACE_LOST_KHR);
CASE(VK_ERROR_NATIVE_WINDOW_IN_USE_KHR);
CASE(VK_SUBOPTIMAL_KHR);
CASE(VK_ERROR_OUT_OF_DATE_KHR);
CASE(VK_ERROR_INCOMPATIBLE_DISPLAY_KHR);
CASE(VK_ERROR_VALIDATION_FAILED_EXT);
CASE(VK_ERROR_INVALID_SHADER_NV);
CASE(VK_ERROR_OUT_OF_POOL_MEMORY);
CASE(VK_ERROR_INVALID_EXTERNAL_HANDLE);
CASE(VK_ERROR_NOT_PERMITTED_EXT);
default: return "Unknown error";
}
#undef CASE
}
static int vk_alloc_mem(AVFilterContext *avctx, VkMemoryRequirements *req,
VkMemoryPropertyFlagBits req_flags, void *alloc_extension,
VkMemoryPropertyFlagBits *mem_flags, VkDeviceMemory *mem)
{
VkResult ret;
int index = -1;
VkPhysicalDeviceProperties props;
VkPhysicalDeviceMemoryProperties mprops;
VulkanFilterContext *s = avctx->priv;
VkMemoryAllocateInfo alloc_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
.pNext = alloc_extension,
};
vkGetPhysicalDeviceProperties(s->hwctx->phys_dev, &props);
vkGetPhysicalDeviceMemoryProperties(s->hwctx->phys_dev, &mprops);
/* Align if we need to */
if (req_flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
req->size = FFALIGN(req->size, props.limits.minMemoryMapAlignment);
alloc_info.allocationSize = req->size;
/* The vulkan spec requires memory types to be sorted in the "optimal"
* order, so the first matching type we find will be the best/fastest one */
for (int i = 0; i < mprops.memoryTypeCount; i++) {
/* The memory type must be supported by the requirements (bitfield) */
if (!(req->memoryTypeBits & (1 << i)))
continue;
/* The memory type flags must include our properties */
if ((mprops.memoryTypes[i].propertyFlags & req_flags) != req_flags)
continue;
/* Found a suitable memory type */
index = i;
break;
}
if (index < 0) {
av_log(avctx, AV_LOG_ERROR, "No memory type found for flags 0x%x\n",
req_flags);
return AVERROR(EINVAL);
}
alloc_info.memoryTypeIndex = index;
ret = vkAllocateMemory(s->hwctx->act_dev, &alloc_info,
s->hwctx->alloc, mem);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Failed to allocate memory: %s\n",
ff_vk_ret2str(ret));
return AVERROR(ENOMEM);
}
*mem_flags |= mprops.memoryTypes[index].propertyFlags;
return 0;
}
int ff_vk_create_buf(AVFilterContext *avctx, FFVkBuffer *buf, size_t size,
VkBufferUsageFlags usage, VkMemoryPropertyFlagBits flags)
{
int err;
VkResult ret;
VkMemoryRequirements req;
VulkanFilterContext *s = avctx->priv;
VkBufferCreateInfo buf_spawn = {
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = NULL,
.usage = usage,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.size = size, /* Gets FFALIGNED during alloc if host visible
but should be ok */
};
ret = vkCreateBuffer(s->hwctx->act_dev, &buf_spawn, NULL, &buf->buf);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Failed to create buffer: %s\n",
ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
vkGetBufferMemoryRequirements(s->hwctx->act_dev, buf->buf, &req);
err = vk_alloc_mem(avctx, &req, flags, NULL, &buf->flags, &buf->mem);
if (err)
return err;
ret = vkBindBufferMemory(s->hwctx->act_dev, buf->buf, buf->mem, 0);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Failed to bind memory to buffer: %s\n",
ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
return 0;
}
int ff_vk_map_buffers(AVFilterContext *avctx, FFVkBuffer *buf, uint8_t *mem[],
int nb_buffers, int invalidate)
{
VkResult ret;
VulkanFilterContext *s = avctx->priv;
VkMappedMemoryRange *inval_list = NULL;
int inval_count = 0;
for (int i = 0; i < nb_buffers; i++) {
ret = vkMapMemory(s->hwctx->act_dev, buf[i].mem, 0,
VK_WHOLE_SIZE, 0, (void **)&mem[i]);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Failed to map buffer memory: %s\n",
ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
}
if (!invalidate)
return 0;
for (int i = 0; i < nb_buffers; i++) {
const VkMappedMemoryRange ival_buf = {
.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,
.memory = buf[i].mem,
.size = VK_WHOLE_SIZE,
};
if (buf[i].flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
continue;
inval_list = av_fast_realloc(s->scratch, &s->scratch_size,
(++inval_count)*sizeof(*inval_list));
if (!inval_list)
return AVERROR(ENOMEM);
inval_list[inval_count - 1] = ival_buf;
}
if (inval_count) {
ret = vkInvalidateMappedMemoryRanges(s->hwctx->act_dev, inval_count,
inval_list);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Failed to invalidate memory: %s\n",
ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
}
return 0;
}
int ff_vk_unmap_buffers(AVFilterContext *avctx, FFVkBuffer *buf, int nb_buffers,
int flush)
{
int err = 0;
VkResult ret;
VulkanFilterContext *s = avctx->priv;
VkMappedMemoryRange *flush_list = NULL;
int flush_count = 0;
if (flush) {
for (int i = 0; i < nb_buffers; i++) {
const VkMappedMemoryRange flush_buf = {
.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,
.memory = buf[i].mem,
.size = VK_WHOLE_SIZE,
};
if (buf[i].flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
continue;
flush_list = av_fast_realloc(s->scratch, &s->scratch_size,
(++flush_count)*sizeof(*flush_list));
if (!flush_list)
return AVERROR(ENOMEM);
flush_list[flush_count - 1] = flush_buf;
}
}
if (flush_count) {
ret = vkFlushMappedMemoryRanges(s->hwctx->act_dev, flush_count,
flush_list);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Failed to flush memory: %s\n",
ff_vk_ret2str(ret));
err = AVERROR_EXTERNAL; /* We still want to try to unmap them */
}
}
for (int i = 0; i < nb_buffers; i++)
vkUnmapMemory(s->hwctx->act_dev, buf[i].mem);
return err;
}
void ff_vk_free_buf(AVFilterContext *avctx, FFVkBuffer *buf)
{
VulkanFilterContext *s = avctx->priv;
if (!buf)
return;
if (buf->buf != VK_NULL_HANDLE)
vkDestroyBuffer(s->hwctx->act_dev, buf->buf, s->hwctx->alloc);
if (buf->mem != VK_NULL_HANDLE)
vkFreeMemory(s->hwctx->act_dev, buf->mem, s->hwctx->alloc);
}
int ff_vk_add_push_constant(AVFilterContext *avctx, VulkanPipeline *pl,
int offset, int size, VkShaderStageFlagBits stage)
{
VkPushConstantRange *pc;
pl->push_consts = av_realloc_array(pl->push_consts, sizeof(*pl->push_consts),
pl->push_consts_num + 1);
if (!pl->push_consts)
return AVERROR(ENOMEM);
pc = &pl->push_consts[pl->push_consts_num++];
memset(pc, 0, sizeof(*pc));
pc->stageFlags = stage;
pc->offset = offset;
pc->size = size;
return 0;
}
FN_CREATING(VulkanFilterContext, FFVkExecContext, exec_ctx, exec_ctx, exec_ctx_num)
int ff_vk_create_exec_ctx(AVFilterContext *avctx, FFVkExecContext **ctx, int queue)
{
VkResult ret;
FFVkExecContext *e;
VulkanFilterContext *s = avctx->priv;
VkCommandPoolCreateInfo cqueue_create = {
.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,
.queueFamilyIndex = queue,
};
VkCommandBufferAllocateInfo cbuf_create = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = 1,
};
VkFenceCreateInfo fence_spawn = { VK_STRUCTURE_TYPE_FENCE_CREATE_INFO };
e = create_exec_ctx(s);
if (!e)
return AVERROR(ENOMEM);
ret = vkCreateCommandPool(s->hwctx->act_dev, &cqueue_create,
s->hwctx->alloc, &e->pool);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Command pool creation failure: %s\n",
ff_vk_ret2str(ret));
return 1;
}
cbuf_create.commandPool = e->pool;
ret = vkAllocateCommandBuffers(s->hwctx->act_dev, &cbuf_create, &e->buf);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Command buffer alloc failure: %s\n",
ff_vk_ret2str(ret));
return 1;
}
ret = vkCreateFence(s->hwctx->act_dev, &fence_spawn,
s->hwctx->alloc, &e->fence);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Failed to create frame fence: %s\n",
ff_vk_ret2str(ret));
return 1;
}
vkGetDeviceQueue(s->hwctx->act_dev, queue, 0, &e->queue);
*ctx = e;
return 0;
}
int ff_vk_start_exec_recording(AVFilterContext *avctx, FFVkExecContext *e)
{
VkResult ret;
VkCommandBufferBeginInfo cmd_start = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
};
e->sem_wait_cnt = 0;
e->sem_sig_cnt = 0;
ret = vkBeginCommandBuffer(e->buf, &cmd_start);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Failed to start command recoding: %s\n",
ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
return 0;
}
int ff_vk_add_exec_dep(AVFilterContext *avctx, FFVkExecContext *e,
AVFrame *frame, VkPipelineStageFlagBits in_wait_dst_flag)
{
AVVkFrame *f = (AVVkFrame *)frame->data[0];
e->sem_wait = av_fast_realloc(e->sem_wait, &e->sem_wait_alloc,
(e->sem_wait_cnt + 1)*sizeof(*e->sem_wait));
if (!e->sem_wait)
return AVERROR(ENOMEM);
e->sem_wait_dst = av_fast_realloc(e->sem_wait_dst, &e->sem_wait_dst_alloc,
(e->sem_wait_cnt + 1)*sizeof(*e->sem_wait_dst));
if (!e->sem_wait_dst)
return AVERROR(ENOMEM);
e->sem_sig = av_fast_realloc(e->sem_sig, &e->sem_sig_alloc,
(e->sem_sig_cnt + 1)*sizeof(*e->sem_sig));
if (!e->sem_sig)
return AVERROR(ENOMEM);
e->sem_wait[e->sem_wait_cnt] = f->sem;
e->sem_wait_dst[e->sem_wait_cnt] = in_wait_dst_flag;
e->sem_wait_cnt++;
e->sem_sig[e->sem_sig_cnt] = f->sem;
e->sem_sig_cnt++;
return 0;
}
int ff_vk_submit_exec_queue(AVFilterContext *avctx, FFVkExecContext *e)
{
VkResult ret;
VulkanFilterContext *s = avctx->priv;
VkSubmitInfo s_info = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.commandBufferCount = 1,
.pCommandBuffers = &e->buf,
.pWaitSemaphores = e->sem_wait,
.pWaitDstStageMask = e->sem_wait_dst,
.waitSemaphoreCount = e->sem_wait_cnt,
.pSignalSemaphores = e->sem_sig,
.signalSemaphoreCount = e->sem_sig_cnt,
};
vkEndCommandBuffer(e->buf);
ret = vkQueueSubmit(e->queue, 1, &s_info, e->fence);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Unable to submit command buffer: %s\n",
ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
vkWaitForFences(s->hwctx->act_dev, 1, &e->fence, VK_TRUE, UINT64_MAX);
vkResetFences(s->hwctx->act_dev, 1, &e->fence);
return 0;
}
int ff_vk_filter_query_formats(AVFilterContext *avctx)
{
static const enum AVPixelFormat pixel_formats[] = {
AV_PIX_FMT_VULKAN, AV_PIX_FMT_NONE,
};
AVFilterFormats *pix_fmts = ff_make_format_list(pixel_formats);
if (!pix_fmts)
return AVERROR(ENOMEM);
return ff_set_common_formats(avctx, pix_fmts);
}
static int vulkan_filter_set_device(AVFilterContext *avctx,
AVBufferRef *device)
{
VulkanFilterContext *s = avctx->priv;
av_buffer_unref(&s->device_ref);
s->device_ref = av_buffer_ref(device);
if (!s->device_ref)
return AVERROR(ENOMEM);
s->device = (AVHWDeviceContext*)s->device_ref->data;
s->hwctx = s->device->hwctx;
return 0;
}
static int vulkan_filter_set_frames(AVFilterContext *avctx,
AVBufferRef *frames)
{
VulkanFilterContext *s = avctx->priv;
av_buffer_unref(&s->frames_ref);
s->frames_ref = av_buffer_ref(frames);
if (!s->frames_ref)
return AVERROR(ENOMEM);
return 0;
}
int ff_vk_filter_config_input(AVFilterLink *inlink)
{
int err;
AVFilterContext *avctx = inlink->dst;
VulkanFilterContext *s = avctx->priv;
AVHWFramesContext *input_frames;
if (!inlink->hw_frames_ctx) {
av_log(avctx, AV_LOG_ERROR, "Vulkan filtering requires a "
"hardware frames context on the input.\n");
return AVERROR(EINVAL);
}
/* Extract the device and default output format from the first input. */
if (avctx->inputs[0] != inlink)
return 0;
input_frames = (AVHWFramesContext*)inlink->hw_frames_ctx->data;
if (input_frames->format != AV_PIX_FMT_VULKAN)
return AVERROR(EINVAL);
err = vulkan_filter_set_device(avctx, input_frames->device_ref);
if (err < 0)
return err;
err = vulkan_filter_set_frames(avctx, inlink->hw_frames_ctx);
if (err < 0)
return err;
/* Default output parameters match input parameters. */
s->input_format = input_frames->sw_format;
if (s->output_format == AV_PIX_FMT_NONE)
s->output_format = input_frames->sw_format;
if (!s->output_width)
s->output_width = inlink->w;
if (!s->output_height)
s->output_height = inlink->h;
return 0;
}
int ff_vk_filter_config_output_inplace(AVFilterLink *outlink)
{
int err;
AVFilterContext *avctx = outlink->src;
VulkanFilterContext *s = avctx->priv;
av_buffer_unref(&outlink->hw_frames_ctx);
if (!s->device_ref) {
if (!avctx->hw_device_ctx) {
av_log(avctx, AV_LOG_ERROR, "Vulkan filtering requires a "
"Vulkan device.\n");
return AVERROR(EINVAL);
}
err = vulkan_filter_set_device(avctx, avctx->hw_device_ctx);
if (err < 0)
return err;
}
outlink->hw_frames_ctx = av_buffer_ref(s->frames_ref);
if (!outlink->hw_frames_ctx)
return AVERROR(ENOMEM);
outlink->w = s->output_width;
outlink->h = s->output_height;
return 0;
}
int ff_vk_filter_config_output(AVFilterLink *outlink)
{
int err;
AVFilterContext *avctx = outlink->src;
VulkanFilterContext *s = avctx->priv;
AVBufferRef *output_frames_ref;
AVHWFramesContext *output_frames;
av_buffer_unref(&outlink->hw_frames_ctx);
if (!s->device_ref) {
if (!avctx->hw_device_ctx) {
av_log(avctx, AV_LOG_ERROR, "Vulkan filtering requires a "
"Vulkan device.\n");
return AVERROR(EINVAL);
}
err = vulkan_filter_set_device(avctx, avctx->hw_device_ctx);
if (err < 0)
return err;
}
output_frames_ref = av_hwframe_ctx_alloc(s->device_ref);
if (!output_frames_ref) {
err = AVERROR(ENOMEM);
goto fail;
}
output_frames = (AVHWFramesContext*)output_frames_ref->data;
output_frames->format = AV_PIX_FMT_VULKAN;
output_frames->sw_format = s->output_format;
output_frames->width = s->output_width;
output_frames->height = s->output_height;
err = av_hwframe_ctx_init(output_frames_ref);
if (err < 0) {
av_log(avctx, AV_LOG_ERROR, "Failed to initialise output "
"frames: %d.\n", err);
goto fail;
}
outlink->hw_frames_ctx = output_frames_ref;
outlink->w = s->output_width;
outlink->h = s->output_height;
return 0;
fail:
av_buffer_unref(&output_frames_ref);
return err;
}
int ff_vk_filter_init(AVFilterContext *avctx)
{
VulkanFilterContext *s = avctx->priv;
s->output_format = AV_PIX_FMT_NONE;
if (glslang_init())
return AVERROR_EXTERNAL;
return 0;
}
FN_CREATING(VulkanFilterContext, VkSampler, sampler, samplers, samplers_num)
VkSampler *ff_vk_init_sampler(AVFilterContext *avctx, int unnorm_coords,
VkFilter filt)
{
VkResult ret;
VulkanFilterContext *s = avctx->priv;
VkSamplerCreateInfo sampler_info = {
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.magFilter = filt,
.minFilter = sampler_info.magFilter,
.mipmapMode = unnorm_coords ? VK_SAMPLER_MIPMAP_MODE_NEAREST :
VK_SAMPLER_MIPMAP_MODE_LINEAR,
.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
.addressModeV = sampler_info.addressModeU,
.addressModeW = sampler_info.addressModeU,
.anisotropyEnable = VK_FALSE,
.compareOp = VK_COMPARE_OP_NEVER,
.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK,
.unnormalizedCoordinates = unnorm_coords,
};
VkSampler *sampler = create_sampler(s);
if (!sampler)
return NULL;
ret = vkCreateSampler(s->hwctx->act_dev, &sampler_info,
s->hwctx->alloc, sampler);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Unable to init sampler: %s\n",
ff_vk_ret2str(ret));
return NULL;
}
return sampler;
}
int ff_vk_mt_is_np_rgb(enum AVPixelFormat pix_fmt)
{
if (pix_fmt == AV_PIX_FMT_ABGR || pix_fmt == AV_PIX_FMT_BGRA ||
pix_fmt == AV_PIX_FMT_RGBA || pix_fmt == AV_PIX_FMT_RGB24 ||
pix_fmt == AV_PIX_FMT_BGR24 || pix_fmt == AV_PIX_FMT_RGB48 ||
pix_fmt == AV_PIX_FMT_RGBA64 || pix_fmt == AV_PIX_FMT_RGB565 ||
pix_fmt == AV_PIX_FMT_BGR565 || pix_fmt == AV_PIX_FMT_BGR0 ||
pix_fmt == AV_PIX_FMT_0BGR || pix_fmt == AV_PIX_FMT_RGB0)
return 1;
return 0;
}
const char *ff_vk_shader_rep_fmt(enum AVPixelFormat pixfmt)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pixfmt);
const int high = desc->comp[0].depth > 8;
return high ? "rgba16f" : "rgba8";
}
int ff_vk_create_imageview(AVFilterContext *avctx, VkImageView *v, VkImage img,
VkFormat fmt, const VkComponentMapping map)
{
VulkanFilterContext *s = avctx->priv;
VkImageViewCreateInfo imgview_spawn = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = NULL,
.image = img,
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = fmt,
.components = map,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
};
VkResult ret = vkCreateImageView(s->hwctx->act_dev, &imgview_spawn,
s->hwctx->alloc, v);
if (ret != VK_SUCCESS) {
av_log(s, AV_LOG_ERROR, "Failed to create imageview: %s\n",
ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
return 0;
}
void ff_vk_destroy_imageview(AVFilterContext *avctx, VkImageView *v)
{
VulkanFilterContext *s = avctx->priv;
if (v && *v) {
vkDestroyImageView(s->hwctx->act_dev, *v, s->hwctx->alloc);
*v = NULL;
}
}
FN_CREATING(VulkanPipeline, SPIRVShader, shader, shaders, shaders_num)
SPIRVShader *ff_vk_init_shader(AVFilterContext *avctx, VulkanPipeline *pl,
const char *name, VkShaderStageFlags stage)
{
SPIRVShader *shd = create_shader(pl);
if (!shd)
return NULL;
av_bprint_init(&shd->src, 0, AV_BPRINT_SIZE_UNLIMITED);
shd->shader.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shd->shader.stage = stage;
shd->name = name;
GLSLF(0, #version %i ,460);
GLSLC(0, #define IS_WITHIN(v1, v2) ((v1.x < v2.x) && (v1.y < v2.y)) );
GLSLC(0, );
return shd;
}
void ff_vk_set_compute_shader_sizes(AVFilterContext *avctx, SPIRVShader *shd,
int local_size[3])
{
shd->local_size[0] = local_size[0];
shd->local_size[1] = local_size[1];
shd->local_size[2] = local_size[2];
av_bprintf(&shd->src, "layout (local_size_x = %i, "
"local_size_y = %i, local_size_z = %i) in;\n\n",
shd->local_size[0], shd->local_size[1], shd->local_size[2]);
}
static void print_shader(AVFilterContext *avctx, SPIRVShader *shd, int prio)
{
int line = 0;
const char *p = shd->src.str;
const char *start = p;
AVBPrint buf;
av_bprint_init(&buf, 0, AV_BPRINT_SIZE_UNLIMITED);
for (int i = 0; i < strlen(p); i++) {
if (p[i] == '\n') {
av_bprintf(&buf, "%i\t", ++line);
av_bprint_append_data(&buf, start, &p[i] - start + 1);
start = &p[i + 1];
}
}
av_log(avctx, prio, "Shader %s: \n%s", shd->name, buf.str);
av_bprint_finalize(&buf, NULL);
}
int ff_vk_compile_shader(AVFilterContext *avctx, SPIRVShader *shd,
const char *entrypoint)
{
VkResult ret;
VulkanFilterContext *s = avctx->priv;
VkShaderModuleCreateInfo shader_create;
GLSlangResult *res;
static const enum GLSlangStage emap[] = {
[VK_SHADER_STAGE_VERTEX_BIT] = GLSLANG_VERTEX,
[VK_SHADER_STAGE_FRAGMENT_BIT] = GLSLANG_FRAGMENT,
[VK_SHADER_STAGE_COMPUTE_BIT] = GLSLANG_COMPUTE,
};
shd->shader.pName = entrypoint;
res = glslang_compile(shd->src.str, emap[shd->shader.stage]);
if (!res)
return AVERROR(ENOMEM);
if (res->rval) {
av_log(avctx, AV_LOG_ERROR, "Error compiling shader %s: %s!\n",
shd->name, av_err2str(res->rval));
print_shader(avctx, shd, AV_LOG_ERROR);
if (res->error_msg)
av_log(avctx, AV_LOG_ERROR, "%s", res->error_msg);
av_free(res->error_msg);
return res->rval;
}
print_shader(avctx, shd, AV_LOG_VERBOSE);
shader_create.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
shader_create.pNext = NULL;
shader_create.codeSize = res->size;
shader_create.flags = 0;
shader_create.pCode = res->data;
ret = vkCreateShaderModule(s->hwctx->act_dev, &shader_create, NULL,
&shd->shader.module);
/* Free the GLSlangResult struct */
av_free(res);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Unable to create shader module: %s\n",
ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
av_log(avctx, AV_LOG_VERBOSE, "Shader %s linked! Size: %zu bytes\n",
shd->name, shader_create.codeSize);
return 0;
}
static const struct descriptor_props {
size_t struct_size; /* Size of the opaque which updates the descriptor */
const char *type;
int is_uniform;
int mem_quali; /* Can use a memory qualifier */
int dim_needed; /* Must indicate dimension */
int buf_content; /* Must indicate buffer contents */
} descriptor_props[] = {
[VK_DESCRIPTOR_TYPE_SAMPLER] = { sizeof(VkDescriptorImageInfo), "sampler", 1, 0, 0, 0, },
[VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE] = { sizeof(VkDescriptorImageInfo), "texture", 1, 0, 1, 0, },
[VK_DESCRIPTOR_TYPE_STORAGE_IMAGE] = { sizeof(VkDescriptorImageInfo), "image", 1, 1, 1, 0, },
[VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT] = { sizeof(VkDescriptorImageInfo), "subpassInput", 1, 0, 0, 0, },
[VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER] = { sizeof(VkDescriptorImageInfo), "sampler", 1, 0, 1, 0, },
[VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER] = { sizeof(VkDescriptorBufferInfo), NULL, 1, 0, 0, 1, },
[VK_DESCRIPTOR_TYPE_STORAGE_BUFFER] = { sizeof(VkDescriptorBufferInfo), "buffer", 0, 1, 0, 1, },
[VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC] = { sizeof(VkDescriptorBufferInfo), NULL, 1, 0, 0, 1, },
[VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC] = { sizeof(VkDescriptorBufferInfo), "buffer", 0, 1, 0, 1, },
[VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER] = { sizeof(VkBufferView), "samplerBuffer", 1, 0, 0, 0, },
[VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER] = { sizeof(VkBufferView), "imageBuffer", 1, 0, 0, 0, },
};
int ff_vk_add_descriptor_set(AVFilterContext *avctx, VulkanPipeline *pl,
SPIRVShader *shd, VulkanDescriptorSetBinding *desc,
int num, int only_print_to_shader)
{
VkResult ret;
VkDescriptorSetLayout *layout;
VulkanFilterContext *s = avctx->priv;
if (only_print_to_shader)
goto print;
pl->desc_layout = av_realloc_array(pl->desc_layout, sizeof(*pl->desc_layout),
pl->descriptor_sets_num + 1);
if (!pl->desc_layout)
return AVERROR(ENOMEM);
layout = &pl->desc_layout[pl->descriptor_sets_num];
memset(layout, 0, sizeof(*layout));
{ /* Create descriptor set layout descriptions */
VkDescriptorSetLayoutCreateInfo desc_create_layout = { 0 };
VkDescriptorSetLayoutBinding *desc_binding;
desc_binding = av_mallocz(sizeof(*desc_binding)*num);
if (!desc_binding)
return AVERROR(ENOMEM);
for (int i = 0; i < num; i++) {
desc_binding[i].binding = i;
desc_binding[i].descriptorType = desc[i].type;
desc_binding[i].descriptorCount = FFMAX(desc[i].elems, 1);
desc_binding[i].stageFlags = desc[i].stages;
desc_binding[i].pImmutableSamplers = desc[i].samplers;
}
desc_create_layout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
desc_create_layout.pBindings = desc_binding;
desc_create_layout.bindingCount = num;
ret = vkCreateDescriptorSetLayout(s->hwctx->act_dev, &desc_create_layout,
s->hwctx->alloc, layout);
av_free(desc_binding);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Unable to init descriptor set "
"layout: %s\n", ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
}
{ /* Pool each descriptor by type and update pool counts */
for (int i = 0; i < num; i++) {
int j;
for (j = 0; j < pl->pool_size_desc_num; j++)
if (pl->pool_size_desc[j].type == desc[i].type)
break;
if (j >= pl->pool_size_desc_num) {
pl->pool_size_desc = av_realloc_array(pl->pool_size_desc,
sizeof(*pl->pool_size_desc),
++pl->pool_size_desc_num);
if (!pl->pool_size_desc)
return AVERROR(ENOMEM);
memset(&pl->pool_size_desc[j], 0, sizeof(VkDescriptorPoolSize));
}
pl->pool_size_desc[j].type = desc[i].type;
pl->pool_size_desc[j].descriptorCount += FFMAX(desc[i].elems, 1);
}
}
{ /* Create template creation struct */
VkDescriptorUpdateTemplateCreateInfo *dt;
VkDescriptorUpdateTemplateEntry *des_entries;
/* Freed after descriptor set initialization */
des_entries = av_mallocz(num*sizeof(VkDescriptorUpdateTemplateEntry));
if (!des_entries)
return AVERROR(ENOMEM);
for (int i = 0; i < num; i++) {
des_entries[i].dstBinding = i;
des_entries[i].descriptorType = desc[i].type;
des_entries[i].descriptorCount = FFMAX(desc[i].elems, 1);
des_entries[i].dstArrayElement = 0;
des_entries[i].offset = ((uint8_t *)desc[i].updater) - (uint8_t *)s;
des_entries[i].stride = descriptor_props[desc[i].type].struct_size;
}
pl->desc_template_info = av_realloc_array(pl->desc_template_info,
sizeof(*pl->desc_template_info),
pl->descriptor_sets_num + 1);
if (!pl->desc_template_info)
return AVERROR(ENOMEM);
dt = &pl->desc_template_info[pl->descriptor_sets_num];
memset(dt, 0, sizeof(*dt));
dt->sType = VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO;
dt->templateType = VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET;
dt->descriptorSetLayout = *layout;
dt->pDescriptorUpdateEntries = des_entries;
dt->descriptorUpdateEntryCount = num;
}
pl->descriptor_sets_num++;
print:
/* Write shader info */
for (int i = 0; i < num; i++) {
const struct descriptor_props *prop = &descriptor_props[desc[i].type];
GLSLA("layout (set = %i, binding = %i", pl->descriptor_sets_num - 1, i);
if (desc[i].mem_layout)
GLSLA(", %s", desc[i].mem_layout);
GLSLA(")");
if (prop->is_uniform)
GLSLA(" uniform");
if (prop->mem_quali && desc[i].mem_quali)
GLSLA(" %s", desc[i].mem_quali);
if (prop->type)
GLSLA(" %s", prop->type);
if (prop->dim_needed)
GLSLA("%iD", desc[i].dimensions);
GLSLA(" %s", desc[i].name);
if (prop->buf_content)
GLSLA(" {\n %s\n}", desc[i].buf_content);
else if (desc[i].elems > 0)
GLSLA("[%i]", desc[i].elems);
GLSLA(";\n");
}
GLSLA("\n");
return 0;
}
void ff_vk_update_descriptor_set(AVFilterContext *avctx, VulkanPipeline *pl,
int set_id)
{
VulkanFilterContext *s = avctx->priv;
vkUpdateDescriptorSetWithTemplate(s->hwctx->act_dev,
pl->desc_set[set_id],
pl->desc_template[set_id], s);
}
void ff_vk_update_push_exec(AVFilterContext *avctx, FFVkExecContext *e,
VkShaderStageFlagBits stage, int offset,
size_t size, void *src)
{
vkCmdPushConstants(e->buf, e->bound_pl->pipeline_layout,
stage, offset, size, src);
}
int ff_vk_init_pipeline_layout(AVFilterContext *avctx, VulkanPipeline *pl)
{
VkResult ret;
VulkanFilterContext *s = avctx->priv;
{ /* Init descriptor set pool */
VkDescriptorPoolCreateInfo pool_create_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
.poolSizeCount = pl->pool_size_desc_num,
.pPoolSizes = pl->pool_size_desc,
.maxSets = pl->descriptor_sets_num,
};
ret = vkCreateDescriptorPool(s->hwctx->act_dev, &pool_create_info,
s->hwctx->alloc, &pl->desc_pool);
av_freep(&pl->pool_size_desc);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Unable to init descriptor set "
"pool: %s\n", ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
}
{ /* Allocate descriptor sets */
VkDescriptorSetAllocateInfo alloc_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.descriptorPool = pl->desc_pool,
.descriptorSetCount = pl->descriptor_sets_num,
.pSetLayouts = pl->desc_layout,
};
pl->desc_set = av_malloc(pl->descriptor_sets_num*sizeof(*pl->desc_set));
if (!pl->desc_set)
return AVERROR(ENOMEM);
ret = vkAllocateDescriptorSets(s->hwctx->act_dev, &alloc_info,
pl->desc_set);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Unable to allocate descriptor set: %s\n",
ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
}
{ /* Finally create the pipeline layout */
VkPipelineLayoutCreateInfo spawn_pipeline_layout = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = pl->descriptor_sets_num,
.pSetLayouts = pl->desc_layout,
.pushConstantRangeCount = pl->push_consts_num,
.pPushConstantRanges = pl->push_consts,
};
ret = vkCreatePipelineLayout(s->hwctx->act_dev, &spawn_pipeline_layout,
s->hwctx->alloc, &pl->pipeline_layout);
av_freep(&pl->push_consts);
pl->push_consts_num = 0;
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Unable to init pipeline layout: %s\n",
ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
}
{ /* Descriptor template (for tightly packed descriptors) */
VkDescriptorUpdateTemplateCreateInfo *desc_template_info;
pl->desc_template = av_malloc(pl->descriptor_sets_num*sizeof(*pl->desc_template));
if (!pl->desc_template)
return AVERROR(ENOMEM);
/* Create update templates for the descriptor sets */
for (int i = 0; i < pl->descriptor_sets_num; i++) {
desc_template_info = &pl->desc_template_info[i];
desc_template_info->pipelineLayout = pl->pipeline_layout;
ret = vkCreateDescriptorUpdateTemplate(s->hwctx->act_dev,
desc_template_info,
s->hwctx->alloc,
&pl->desc_template[i]);
av_free((void *)desc_template_info->pDescriptorUpdateEntries);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Unable to init descriptor "
"template: %s\n", ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
}
av_freep(&pl->desc_template_info);
}
return 0;
}
FN_CREATING(VulkanFilterContext, VulkanPipeline, pipeline, pipelines, pipelines_num)
VulkanPipeline *ff_vk_create_pipeline(AVFilterContext *avctx)
{
return create_pipeline(avctx->priv);
}
int ff_vk_init_compute_pipeline(AVFilterContext *avctx, VulkanPipeline *pl)
{
int i;
VkResult ret;
VulkanFilterContext *s = avctx->priv;
VkComputePipelineCreateInfo pipe = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.layout = pl->pipeline_layout,
};
for (i = 0; i < pl->shaders_num; i++) {
if (pl->shaders[i]->shader.stage & VK_SHADER_STAGE_COMPUTE_BIT) {
pipe.stage = pl->shaders[i]->shader;
break;
}
}
if (i == pl->shaders_num) {
av_log(avctx, AV_LOG_ERROR, "Can't init compute pipeline, no shader\n");
return AVERROR(EINVAL);
}
ret = vkCreateComputePipelines(s->hwctx->act_dev, VK_NULL_HANDLE, 1, &pipe,
s->hwctx->alloc, &pl->pipeline);
if (ret != VK_SUCCESS) {
av_log(avctx, AV_LOG_ERROR, "Unable to init compute pipeline: %s\n",
ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
pl->bind_point = VK_PIPELINE_BIND_POINT_COMPUTE;
return 0;
}
void ff_vk_bind_pipeline_exec(AVFilterContext *avctx, FFVkExecContext *e,
VulkanPipeline *pl)
{
vkCmdBindPipeline(e->buf, pl->bind_point, pl->pipeline);
vkCmdBindDescriptorSets(e->buf, pl->bind_point, pl->pipeline_layout, 0,
pl->descriptor_sets_num, pl->desc_set, 0, 0);
e->bound_pl = pl;
}
static void free_exec_ctx(VulkanFilterContext *s, FFVkExecContext *e)
{
vkDestroyFence(s->hwctx->act_dev, e->fence, s->hwctx->alloc);
if (e->buf != VK_NULL_HANDLE)
vkFreeCommandBuffers(s->hwctx->act_dev, e->pool, 1, &e->buf);
if (e->pool != VK_NULL_HANDLE)
vkDestroyCommandPool(s->hwctx->act_dev, e->pool, s->hwctx->alloc);
av_free(e->sem_wait);
av_free(e->sem_wait_dst);
av_free(e->sem_sig);
av_free(e);
}
static void free_pipeline(VulkanFilterContext *s, VulkanPipeline *pl)
{
for (int i = 0; i < pl->shaders_num; i++) {
SPIRVShader *shd = pl->shaders[i];
av_bprint_finalize(&shd->src, NULL);
vkDestroyShaderModule(s->hwctx->act_dev, shd->shader.module,
s->hwctx->alloc);
av_free(shd);
}
vkDestroyPipeline(s->hwctx->act_dev, pl->pipeline, s->hwctx->alloc);
vkDestroyPipelineLayout(s->hwctx->act_dev, pl->pipeline_layout,
s->hwctx->alloc);
for (int i = 0; i < pl->descriptor_sets_num; i++) {
if (pl->desc_template && pl->desc_template[i])
vkDestroyDescriptorUpdateTemplate(s->hwctx->act_dev, pl->desc_template[i],
s->hwctx->alloc);
if (pl->desc_layout && pl->desc_layout[i])
vkDestroyDescriptorSetLayout(s->hwctx->act_dev, pl->desc_layout[i],
s->hwctx->alloc);
}
/* Also frees the descriptor sets */
if (pl->desc_pool)
vkDestroyDescriptorPool(s->hwctx->act_dev, pl->desc_pool,
s->hwctx->alloc);
av_freep(&pl->desc_set);
av_freep(&pl->shaders);
av_freep(&pl->desc_layout);
av_freep(&pl->desc_template);
av_freep(&pl->push_consts);
pl->push_consts_num = 0;
/* Only freed in case of failure */
av_freep(&pl->pool_size_desc);
if (pl->desc_template_info) {
for (int i = 0; i < pl->descriptor_sets_num; i++)
av_free((void *)pl->desc_template_info[i].pDescriptorUpdateEntries);
av_freep(&pl->desc_template_info);
}
av_free(pl);
}
void ff_vk_filter_uninit(AVFilterContext *avctx)
{
VulkanFilterContext *s = avctx->priv;
glslang_uninit();
for (int i = 0; i < s->samplers_num; i++)
vkDestroySampler(s->hwctx->act_dev, *s->samplers[i], s->hwctx->alloc);
av_freep(&s->samplers);
for (int i = 0; i < s->pipelines_num; i++)
free_pipeline(s, s->pipelines[i]);
av_freep(&s->pipelines);
for (int i = 0; i < s->exec_ctx_num; i++)
free_exec_ctx(s, s->exec_ctx[i]);
av_freep(&s->exec_ctx);
av_freep(&s->scratch);
s->scratch_size = 0;
av_buffer_unref(&s->device_ref);
av_buffer_unref(&s->frames_ref);
}