mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-13 21:28:01 +02:00
318efbfc10
Unsupported bit depth is certainly an error the user will want to know about. Signed-off-by: Mans Rullgard <mans@mansr.com>
4061 lines
156 KiB
C
4061 lines
156 KiB
C
/*
|
|
* H.26L/H.264/AVC/JVT/14496-10/... decoder
|
|
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* H.264 / AVC / MPEG4 part10 codec.
|
|
* @author Michael Niedermayer <michaelni@gmx.at>
|
|
*/
|
|
|
|
#include "libavutil/imgutils.h"
|
|
#include "internal.h"
|
|
#include "dsputil.h"
|
|
#include "avcodec.h"
|
|
#include "mpegvideo.h"
|
|
#include "h264.h"
|
|
#include "h264data.h"
|
|
#include "h264_mvpred.h"
|
|
#include "golomb.h"
|
|
#include "mathops.h"
|
|
#include "rectangle.h"
|
|
#include "thread.h"
|
|
#include "vdpau_internal.h"
|
|
#include "libavutil/avassert.h"
|
|
|
|
#include "cabac.h"
|
|
|
|
//#undef NDEBUG
|
|
#include <assert.h>
|
|
|
|
static const uint8_t rem6[QP_MAX_NUM+1]={
|
|
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
|
|
};
|
|
|
|
static const uint8_t div6[QP_MAX_NUM+1]={
|
|
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10,10,10,10,
|
|
};
|
|
|
|
static const enum PixelFormat hwaccel_pixfmt_list_h264_jpeg_420[] = {
|
|
PIX_FMT_DXVA2_VLD,
|
|
PIX_FMT_VAAPI_VLD,
|
|
PIX_FMT_YUVJ420P,
|
|
PIX_FMT_NONE
|
|
};
|
|
|
|
/**
|
|
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
|
|
*/
|
|
int ff_h264_check_intra4x4_pred_mode(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
|
|
static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
|
|
int i;
|
|
|
|
if(!(h->top_samples_available&0x8000)){
|
|
for(i=0; i<4; i++){
|
|
int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
|
|
if(status<0){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
|
|
return -1;
|
|
} else if(status){
|
|
h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
|
|
}
|
|
}
|
|
}
|
|
|
|
if((h->left_samples_available&0x8888)!=0x8888){
|
|
static const int mask[4]={0x8000,0x2000,0x80,0x20};
|
|
for(i=0; i<4; i++){
|
|
if(!(h->left_samples_available&mask[i])){
|
|
int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
|
|
if(status<0){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
|
|
return -1;
|
|
} else if(status){
|
|
h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
} //FIXME cleanup like ff_h264_check_intra_pred_mode
|
|
|
|
/**
|
|
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
|
|
*/
|
|
int ff_h264_check_intra_pred_mode(H264Context *h, int mode){
|
|
MpegEncContext * const s = &h->s;
|
|
static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
|
|
static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
|
|
|
|
if(mode > 6U) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
|
|
if(!(h->top_samples_available&0x8000)){
|
|
mode= top[ mode ];
|
|
if(mode<0){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if((h->left_samples_available&0x8080) != 0x8080){
|
|
mode= left[ mode ];
|
|
if(h->left_samples_available&0x8080){ //mad cow disease mode, aka MBAFF + constrained_intra_pred
|
|
mode= ALZHEIMER_DC_L0T_PRED8x8 + (!(h->left_samples_available&0x8000)) + 2*(mode == DC_128_PRED8x8);
|
|
}
|
|
if(mode<0){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return mode;
|
|
}
|
|
|
|
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
|
|
int i, si, di;
|
|
uint8_t *dst;
|
|
int bufidx;
|
|
|
|
// src[0]&0x80; //forbidden bit
|
|
h->nal_ref_idc= src[0]>>5;
|
|
h->nal_unit_type= src[0]&0x1F;
|
|
|
|
src++; length--;
|
|
|
|
#if HAVE_FAST_UNALIGNED
|
|
# if HAVE_FAST_64BIT
|
|
# define RS 7
|
|
for(i=0; i+1<length; i+=9){
|
|
if(!((~AV_RN64A(src+i) & (AV_RN64A(src+i) - 0x0100010001000101ULL)) & 0x8000800080008080ULL))
|
|
# else
|
|
# define RS 3
|
|
for(i=0; i+1<length; i+=5){
|
|
if(!((~AV_RN32A(src+i) & (AV_RN32A(src+i) - 0x01000101U)) & 0x80008080U))
|
|
# endif
|
|
continue;
|
|
if(i>0 && !src[i]) i--;
|
|
while(src[i]) i++;
|
|
#else
|
|
# define RS 0
|
|
for(i=0; i+1<length; i+=2){
|
|
if(src[i]) continue;
|
|
if(i>0 && src[i-1]==0) i--;
|
|
#endif
|
|
if(i+2<length && src[i+1]==0 && src[i+2]<=3){
|
|
if(src[i+2]!=3){
|
|
/* startcode, so we must be past the end */
|
|
length=i;
|
|
}
|
|
break;
|
|
}
|
|
i-= RS;
|
|
}
|
|
|
|
if(i>=length-1){ //no escaped 0
|
|
*dst_length= length;
|
|
*consumed= length+1; //+1 for the header
|
|
return src;
|
|
}
|
|
|
|
bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
|
|
av_fast_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+FF_INPUT_BUFFER_PADDING_SIZE);
|
|
dst= h->rbsp_buffer[bufidx];
|
|
|
|
if (dst == NULL){
|
|
return NULL;
|
|
}
|
|
|
|
//printf("decoding esc\n");
|
|
memcpy(dst, src, i);
|
|
si=di=i;
|
|
while(si+2<length){
|
|
//remove escapes (very rare 1:2^22)
|
|
if(src[si+2]>3){
|
|
dst[di++]= src[si++];
|
|
dst[di++]= src[si++];
|
|
}else if(src[si]==0 && src[si+1]==0){
|
|
if(src[si+2]==3){ //escape
|
|
dst[di++]= 0;
|
|
dst[di++]= 0;
|
|
si+=3;
|
|
continue;
|
|
}else //next start code
|
|
goto nsc;
|
|
}
|
|
|
|
dst[di++]= src[si++];
|
|
}
|
|
while(si<length)
|
|
dst[di++]= src[si++];
|
|
nsc:
|
|
|
|
memset(dst+di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
|
|
|
|
*dst_length= di;
|
|
*consumed= si + 1;//+1 for the header
|
|
//FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
|
|
return dst;
|
|
}
|
|
|
|
/**
|
|
* Identify the exact end of the bitstream
|
|
* @return the length of the trailing, or 0 if damaged
|
|
*/
|
|
static int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src){
|
|
int v= *src;
|
|
int r;
|
|
|
|
tprintf(h->s.avctx, "rbsp trailing %X\n", v);
|
|
|
|
for(r=1; r<9; r++){
|
|
if(v&1) return r;
|
|
v>>=1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int get_lowest_part_list_y(H264Context *h, Picture *pic, int n, int height,
|
|
int y_offset, int list){
|
|
int raw_my= h->mv_cache[list][ scan8[n] ][1];
|
|
int filter_height= (raw_my&3) ? 2 : 0;
|
|
int full_my= (raw_my>>2) + y_offset;
|
|
int top = full_my - filter_height, bottom = full_my + height + filter_height;
|
|
|
|
return FFMAX(abs(top), bottom);
|
|
}
|
|
|
|
static inline void get_lowest_part_y(H264Context *h, int refs[2][48], int n, int height,
|
|
int y_offset, int list0, int list1, int *nrefs){
|
|
MpegEncContext * const s = &h->s;
|
|
int my;
|
|
|
|
y_offset += 16*(s->mb_y >> MB_FIELD);
|
|
|
|
if(list0){
|
|
int ref_n = h->ref_cache[0][ scan8[n] ];
|
|
Picture *ref= &h->ref_list[0][ref_n];
|
|
|
|
// Error resilience puts the current picture in the ref list.
|
|
// Don't try to wait on these as it will cause a deadlock.
|
|
// Fields can wait on each other, though.
|
|
if (ref->f.thread_opaque != s->current_picture.f.thread_opaque ||
|
|
(ref->f.reference & 3) != s->picture_structure) {
|
|
my = get_lowest_part_list_y(h, ref, n, height, y_offset, 0);
|
|
if (refs[0][ref_n] < 0) nrefs[0] += 1;
|
|
refs[0][ref_n] = FFMAX(refs[0][ref_n], my);
|
|
}
|
|
}
|
|
|
|
if(list1){
|
|
int ref_n = h->ref_cache[1][ scan8[n] ];
|
|
Picture *ref= &h->ref_list[1][ref_n];
|
|
|
|
if (ref->f.thread_opaque != s->current_picture.f.thread_opaque ||
|
|
(ref->f.reference & 3) != s->picture_structure) {
|
|
my = get_lowest_part_list_y(h, ref, n, height, y_offset, 1);
|
|
if (refs[1][ref_n] < 0) nrefs[1] += 1;
|
|
refs[1][ref_n] = FFMAX(refs[1][ref_n], my);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Wait until all reference frames are available for MC operations.
|
|
*
|
|
* @param h the H264 context
|
|
*/
|
|
static void await_references(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= h->mb_xy;
|
|
const int mb_type = s->current_picture.f.mb_type[mb_xy];
|
|
int refs[2][48];
|
|
int nrefs[2] = {0};
|
|
int ref, list;
|
|
|
|
memset(refs, -1, sizeof(refs));
|
|
|
|
if(IS_16X16(mb_type)){
|
|
get_lowest_part_y(h, refs, 0, 16, 0,
|
|
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
|
|
}else if(IS_16X8(mb_type)){
|
|
get_lowest_part_y(h, refs, 0, 8, 0,
|
|
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
|
|
get_lowest_part_y(h, refs, 8, 8, 8,
|
|
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs);
|
|
}else if(IS_8X16(mb_type)){
|
|
get_lowest_part_y(h, refs, 0, 16, 0,
|
|
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
|
|
get_lowest_part_y(h, refs, 4, 16, 0,
|
|
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs);
|
|
}else{
|
|
int i;
|
|
|
|
assert(IS_8X8(mb_type));
|
|
|
|
for(i=0; i<4; i++){
|
|
const int sub_mb_type= h->sub_mb_type[i];
|
|
const int n= 4*i;
|
|
int y_offset= (i&2)<<2;
|
|
|
|
if(IS_SUB_8X8(sub_mb_type)){
|
|
get_lowest_part_y(h, refs, n , 8, y_offset,
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
|
|
}else if(IS_SUB_8X4(sub_mb_type)){
|
|
get_lowest_part_y(h, refs, n , 4, y_offset,
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
|
|
get_lowest_part_y(h, refs, n+2, 4, y_offset+4,
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
|
|
}else if(IS_SUB_4X8(sub_mb_type)){
|
|
get_lowest_part_y(h, refs, n , 8, y_offset,
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
|
|
get_lowest_part_y(h, refs, n+1, 8, y_offset,
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
|
|
}else{
|
|
int j;
|
|
assert(IS_SUB_4X4(sub_mb_type));
|
|
for(j=0; j<4; j++){
|
|
int sub_y_offset= y_offset + 2*(j&2);
|
|
get_lowest_part_y(h, refs, n+j, 4, sub_y_offset,
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for(list=h->list_count-1; list>=0; list--){
|
|
for(ref=0; ref<48 && nrefs[list]; ref++){
|
|
int row = refs[list][ref];
|
|
if(row >= 0){
|
|
Picture *ref_pic = &h->ref_list[list][ref];
|
|
int ref_field = ref_pic->f.reference - 1;
|
|
int ref_field_picture = ref_pic->field_picture;
|
|
int pic_height = 16*s->mb_height >> ref_field_picture;
|
|
|
|
row <<= MB_MBAFF;
|
|
nrefs[list]--;
|
|
|
|
if(!FIELD_PICTURE && ref_field_picture){ // frame referencing two fields
|
|
ff_thread_await_progress((AVFrame*)ref_pic, FFMIN((row >> 1) - !(row&1), pic_height-1), 1);
|
|
ff_thread_await_progress((AVFrame*)ref_pic, FFMIN((row >> 1) , pic_height-1), 0);
|
|
}else if(FIELD_PICTURE && !ref_field_picture){ // field referencing one field of a frame
|
|
ff_thread_await_progress((AVFrame*)ref_pic, FFMIN(row*2 + ref_field , pic_height-1), 0);
|
|
}else if(FIELD_PICTURE){
|
|
ff_thread_await_progress((AVFrame*)ref_pic, FFMIN(row, pic_height-1), ref_field);
|
|
}else{
|
|
ff_thread_await_progress((AVFrame*)ref_pic, FFMIN(row, pic_height-1), 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
/**
|
|
* DCT transforms the 16 dc values.
|
|
* @param qp quantization parameter ??? FIXME
|
|
*/
|
|
static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
|
|
// const int qmul= dequant_coeff[qp][0];
|
|
int i;
|
|
int temp[16]; //FIXME check if this is a good idea
|
|
static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
|
|
static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
|
|
|
|
for(i=0; i<4; i++){
|
|
const int offset= y_offset[i];
|
|
const int z0= block[offset+stride*0] + block[offset+stride*4];
|
|
const int z1= block[offset+stride*0] - block[offset+stride*4];
|
|
const int z2= block[offset+stride*1] - block[offset+stride*5];
|
|
const int z3= block[offset+stride*1] + block[offset+stride*5];
|
|
|
|
temp[4*i+0]= z0+z3;
|
|
temp[4*i+1]= z1+z2;
|
|
temp[4*i+2]= z1-z2;
|
|
temp[4*i+3]= z0-z3;
|
|
}
|
|
|
|
for(i=0; i<4; i++){
|
|
const int offset= x_offset[i];
|
|
const int z0= temp[4*0+i] + temp[4*2+i];
|
|
const int z1= temp[4*0+i] - temp[4*2+i];
|
|
const int z2= temp[4*1+i] - temp[4*3+i];
|
|
const int z3= temp[4*1+i] + temp[4*3+i];
|
|
|
|
block[stride*0 +offset]= (z0 + z3)>>1;
|
|
block[stride*2 +offset]= (z1 + z2)>>1;
|
|
block[stride*8 +offset]= (z1 - z2)>>1;
|
|
block[stride*10+offset]= (z0 - z3)>>1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#undef xStride
|
|
#undef stride
|
|
|
|
#if 0
|
|
static void chroma_dc_dct_c(DCTELEM *block){
|
|
const int stride= 16*2;
|
|
const int xStride= 16;
|
|
int a,b,c,d,e;
|
|
|
|
a= block[stride*0 + xStride*0];
|
|
b= block[stride*0 + xStride*1];
|
|
c= block[stride*1 + xStride*0];
|
|
d= block[stride*1 + xStride*1];
|
|
|
|
e= a-b;
|
|
a= a+b;
|
|
b= c-d;
|
|
c= c+d;
|
|
|
|
block[stride*0 + xStride*0]= (a+c);
|
|
block[stride*0 + xStride*1]= (e+b);
|
|
block[stride*1 + xStride*0]= (a-c);
|
|
block[stride*1 + xStride*1]= (e-b);
|
|
}
|
|
#endif
|
|
|
|
static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
|
|
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
|
|
int src_x_offset, int src_y_offset,
|
|
qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op,
|
|
int pixel_shift, int chroma444){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
|
|
int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
|
|
const int luma_xy= (mx&3) + ((my&3)<<2);
|
|
int offset = ((mx>>2) << pixel_shift) + (my>>2)*h->mb_linesize;
|
|
uint8_t * src_y = pic->f.data[0] + offset;
|
|
uint8_t * src_cb, * src_cr;
|
|
int extra_width= h->emu_edge_width;
|
|
int extra_height= h->emu_edge_height;
|
|
int emu=0;
|
|
const int full_mx= mx>>2;
|
|
const int full_my= my>>2;
|
|
const int pic_width = 16*s->mb_width;
|
|
const int pic_height = 16*s->mb_height >> MB_FIELD;
|
|
|
|
if(mx&7) extra_width -= 3;
|
|
if(my&7) extra_height -= 3;
|
|
|
|
if( full_mx < 0-extra_width
|
|
|| full_my < 0-extra_height
|
|
|| full_mx + 16/*FIXME*/ > pic_width + extra_width
|
|
|| full_my + 16/*FIXME*/ > pic_height + extra_height){
|
|
s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_y - (2 << pixel_shift) - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
|
|
src_y= s->edge_emu_buffer + (2 << pixel_shift) + 2*h->mb_linesize;
|
|
emu=1;
|
|
}
|
|
|
|
qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
|
|
if(!square){
|
|
qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
|
|
}
|
|
|
|
if(CONFIG_GRAY && s->flags&CODEC_FLAG_GRAY) return;
|
|
|
|
if(chroma444){
|
|
src_cb = pic->f.data[1] + offset;
|
|
if(emu){
|
|
s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cb - (2 << pixel_shift) - 2*h->mb_linesize, h->mb_linesize,
|
|
16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
|
|
src_cb= s->edge_emu_buffer + (2 << pixel_shift) + 2*h->mb_linesize;
|
|
}
|
|
qpix_op[luma_xy](dest_cb, src_cb, h->mb_linesize); //FIXME try variable height perhaps?
|
|
if(!square){
|
|
qpix_op[luma_xy](dest_cb + delta, src_cb + delta, h->mb_linesize);
|
|
}
|
|
|
|
src_cr = pic->f.data[2] + offset;
|
|
if(emu){
|
|
s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cr - (2 << pixel_shift) - 2*h->mb_linesize, h->mb_linesize,
|
|
16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
|
|
src_cr= s->edge_emu_buffer + (2 << pixel_shift) + 2*h->mb_linesize;
|
|
}
|
|
qpix_op[luma_xy](dest_cr, src_cr, h->mb_linesize); //FIXME try variable height perhaps?
|
|
if(!square){
|
|
qpix_op[luma_xy](dest_cr + delta, src_cr + delta, h->mb_linesize);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if(MB_FIELD){
|
|
// chroma offset when predicting from a field of opposite parity
|
|
my += 2 * ((s->mb_y & 1) - (pic->f.reference - 1));
|
|
emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
|
|
}
|
|
src_cb = pic->f.data[1] + ((mx >> 3) << pixel_shift) + (my >> 3) * h->mb_uvlinesize;
|
|
src_cr = pic->f.data[2] + ((mx >> 3) << pixel_shift) + (my >> 3) * h->mb_uvlinesize;
|
|
|
|
if(emu){
|
|
s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
|
|
src_cb= s->edge_emu_buffer;
|
|
}
|
|
chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
|
|
|
|
if(emu){
|
|
s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
|
|
src_cr= s->edge_emu_buffer;
|
|
}
|
|
chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
|
|
}
|
|
|
|
static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
|
|
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
|
|
int x_offset, int y_offset,
|
|
qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
|
|
qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
|
|
int list0, int list1, int pixel_shift, int chroma444){
|
|
MpegEncContext * const s = &h->s;
|
|
qpel_mc_func *qpix_op= qpix_put;
|
|
h264_chroma_mc_func chroma_op= chroma_put;
|
|
|
|
dest_y += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
|
|
if(chroma444){
|
|
dest_cb += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
|
|
dest_cr += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
|
|
}else{
|
|
dest_cb += ( x_offset << pixel_shift) + y_offset*h->mb_uvlinesize;
|
|
dest_cr += ( x_offset << pixel_shift) + y_offset*h->mb_uvlinesize;
|
|
}
|
|
x_offset += 8*s->mb_x;
|
|
y_offset += 8*(s->mb_y >> MB_FIELD);
|
|
|
|
if(list0){
|
|
Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
|
|
mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
|
|
dest_y, dest_cb, dest_cr, x_offset, y_offset,
|
|
qpix_op, chroma_op, pixel_shift, chroma444);
|
|
|
|
qpix_op= qpix_avg;
|
|
chroma_op= chroma_avg;
|
|
}
|
|
|
|
if(list1){
|
|
Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
|
|
mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
|
|
dest_y, dest_cb, dest_cr, x_offset, y_offset,
|
|
qpix_op, chroma_op, pixel_shift, chroma444);
|
|
}
|
|
}
|
|
|
|
static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
|
|
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
|
|
int x_offset, int y_offset,
|
|
qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
|
|
h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
|
|
h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
|
|
int list0, int list1, int pixel_shift, int chroma444){
|
|
MpegEncContext * const s = &h->s;
|
|
|
|
dest_y += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
|
|
if(chroma444){
|
|
chroma_weight_avg = luma_weight_avg;
|
|
chroma_weight_op = luma_weight_op;
|
|
dest_cb += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
|
|
dest_cr += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
|
|
}else{
|
|
dest_cb += ( x_offset << pixel_shift) + y_offset*h->mb_uvlinesize;
|
|
dest_cr += ( x_offset << pixel_shift) + y_offset*h->mb_uvlinesize;
|
|
}
|
|
x_offset += 8*s->mb_x;
|
|
y_offset += 8*(s->mb_y >> MB_FIELD);
|
|
|
|
if(list0 && list1){
|
|
/* don't optimize for luma-only case, since B-frames usually
|
|
* use implicit weights => chroma too. */
|
|
uint8_t *tmp_cb = s->obmc_scratchpad;
|
|
uint8_t *tmp_cr = s->obmc_scratchpad + (16 << pixel_shift);
|
|
uint8_t *tmp_y = s->obmc_scratchpad + 16*h->mb_uvlinesize;
|
|
int refn0 = h->ref_cache[0][ scan8[n] ];
|
|
int refn1 = h->ref_cache[1][ scan8[n] ];
|
|
|
|
mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
|
|
dest_y, dest_cb, dest_cr,
|
|
x_offset, y_offset, qpix_put, chroma_put, pixel_shift, chroma444);
|
|
mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
|
|
tmp_y, tmp_cb, tmp_cr,
|
|
x_offset, y_offset, qpix_put, chroma_put, pixel_shift, chroma444);
|
|
|
|
if(h->use_weight == 2){
|
|
int weight0 = h->implicit_weight[refn0][refn1][s->mb_y&1];
|
|
int weight1 = 64 - weight0;
|
|
luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
|
|
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
|
|
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
|
|
}else{
|
|
luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
|
|
h->luma_weight[refn0][0][0] , h->luma_weight[refn1][1][0],
|
|
h->luma_weight[refn0][0][1] + h->luma_weight[refn1][1][1]);
|
|
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
|
|
h->chroma_weight[refn0][0][0][0] , h->chroma_weight[refn1][1][0][0],
|
|
h->chroma_weight[refn0][0][0][1] + h->chroma_weight[refn1][1][0][1]);
|
|
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
|
|
h->chroma_weight[refn0][0][1][0] , h->chroma_weight[refn1][1][1][0],
|
|
h->chroma_weight[refn0][0][1][1] + h->chroma_weight[refn1][1][1][1]);
|
|
}
|
|
}else{
|
|
int list = list1 ? 1 : 0;
|
|
int refn = h->ref_cache[list][ scan8[n] ];
|
|
Picture *ref= &h->ref_list[list][refn];
|
|
mc_dir_part(h, ref, n, square, chroma_height, delta, list,
|
|
dest_y, dest_cb, dest_cr, x_offset, y_offset,
|
|
qpix_put, chroma_put, pixel_shift, chroma444);
|
|
|
|
luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
|
|
h->luma_weight[refn][list][0], h->luma_weight[refn][list][1]);
|
|
if(h->use_weight_chroma){
|
|
chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
|
|
h->chroma_weight[refn][list][0][0], h->chroma_weight[refn][list][0][1]);
|
|
chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
|
|
h->chroma_weight[refn][list][1][0], h->chroma_weight[refn][list][1][1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
|
|
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
|
|
int x_offset, int y_offset,
|
|
qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
|
|
qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
|
|
h264_weight_func *weight_op, h264_biweight_func *weight_avg,
|
|
int list0, int list1, int pixel_shift, int chroma444){
|
|
if((h->use_weight==2 && list0 && list1
|
|
&& (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ][h->s.mb_y&1] != 32))
|
|
|| h->use_weight==1)
|
|
mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
|
|
x_offset, y_offset, qpix_put, chroma_put,
|
|
weight_op[0], weight_op[3], weight_avg[0],
|
|
weight_avg[3], list0, list1, pixel_shift, chroma444);
|
|
else
|
|
mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
|
|
x_offset, y_offset, qpix_put, chroma_put, qpix_avg,
|
|
chroma_avg, list0, list1, pixel_shift, chroma444);
|
|
}
|
|
|
|
static inline void prefetch_motion(H264Context *h, int list, int pixel_shift, int chroma444){
|
|
/* fetch pixels for estimated mv 4 macroblocks ahead
|
|
* optimized for 64byte cache lines */
|
|
MpegEncContext * const s = &h->s;
|
|
const int refn = h->ref_cache[list][scan8[0]];
|
|
if(refn >= 0){
|
|
const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
|
|
const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
|
|
uint8_t **src = h->ref_list[list][refn].f.data;
|
|
int off= (mx << pixel_shift) + (my + (s->mb_x&3)*4)*h->mb_linesize + (64 << pixel_shift);
|
|
s->dsp.prefetch(src[0]+off, s->linesize, 4);
|
|
if(chroma444){
|
|
s->dsp.prefetch(src[1]+off, s->linesize, 4);
|
|
s->dsp.prefetch(src[2]+off, s->linesize, 4);
|
|
}else{
|
|
off= ((mx>>1) << pixel_shift) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + (64 << pixel_shift);
|
|
s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
|
|
}
|
|
}
|
|
}
|
|
|
|
static av_always_inline void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
|
|
qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
|
|
qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
|
|
h264_weight_func *weight_op, h264_biweight_func *weight_avg,
|
|
int pixel_shift, int chroma444){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= h->mb_xy;
|
|
const int mb_type = s->current_picture.f.mb_type[mb_xy];
|
|
|
|
assert(IS_INTER(mb_type));
|
|
|
|
if(HAVE_PTHREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
|
|
await_references(h);
|
|
prefetch_motion(h, 0, pixel_shift, chroma444);
|
|
|
|
if(IS_16X16(mb_type)){
|
|
mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
|
|
qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
|
|
weight_op, weight_avg,
|
|
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1),
|
|
pixel_shift, chroma444);
|
|
}else if(IS_16X8(mb_type)){
|
|
mc_part(h, 0, 0, 4, 8 << pixel_shift, dest_y, dest_cb, dest_cr, 0, 0,
|
|
qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
|
|
&weight_op[1], &weight_avg[1],
|
|
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1),
|
|
pixel_shift, chroma444);
|
|
mc_part(h, 8, 0, 4, 8 << pixel_shift, dest_y, dest_cb, dest_cr, 0, 4,
|
|
qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
|
|
&weight_op[1], &weight_avg[1],
|
|
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1),
|
|
pixel_shift, chroma444);
|
|
}else if(IS_8X16(mb_type)){
|
|
mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
|
|
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
|
|
&weight_op[2], &weight_avg[2],
|
|
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1),
|
|
pixel_shift, chroma444);
|
|
mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
|
|
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
|
|
&weight_op[2], &weight_avg[2],
|
|
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1),
|
|
pixel_shift, chroma444);
|
|
}else{
|
|
int i;
|
|
|
|
assert(IS_8X8(mb_type));
|
|
|
|
for(i=0; i<4; i++){
|
|
const int sub_mb_type= h->sub_mb_type[i];
|
|
const int n= 4*i;
|
|
int x_offset= (i&1)<<2;
|
|
int y_offset= (i&2)<<1;
|
|
|
|
if(IS_SUB_8X8(sub_mb_type)){
|
|
mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
|
|
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
|
|
&weight_op[3], &weight_avg[3],
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
|
|
pixel_shift, chroma444);
|
|
}else if(IS_SUB_8X4(sub_mb_type)){
|
|
mc_part(h, n , 0, 2, 4 << pixel_shift, dest_y, dest_cb, dest_cr, x_offset, y_offset,
|
|
qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
|
|
&weight_op[4], &weight_avg[4],
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
|
|
pixel_shift, chroma444);
|
|
mc_part(h, n+2, 0, 2, 4 << pixel_shift, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
|
|
qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
|
|
&weight_op[4], &weight_avg[4],
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
|
|
pixel_shift, chroma444);
|
|
}else if(IS_SUB_4X8(sub_mb_type)){
|
|
mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
|
|
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
|
|
&weight_op[5], &weight_avg[5],
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
|
|
pixel_shift, chroma444);
|
|
mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
|
|
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
|
|
&weight_op[5], &weight_avg[5],
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
|
|
pixel_shift, chroma444);
|
|
}else{
|
|
int j;
|
|
assert(IS_SUB_4X4(sub_mb_type));
|
|
for(j=0; j<4; j++){
|
|
int sub_x_offset= x_offset + 2*(j&1);
|
|
int sub_y_offset= y_offset + (j&2);
|
|
mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
|
|
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
|
|
&weight_op[6], &weight_avg[6],
|
|
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
|
|
pixel_shift, chroma444);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
prefetch_motion(h, 1, pixel_shift, chroma444);
|
|
}
|
|
|
|
static void free_tables(H264Context *h, int free_rbsp){
|
|
int i;
|
|
H264Context *hx;
|
|
|
|
av_freep(&h->intra4x4_pred_mode);
|
|
av_freep(&h->chroma_pred_mode_table);
|
|
av_freep(&h->cbp_table);
|
|
av_freep(&h->mvd_table[0]);
|
|
av_freep(&h->mvd_table[1]);
|
|
av_freep(&h->direct_table);
|
|
av_freep(&h->non_zero_count);
|
|
av_freep(&h->slice_table_base);
|
|
h->slice_table= NULL;
|
|
av_freep(&h->list_counts);
|
|
|
|
av_freep(&h->mb2b_xy);
|
|
av_freep(&h->mb2br_xy);
|
|
|
|
for(i = 0; i < MAX_THREADS; i++) {
|
|
hx = h->thread_context[i];
|
|
if(!hx) continue;
|
|
av_freep(&hx->top_borders[1]);
|
|
av_freep(&hx->top_borders[0]);
|
|
av_freep(&hx->s.obmc_scratchpad);
|
|
if (free_rbsp){
|
|
av_freep(&hx->rbsp_buffer[1]);
|
|
av_freep(&hx->rbsp_buffer[0]);
|
|
hx->rbsp_buffer_size[0] = 0;
|
|
hx->rbsp_buffer_size[1] = 0;
|
|
}
|
|
if (i) av_freep(&h->thread_context[i]);
|
|
}
|
|
}
|
|
|
|
static void init_dequant8_coeff_table(H264Context *h){
|
|
int i,j,q,x;
|
|
const int max_qp = 51 + 6*(h->sps.bit_depth_luma-8);
|
|
|
|
for(i=0; i<6; i++ ){
|
|
h->dequant8_coeff[i] = h->dequant8_buffer[i];
|
|
for(j=0; j<i; j++){
|
|
if(!memcmp(h->pps.scaling_matrix8[j], h->pps.scaling_matrix8[i], 64*sizeof(uint8_t))){
|
|
h->dequant8_coeff[i] = h->dequant8_buffer[j];
|
|
break;
|
|
}
|
|
}
|
|
if(j<i)
|
|
continue;
|
|
|
|
for(q=0; q<max_qp+1; q++){
|
|
int shift = div6[q];
|
|
int idx = rem6[q];
|
|
for(x=0; x<64; x++)
|
|
h->dequant8_coeff[i][q][(x>>3)|((x&7)<<3)] =
|
|
((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
|
|
h->pps.scaling_matrix8[i][x]) << shift;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_dequant4_coeff_table(H264Context *h){
|
|
int i,j,q,x;
|
|
const int max_qp = 51 + 6*(h->sps.bit_depth_luma-8);
|
|
for(i=0; i<6; i++ ){
|
|
h->dequant4_coeff[i] = h->dequant4_buffer[i];
|
|
for(j=0; j<i; j++){
|
|
if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
|
|
h->dequant4_coeff[i] = h->dequant4_buffer[j];
|
|
break;
|
|
}
|
|
}
|
|
if(j<i)
|
|
continue;
|
|
|
|
for(q=0; q<max_qp+1; q++){
|
|
int shift = div6[q] + 2;
|
|
int idx = rem6[q];
|
|
for(x=0; x<16; x++)
|
|
h->dequant4_coeff[i][q][(x>>2)|((x<<2)&0xF)] =
|
|
((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
|
|
h->pps.scaling_matrix4[i][x]) << shift;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_dequant_tables(H264Context *h){
|
|
int i,x;
|
|
init_dequant4_coeff_table(h);
|
|
if(h->pps.transform_8x8_mode)
|
|
init_dequant8_coeff_table(h);
|
|
if(h->sps.transform_bypass){
|
|
for(i=0; i<6; i++)
|
|
for(x=0; x<16; x++)
|
|
h->dequant4_coeff[i][0][x] = 1<<6;
|
|
if(h->pps.transform_8x8_mode)
|
|
for(i=0; i<6; i++)
|
|
for(x=0; x<64; x++)
|
|
h->dequant8_coeff[i][0][x] = 1<<6;
|
|
}
|
|
}
|
|
|
|
|
|
int ff_h264_alloc_tables(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
const int big_mb_num= s->mb_stride * (s->mb_height+1);
|
|
const int row_mb_num= 2*s->mb_stride*s->avctx->thread_count;
|
|
int x,y;
|
|
|
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->intra4x4_pred_mode, row_mb_num * 8 * sizeof(uint8_t), fail)
|
|
|
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->non_zero_count , big_mb_num * 48 * sizeof(uint8_t), fail)
|
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base), fail)
|
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->cbp_table, big_mb_num * sizeof(uint16_t), fail)
|
|
|
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t), fail)
|
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[0], 16*row_mb_num * sizeof(uint8_t), fail);
|
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[1], 16*row_mb_num * sizeof(uint8_t), fail);
|
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->direct_table, 4*big_mb_num * sizeof(uint8_t) , fail);
|
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->list_counts, big_mb_num * sizeof(uint8_t), fail)
|
|
|
|
memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base));
|
|
h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
|
|
|
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2b_xy , big_mb_num * sizeof(uint32_t), fail);
|
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2br_xy , big_mb_num * sizeof(uint32_t), fail);
|
|
for(y=0; y<s->mb_height; y++){
|
|
for(x=0; x<s->mb_width; x++){
|
|
const int mb_xy= x + y*s->mb_stride;
|
|
const int b_xy = 4*x + 4*y*h->b_stride;
|
|
|
|
h->mb2b_xy [mb_xy]= b_xy;
|
|
h->mb2br_xy[mb_xy]= 8*(FMO ? mb_xy : (mb_xy % (2*s->mb_stride)));
|
|
}
|
|
}
|
|
|
|
s->obmc_scratchpad = NULL;
|
|
|
|
if(!h->dequant4_coeff[0])
|
|
init_dequant_tables(h);
|
|
|
|
return 0;
|
|
fail:
|
|
free_tables(h, 1);
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Mimic alloc_tables(), but for every context thread.
|
|
*/
|
|
static void clone_tables(H264Context *dst, H264Context *src, int i){
|
|
MpegEncContext * const s = &src->s;
|
|
dst->intra4x4_pred_mode = src->intra4x4_pred_mode + i*8*2*s->mb_stride;
|
|
dst->non_zero_count = src->non_zero_count;
|
|
dst->slice_table = src->slice_table;
|
|
dst->cbp_table = src->cbp_table;
|
|
dst->mb2b_xy = src->mb2b_xy;
|
|
dst->mb2br_xy = src->mb2br_xy;
|
|
dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
|
|
dst->mvd_table[0] = src->mvd_table[0] + i*8*2*s->mb_stride;
|
|
dst->mvd_table[1] = src->mvd_table[1] + i*8*2*s->mb_stride;
|
|
dst->direct_table = src->direct_table;
|
|
dst->list_counts = src->list_counts;
|
|
|
|
dst->s.obmc_scratchpad = NULL;
|
|
ff_h264_pred_init(&dst->hpc, src->s.codec_id, src->sps.bit_depth_luma);
|
|
}
|
|
|
|
/**
|
|
* Init context
|
|
* Allocate buffers which are not shared amongst multiple threads.
|
|
*/
|
|
static int context_init(H264Context *h){
|
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[0], h->s.mb_width * 16*3 * sizeof(uint8_t)*2, fail)
|
|
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[1], h->s.mb_width * 16*3 * sizeof(uint8_t)*2, fail)
|
|
|
|
h->ref_cache[0][scan8[5 ]+1] = h->ref_cache[0][scan8[7 ]+1] = h->ref_cache[0][scan8[13]+1] =
|
|
h->ref_cache[1][scan8[5 ]+1] = h->ref_cache[1][scan8[7 ]+1] = h->ref_cache[1][scan8[13]+1] = PART_NOT_AVAILABLE;
|
|
|
|
return 0;
|
|
fail:
|
|
return -1; // free_tables will clean up for us
|
|
}
|
|
|
|
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size);
|
|
|
|
static av_cold void common_init(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
|
|
s->width = s->avctx->width;
|
|
s->height = s->avctx->height;
|
|
s->codec_id= s->avctx->codec->id;
|
|
|
|
ff_h264dsp_init(&h->h264dsp, 8);
|
|
ff_h264_pred_init(&h->hpc, s->codec_id, 8);
|
|
|
|
h->dequant_coeff_pps= -1;
|
|
s->unrestricted_mv=1;
|
|
s->decode=1; //FIXME
|
|
|
|
dsputil_init(&s->dsp, s->avctx); // needed so that idct permutation is known early
|
|
|
|
memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
|
|
memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
|
|
}
|
|
|
|
int ff_h264_decode_extradata(H264Context *h)
|
|
{
|
|
AVCodecContext *avctx = h->s.avctx;
|
|
|
|
if(avctx->extradata[0] == 1){
|
|
int i, cnt, nalsize;
|
|
unsigned char *p = avctx->extradata;
|
|
|
|
h->is_avc = 1;
|
|
|
|
if(avctx->extradata_size < 7) {
|
|
av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
|
|
return -1;
|
|
}
|
|
/* sps and pps in the avcC always have length coded with 2 bytes,
|
|
so put a fake nal_length_size = 2 while parsing them */
|
|
h->nal_length_size = 2;
|
|
// Decode sps from avcC
|
|
cnt = *(p+5) & 0x1f; // Number of sps
|
|
p += 6;
|
|
for (i = 0; i < cnt; i++) {
|
|
nalsize = AV_RB16(p) + 2;
|
|
if (p - avctx->extradata + nalsize > avctx->extradata_size)
|
|
return -1;
|
|
if(decode_nal_units(h, p, nalsize) < 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
|
|
return -1;
|
|
}
|
|
p += nalsize;
|
|
}
|
|
// Decode pps from avcC
|
|
cnt = *(p++); // Number of pps
|
|
for (i = 0; i < cnt; i++) {
|
|
nalsize = AV_RB16(p) + 2;
|
|
if (p - avctx->extradata + nalsize > avctx->extradata_size)
|
|
return -1;
|
|
if (decode_nal_units(h, p, nalsize) < 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
|
|
return -1;
|
|
}
|
|
p += nalsize;
|
|
}
|
|
// Now store right nal length size, that will be use to parse all other nals
|
|
h->nal_length_size = (avctx->extradata[4] & 0x03) + 1;
|
|
} else {
|
|
h->is_avc = 0;
|
|
if(decode_nal_units(h, avctx->extradata, avctx->extradata_size) < 0)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
av_cold int ff_h264_decode_init(AVCodecContext *avctx){
|
|
H264Context *h= avctx->priv_data;
|
|
MpegEncContext * const s = &h->s;
|
|
|
|
MPV_decode_defaults(s);
|
|
|
|
s->avctx = avctx;
|
|
common_init(h);
|
|
|
|
s->out_format = FMT_H264;
|
|
s->workaround_bugs= avctx->workaround_bugs;
|
|
|
|
// set defaults
|
|
// s->decode_mb= ff_h263_decode_mb;
|
|
s->quarter_sample = 1;
|
|
if(!avctx->has_b_frames)
|
|
s->low_delay= 1;
|
|
|
|
avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
|
|
|
|
ff_h264_decode_init_vlc();
|
|
|
|
h->pixel_shift = 0;
|
|
h->sps.bit_depth_luma = avctx->bits_per_raw_sample = 8;
|
|
|
|
h->thread_context[0] = h;
|
|
h->outputed_poc = h->next_outputed_poc = INT_MIN;
|
|
h->prev_poc_msb= 1<<16;
|
|
h->x264_build = -1;
|
|
ff_h264_reset_sei(h);
|
|
if(avctx->codec_id == CODEC_ID_H264){
|
|
if(avctx->ticks_per_frame == 1){
|
|
s->avctx->time_base.den *=2;
|
|
}
|
|
avctx->ticks_per_frame = 2;
|
|
}
|
|
|
|
if(avctx->extradata_size > 0 && avctx->extradata &&
|
|
ff_h264_decode_extradata(h))
|
|
return -1;
|
|
|
|
if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames < h->sps.num_reorder_frames){
|
|
s->avctx->has_b_frames = h->sps.num_reorder_frames;
|
|
s->low_delay = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define IN_RANGE(a, b, size) (((a) >= (b)) && ((a) < ((b)+(size))))
|
|
static void copy_picture_range(Picture **to, Picture **from, int count, MpegEncContext *new_base, MpegEncContext *old_base)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<count; i++){
|
|
assert((IN_RANGE(from[i], old_base, sizeof(*old_base)) ||
|
|
IN_RANGE(from[i], old_base->picture, sizeof(Picture) * old_base->picture_count) ||
|
|
!from[i]));
|
|
to[i] = REBASE_PICTURE(from[i], new_base, old_base);
|
|
}
|
|
}
|
|
|
|
static void copy_parameter_set(void **to, void **from, int count, int size)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<count; i++){
|
|
if (to[i] && !from[i]) av_freep(&to[i]);
|
|
else if (from[i] && !to[i]) to[i] = av_malloc(size);
|
|
|
|
if (from[i]) memcpy(to[i], from[i], size);
|
|
}
|
|
}
|
|
|
|
static int decode_init_thread_copy(AVCodecContext *avctx){
|
|
H264Context *h= avctx->priv_data;
|
|
|
|
if (!avctx->is_copy) return 0;
|
|
memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
|
|
memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field, &from->start_field, (char*)&to->end_field - (char*)&to->start_field)
|
|
static int decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src){
|
|
H264Context *h= dst->priv_data, *h1= src->priv_data;
|
|
MpegEncContext * const s = &h->s, * const s1 = &h1->s;
|
|
int inited = s->context_initialized, err;
|
|
int i;
|
|
|
|
if(dst == src || !s1->context_initialized) return 0;
|
|
|
|
err = ff_mpeg_update_thread_context(dst, src);
|
|
if(err) return err;
|
|
|
|
//FIXME handle width/height changing
|
|
if(!inited){
|
|
for(i = 0; i < MAX_SPS_COUNT; i++)
|
|
av_freep(h->sps_buffers + i);
|
|
|
|
for(i = 0; i < MAX_PPS_COUNT; i++)
|
|
av_freep(h->pps_buffers + i);
|
|
|
|
memcpy(&h->s + 1, &h1->s + 1, sizeof(H264Context) - sizeof(MpegEncContext)); //copy all fields after MpegEnc
|
|
memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
|
|
memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
|
|
if (ff_h264_alloc_tables(h) < 0) {
|
|
av_log(dst, AV_LOG_ERROR, "Could not allocate memory for h264\n");
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
context_init(h);
|
|
|
|
for(i=0; i<2; i++){
|
|
h->rbsp_buffer[i] = NULL;
|
|
h->rbsp_buffer_size[i] = 0;
|
|
}
|
|
|
|
h->thread_context[0] = h;
|
|
|
|
// frame_start may not be called for the next thread (if it's decoding a bottom field)
|
|
// so this has to be allocated here
|
|
h->s.obmc_scratchpad = av_malloc(16*6*s->linesize);
|
|
|
|
s->dsp.clear_blocks(h->mb);
|
|
s->dsp.clear_blocks(h->mb+(24*16<<h->pixel_shift));
|
|
}
|
|
|
|
//extradata/NAL handling
|
|
h->is_avc = h1->is_avc;
|
|
|
|
//SPS/PPS
|
|
copy_parameter_set((void**)h->sps_buffers, (void**)h1->sps_buffers, MAX_SPS_COUNT, sizeof(SPS));
|
|
h->sps = h1->sps;
|
|
copy_parameter_set((void**)h->pps_buffers, (void**)h1->pps_buffers, MAX_PPS_COUNT, sizeof(PPS));
|
|
h->pps = h1->pps;
|
|
|
|
//Dequantization matrices
|
|
//FIXME these are big - can they be only copied when PPS changes?
|
|
copy_fields(h, h1, dequant4_buffer, dequant4_coeff);
|
|
|
|
for(i=0; i<6; i++)
|
|
h->dequant4_coeff[i] = h->dequant4_buffer[0] + (h1->dequant4_coeff[i] - h1->dequant4_buffer[0]);
|
|
|
|
for(i=0; i<6; i++)
|
|
h->dequant8_coeff[i] = h->dequant8_buffer[0] + (h1->dequant8_coeff[i] - h1->dequant8_buffer[0]);
|
|
|
|
h->dequant_coeff_pps = h1->dequant_coeff_pps;
|
|
|
|
//POC timing
|
|
copy_fields(h, h1, poc_lsb, redundant_pic_count);
|
|
|
|
//reference lists
|
|
copy_fields(h, h1, ref_count, list_count);
|
|
copy_fields(h, h1, ref_list, intra_gb);
|
|
copy_fields(h, h1, short_ref, cabac_init_idc);
|
|
|
|
copy_picture_range(h->short_ref, h1->short_ref, 32, s, s1);
|
|
copy_picture_range(h->long_ref, h1->long_ref, 32, s, s1);
|
|
copy_picture_range(h->delayed_pic, h1->delayed_pic, MAX_DELAYED_PIC_COUNT+2, s, s1);
|
|
|
|
h->last_slice_type = h1->last_slice_type;
|
|
|
|
if(!s->current_picture_ptr) return 0;
|
|
|
|
if(!s->dropable) {
|
|
err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
|
|
h->prev_poc_msb = h->poc_msb;
|
|
h->prev_poc_lsb = h->poc_lsb;
|
|
}
|
|
h->prev_frame_num_offset= h->frame_num_offset;
|
|
h->prev_frame_num = h->frame_num;
|
|
h->outputed_poc = h->next_outputed_poc;
|
|
|
|
return err;
|
|
}
|
|
|
|
int ff_h264_frame_start(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
int i;
|
|
const int pixel_shift = h->pixel_shift;
|
|
int thread_count = (s->avctx->active_thread_type & FF_THREAD_SLICE) ? s->avctx->thread_count : 1;
|
|
|
|
if(MPV_frame_start(s, s->avctx) < 0)
|
|
return -1;
|
|
ff_er_frame_start(s);
|
|
/*
|
|
* MPV_frame_start uses pict_type to derive key_frame.
|
|
* This is incorrect for H.264; IDR markings must be used.
|
|
* Zero here; IDR markings per slice in frame or fields are ORed in later.
|
|
* See decode_nal_units().
|
|
*/
|
|
s->current_picture_ptr->f.key_frame = 0;
|
|
s->current_picture_ptr->mmco_reset= 0;
|
|
|
|
assert(s->linesize && s->uvlinesize);
|
|
|
|
for(i=0; i<16; i++){
|
|
h->block_offset[i]= (4*((scan8[i] - scan8[0])&7) << pixel_shift) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
|
|
h->block_offset[48+i]= (4*((scan8[i] - scan8[0])&7) << pixel_shift) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
|
|
}
|
|
for(i=0; i<16; i++){
|
|
h->block_offset[16+i]=
|
|
h->block_offset[32+i]= (4*((scan8[i] - scan8[0])&7) << pixel_shift) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
|
|
h->block_offset[48+16+i]=
|
|
h->block_offset[48+32+i]= (4*((scan8[i] - scan8[0])&7) << pixel_shift) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
|
|
}
|
|
|
|
/* can't be in alloc_tables because linesize isn't known there.
|
|
* FIXME: redo bipred weight to not require extra buffer? */
|
|
for(i = 0; i < thread_count; i++)
|
|
if(h->thread_context[i] && !h->thread_context[i]->s.obmc_scratchpad)
|
|
h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*6*s->linesize);
|
|
|
|
/* some macroblocks can be accessed before they're available in case of lost slices, mbaff or threading*/
|
|
memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(*h->slice_table));
|
|
|
|
// s->decode = (s->flags & CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.f.reference /*|| h->contains_intra*/ || 1;
|
|
|
|
// We mark the current picture as non-reference after allocating it, so
|
|
// that if we break out due to an error it can be released automatically
|
|
// in the next MPV_frame_start().
|
|
// SVQ3 as well as most other codecs have only last/next/current and thus
|
|
// get released even with set reference, besides SVQ3 and others do not
|
|
// mark frames as reference later "naturally".
|
|
if(s->codec_id != CODEC_ID_SVQ3)
|
|
s->current_picture_ptr->f.reference = 0;
|
|
|
|
s->current_picture_ptr->field_poc[0]=
|
|
s->current_picture_ptr->field_poc[1]= INT_MAX;
|
|
|
|
h->next_output_pic = NULL;
|
|
|
|
assert(s->current_picture_ptr->long_ref==0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Run setup operations that must be run after slice header decoding.
|
|
* This includes finding the next displayed frame.
|
|
*
|
|
* @param h h264 master context
|
|
* @param setup_finished enough NALs have been read that we can call
|
|
* ff_thread_finish_setup()
|
|
*/
|
|
static void decode_postinit(H264Context *h, int setup_finished){
|
|
MpegEncContext * const s = &h->s;
|
|
Picture *out = s->current_picture_ptr;
|
|
Picture *cur = s->current_picture_ptr;
|
|
int i, pics, out_of_order, out_idx;
|
|
|
|
s->current_picture_ptr->f.qscale_type = FF_QSCALE_TYPE_H264;
|
|
s->current_picture_ptr->f.pict_type = s->pict_type;
|
|
|
|
if (h->next_output_pic) return;
|
|
|
|
if (cur->field_poc[0]==INT_MAX || cur->field_poc[1]==INT_MAX) {
|
|
//FIXME: if we have two PAFF fields in one packet, we can't start the next thread here.
|
|
//If we have one field per packet, we can. The check in decode_nal_units() is not good enough
|
|
//to find this yet, so we assume the worst for now.
|
|
//if (setup_finished)
|
|
// ff_thread_finish_setup(s->avctx);
|
|
return;
|
|
}
|
|
|
|
cur->f.interlaced_frame = 0;
|
|
cur->f.repeat_pict = 0;
|
|
|
|
/* Signal interlacing information externally. */
|
|
/* Prioritize picture timing SEI information over used decoding process if it exists. */
|
|
|
|
if(h->sps.pic_struct_present_flag){
|
|
switch (h->sei_pic_struct)
|
|
{
|
|
case SEI_PIC_STRUCT_FRAME:
|
|
break;
|
|
case SEI_PIC_STRUCT_TOP_FIELD:
|
|
case SEI_PIC_STRUCT_BOTTOM_FIELD:
|
|
cur->f.interlaced_frame = 1;
|
|
break;
|
|
case SEI_PIC_STRUCT_TOP_BOTTOM:
|
|
case SEI_PIC_STRUCT_BOTTOM_TOP:
|
|
if (FIELD_OR_MBAFF_PICTURE)
|
|
cur->f.interlaced_frame = 1;
|
|
else
|
|
// try to flag soft telecine progressive
|
|
cur->f.interlaced_frame = h->prev_interlaced_frame;
|
|
break;
|
|
case SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
|
|
case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
|
|
// Signal the possibility of telecined film externally (pic_struct 5,6)
|
|
// From these hints, let the applications decide if they apply deinterlacing.
|
|
cur->f.repeat_pict = 1;
|
|
break;
|
|
case SEI_PIC_STRUCT_FRAME_DOUBLING:
|
|
// Force progressive here, as doubling interlaced frame is a bad idea.
|
|
cur->f.repeat_pict = 2;
|
|
break;
|
|
case SEI_PIC_STRUCT_FRAME_TRIPLING:
|
|
cur->f.repeat_pict = 4;
|
|
break;
|
|
}
|
|
|
|
if ((h->sei_ct_type & 3) && h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP)
|
|
cur->f.interlaced_frame = (h->sei_ct_type & (1 << 1)) != 0;
|
|
}else{
|
|
/* Derive interlacing flag from used decoding process. */
|
|
cur->f.interlaced_frame = FIELD_OR_MBAFF_PICTURE;
|
|
}
|
|
h->prev_interlaced_frame = cur->f.interlaced_frame;
|
|
|
|
if (cur->field_poc[0] != cur->field_poc[1]){
|
|
/* Derive top_field_first from field pocs. */
|
|
cur->f.top_field_first = cur->field_poc[0] < cur->field_poc[1];
|
|
}else{
|
|
if (cur->f.interlaced_frame || h->sps.pic_struct_present_flag) {
|
|
/* Use picture timing SEI information. Even if it is a information of a past frame, better than nothing. */
|
|
if(h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM
|
|
|| h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
|
|
cur->f.top_field_first = 1;
|
|
else
|
|
cur->f.top_field_first = 0;
|
|
}else{
|
|
/* Most likely progressive */
|
|
cur->f.top_field_first = 0;
|
|
}
|
|
}
|
|
|
|
//FIXME do something with unavailable reference frames
|
|
|
|
/* Sort B-frames into display order */
|
|
|
|
if(h->sps.bitstream_restriction_flag
|
|
&& s->avctx->has_b_frames < h->sps.num_reorder_frames){
|
|
s->avctx->has_b_frames = h->sps.num_reorder_frames;
|
|
s->low_delay = 0;
|
|
}
|
|
|
|
if( s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT
|
|
&& !h->sps.bitstream_restriction_flag){
|
|
s->avctx->has_b_frames= MAX_DELAYED_PIC_COUNT;
|
|
s->low_delay= 0;
|
|
}
|
|
|
|
pics = 0;
|
|
while(h->delayed_pic[pics]) pics++;
|
|
|
|
assert(pics <= MAX_DELAYED_PIC_COUNT);
|
|
|
|
h->delayed_pic[pics++] = cur;
|
|
if (cur->f.reference == 0)
|
|
cur->f.reference = DELAYED_PIC_REF;
|
|
|
|
out = h->delayed_pic[0];
|
|
out_idx = 0;
|
|
for (i = 1; h->delayed_pic[i] && !h->delayed_pic[i]->f.key_frame && !h->delayed_pic[i]->mmco_reset; i++)
|
|
if(h->delayed_pic[i]->poc < out->poc){
|
|
out = h->delayed_pic[i];
|
|
out_idx = i;
|
|
}
|
|
if (s->avctx->has_b_frames == 0 && (h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset))
|
|
h->next_outputed_poc= INT_MIN;
|
|
out_of_order = out->poc < h->next_outputed_poc;
|
|
|
|
if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
|
|
{ }
|
|
else if((out_of_order && pics-1 == s->avctx->has_b_frames && s->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT)
|
|
|| (s->low_delay &&
|
|
((h->next_outputed_poc != INT_MIN && out->poc > h->next_outputed_poc + 2)
|
|
|| cur->f.pict_type == AV_PICTURE_TYPE_B)))
|
|
{
|
|
s->low_delay = 0;
|
|
s->avctx->has_b_frames++;
|
|
}
|
|
|
|
if(out_of_order || pics > s->avctx->has_b_frames){
|
|
out->f.reference &= ~DELAYED_PIC_REF;
|
|
out->owner2 = s; // for frame threading, the owner must be the second field's thread
|
|
// or else the first thread can release the picture and reuse it unsafely
|
|
for(i=out_idx; h->delayed_pic[i]; i++)
|
|
h->delayed_pic[i] = h->delayed_pic[i+1];
|
|
}
|
|
if(!out_of_order && pics > s->avctx->has_b_frames){
|
|
h->next_output_pic = out;
|
|
if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset)) {
|
|
h->next_outputed_poc = INT_MIN;
|
|
} else
|
|
h->next_outputed_poc = out->poc;
|
|
}else{
|
|
av_log(s->avctx, AV_LOG_DEBUG, "no picture\n");
|
|
}
|
|
|
|
if (setup_finished)
|
|
ff_thread_finish_setup(s->avctx);
|
|
}
|
|
|
|
static av_always_inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int chroma444, int simple){
|
|
MpegEncContext * const s = &h->s;
|
|
uint8_t *top_border;
|
|
int top_idx = 1;
|
|
const int pixel_shift = h->pixel_shift;
|
|
|
|
src_y -= linesize;
|
|
src_cb -= uvlinesize;
|
|
src_cr -= uvlinesize;
|
|
|
|
if(!simple && FRAME_MBAFF){
|
|
if(s->mb_y&1){
|
|
if(!MB_MBAFF){
|
|
top_border = h->top_borders[0][s->mb_x];
|
|
AV_COPY128(top_border, src_y + 15*linesize);
|
|
if (pixel_shift)
|
|
AV_COPY128(top_border+16, src_y+15*linesize+16);
|
|
if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
|
if(chroma444){
|
|
if (pixel_shift){
|
|
AV_COPY128(top_border+32, src_cb + 15*uvlinesize);
|
|
AV_COPY128(top_border+48, src_cb + 15*uvlinesize+16);
|
|
AV_COPY128(top_border+64, src_cr + 15*uvlinesize);
|
|
AV_COPY128(top_border+80, src_cr + 15*uvlinesize+16);
|
|
} else {
|
|
AV_COPY128(top_border+16, src_cb + 15*uvlinesize);
|
|
AV_COPY128(top_border+32, src_cr + 15*uvlinesize);
|
|
}
|
|
} else {
|
|
if (pixel_shift) {
|
|
AV_COPY128(top_border+32, src_cb+7*uvlinesize);
|
|
AV_COPY128(top_border+48, src_cr+7*uvlinesize);
|
|
} else {
|
|
AV_COPY64(top_border+16, src_cb+7*uvlinesize);
|
|
AV_COPY64(top_border+24, src_cr+7*uvlinesize);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}else if(MB_MBAFF){
|
|
top_idx = 0;
|
|
}else
|
|
return;
|
|
}
|
|
|
|
top_border = h->top_borders[top_idx][s->mb_x];
|
|
// There are two lines saved, the line above the the top macroblock of a pair,
|
|
// and the line above the bottom macroblock
|
|
AV_COPY128(top_border, src_y + 16*linesize);
|
|
if (pixel_shift)
|
|
AV_COPY128(top_border+16, src_y+16*linesize+16);
|
|
|
|
if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
|
if(chroma444){
|
|
if (pixel_shift){
|
|
AV_COPY128(top_border+32, src_cb + 16*linesize);
|
|
AV_COPY128(top_border+48, src_cb + 16*linesize+16);
|
|
AV_COPY128(top_border+64, src_cr + 16*linesize);
|
|
AV_COPY128(top_border+80, src_cr + 16*linesize+16);
|
|
} else {
|
|
AV_COPY128(top_border+16, src_cb + 16*linesize);
|
|
AV_COPY128(top_border+32, src_cr + 16*linesize);
|
|
}
|
|
} else {
|
|
if (pixel_shift) {
|
|
AV_COPY128(top_border+32, src_cb+8*uvlinesize);
|
|
AV_COPY128(top_border+48, src_cr+8*uvlinesize);
|
|
} else {
|
|
AV_COPY64(top_border+16, src_cb+8*uvlinesize);
|
|
AV_COPY64(top_border+24, src_cr+8*uvlinesize);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static av_always_inline void xchg_mb_border(H264Context *h, uint8_t *src_y,
|
|
uint8_t *src_cb, uint8_t *src_cr,
|
|
int linesize, int uvlinesize,
|
|
int xchg, int chroma444,
|
|
int simple, int pixel_shift){
|
|
MpegEncContext * const s = &h->s;
|
|
int deblock_topleft;
|
|
int deblock_top;
|
|
int top_idx = 1;
|
|
uint8_t *top_border_m1;
|
|
uint8_t *top_border;
|
|
|
|
if(!simple && FRAME_MBAFF){
|
|
if(s->mb_y&1){
|
|
if(!MB_MBAFF)
|
|
return;
|
|
}else{
|
|
top_idx = MB_MBAFF ? 0 : 1;
|
|
}
|
|
}
|
|
|
|
if(h->deblocking_filter == 2) {
|
|
deblock_topleft = h->slice_table[h->mb_xy - 1 - s->mb_stride] == h->slice_num;
|
|
deblock_top = h->top_type;
|
|
} else {
|
|
deblock_topleft = (s->mb_x > 0);
|
|
deblock_top = (s->mb_y > !!MB_FIELD);
|
|
}
|
|
|
|
src_y -= linesize + 1 + pixel_shift;
|
|
src_cb -= uvlinesize + 1 + pixel_shift;
|
|
src_cr -= uvlinesize + 1 + pixel_shift;
|
|
|
|
top_border_m1 = h->top_borders[top_idx][s->mb_x-1];
|
|
top_border = h->top_borders[top_idx][s->mb_x];
|
|
|
|
#define XCHG(a,b,xchg)\
|
|
if (pixel_shift) {\
|
|
if (xchg) {\
|
|
AV_SWAP64(b+0,a+0);\
|
|
AV_SWAP64(b+8,a+8);\
|
|
} else {\
|
|
AV_COPY128(b,a); \
|
|
}\
|
|
} else \
|
|
if (xchg) AV_SWAP64(b,a);\
|
|
else AV_COPY64(b,a);
|
|
|
|
if(deblock_top){
|
|
if(deblock_topleft){
|
|
XCHG(top_border_m1 + (8 << pixel_shift), src_y - (7 << pixel_shift), 1);
|
|
}
|
|
XCHG(top_border + (0 << pixel_shift), src_y + (1 << pixel_shift), xchg);
|
|
XCHG(top_border + (8 << pixel_shift), src_y + (9 << pixel_shift), 1);
|
|
if(s->mb_x+1 < s->mb_width){
|
|
XCHG(h->top_borders[top_idx][s->mb_x+1], src_y + (17 << pixel_shift), 1);
|
|
}
|
|
}
|
|
if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
|
if(chroma444){
|
|
if(deblock_topleft){
|
|
XCHG(top_border_m1 + (24 << pixel_shift), src_cb - (7 << pixel_shift), 1);
|
|
XCHG(top_border_m1 + (40 << pixel_shift), src_cr - (7 << pixel_shift), 1);
|
|
}
|
|
XCHG(top_border + (16 << pixel_shift), src_cb + (1 << pixel_shift), xchg);
|
|
XCHG(top_border + (24 << pixel_shift), src_cb + (9 << pixel_shift), 1);
|
|
XCHG(top_border + (32 << pixel_shift), src_cr + (1 << pixel_shift), xchg);
|
|
XCHG(top_border + (40 << pixel_shift), src_cr + (9 << pixel_shift), 1);
|
|
if(s->mb_x+1 < s->mb_width){
|
|
XCHG(h->top_borders[top_idx][s->mb_x+1] + (16 << pixel_shift), src_cb + (17 << pixel_shift), 1);
|
|
XCHG(h->top_borders[top_idx][s->mb_x+1] + (32 << pixel_shift), src_cr + (17 << pixel_shift), 1);
|
|
}
|
|
} else {
|
|
if(deblock_top){
|
|
if(deblock_topleft){
|
|
XCHG(top_border_m1 + (16 << pixel_shift), src_cb - (7 << pixel_shift), 1);
|
|
XCHG(top_border_m1 + (24 << pixel_shift), src_cr - (7 << pixel_shift), 1);
|
|
}
|
|
XCHG(top_border + (16 << pixel_shift), src_cb+1+pixel_shift, 1);
|
|
XCHG(top_border + (24 << pixel_shift), src_cr+1+pixel_shift, 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static av_always_inline int dctcoef_get(DCTELEM *mb, int high_bit_depth, int index) {
|
|
if (high_bit_depth) {
|
|
return AV_RN32A(((int32_t*)mb) + index);
|
|
} else
|
|
return AV_RN16A(mb + index);
|
|
}
|
|
|
|
static av_always_inline void dctcoef_set(DCTELEM *mb, int high_bit_depth, int index, int value) {
|
|
if (high_bit_depth) {
|
|
AV_WN32A(((int32_t*)mb) + index, value);
|
|
} else
|
|
AV_WN16A(mb + index, value);
|
|
}
|
|
|
|
static av_always_inline void hl_decode_mb_predict_luma(H264Context *h, int mb_type, int is_h264, int simple, int transform_bypass,
|
|
int pixel_shift, int *block_offset, int linesize, uint8_t *dest_y, int p)
|
|
{
|
|
MpegEncContext * const s = &h->s;
|
|
void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
|
|
void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
|
|
int i;
|
|
int qscale = p == 0 ? s->qscale : h->chroma_qp[p-1];
|
|
block_offset += 16*p;
|
|
if(IS_INTRA4x4(mb_type)){
|
|
if(simple || !s->encoding){
|
|
if(IS_8x8DCT(mb_type)){
|
|
if(transform_bypass){
|
|
idct_dc_add =
|
|
idct_add = s->dsp.add_pixels8;
|
|
}else{
|
|
idct_dc_add = h->h264dsp.h264_idct8_dc_add;
|
|
idct_add = h->h264dsp.h264_idct8_add;
|
|
}
|
|
for(i=0; i<16; i+=4){
|
|
uint8_t * const ptr= dest_y + block_offset[i];
|
|
const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
|
|
if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
|
|
h->hpc.pred8x8l_add[dir](ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
|
|
}else{
|
|
const int nnz = h->non_zero_count_cache[ scan8[i+p*16] ];
|
|
h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
|
|
(h->topright_samples_available<<i)&0x4000, linesize);
|
|
if(nnz){
|
|
if(nnz == 1 && dctcoef_get(h->mb, pixel_shift, i*16+p*256))
|
|
idct_dc_add(ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
|
|
else
|
|
idct_add (ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
if(transform_bypass){
|
|
idct_dc_add =
|
|
idct_add = s->dsp.add_pixels4;
|
|
}else{
|
|
idct_dc_add = h->h264dsp.h264_idct_dc_add;
|
|
idct_add = h->h264dsp.h264_idct_add;
|
|
}
|
|
for(i=0; i<16; i++){
|
|
uint8_t * const ptr= dest_y + block_offset[i];
|
|
const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
|
|
|
|
if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
|
|
h->hpc.pred4x4_add[dir](ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
|
|
}else{
|
|
uint8_t *topright;
|
|
int nnz, tr;
|
|
uint64_t tr_high;
|
|
if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
|
|
const int topright_avail= (h->topright_samples_available<<i)&0x8000;
|
|
assert(s->mb_y || linesize <= block_offset[i]);
|
|
if(!topright_avail){
|
|
if (pixel_shift) {
|
|
tr_high= ((uint16_t*)ptr)[3 - linesize/2]*0x0001000100010001ULL;
|
|
topright= (uint8_t*) &tr_high;
|
|
} else {
|
|
tr= ptr[3 - linesize]*0x01010101u;
|
|
topright= (uint8_t*) &tr;
|
|
}
|
|
}else
|
|
topright= ptr + (4 << pixel_shift) - linesize;
|
|
}else
|
|
topright= NULL;
|
|
|
|
h->hpc.pred4x4[ dir ](ptr, topright, linesize);
|
|
nnz = h->non_zero_count_cache[ scan8[i+p*16] ];
|
|
if(nnz){
|
|
if(is_h264){
|
|
if(nnz == 1 && dctcoef_get(h->mb, pixel_shift, i*16+p*256))
|
|
idct_dc_add(ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
|
|
else
|
|
idct_add (ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
|
|
}else
|
|
ff_svq3_add_idct_c(ptr, h->mb + i*16+p*256, linesize, qscale, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
|
|
if(is_h264){
|
|
if(h->non_zero_count_cache[ scan8[LUMA_DC_BLOCK_INDEX+p] ]){
|
|
if(!transform_bypass)
|
|
h->h264dsp.h264_luma_dc_dequant_idct(h->mb+(p*256 << pixel_shift), h->mb_luma_dc[p], h->dequant4_coeff[p][qscale][0]);
|
|
else{
|
|
static const uint8_t dc_mapping[16] = { 0*16, 1*16, 4*16, 5*16, 2*16, 3*16, 6*16, 7*16,
|
|
8*16, 9*16,12*16,13*16,10*16,11*16,14*16,15*16};
|
|
for(i = 0; i < 16; i++)
|
|
dctcoef_set(h->mb+p*256, pixel_shift, dc_mapping[i], dctcoef_get(h->mb_luma_dc[p], pixel_shift, i));
|
|
}
|
|
}
|
|
}else
|
|
ff_svq3_luma_dc_dequant_idct_c(h->mb+p*256, h->mb_luma_dc[p], qscale);
|
|
}
|
|
}
|
|
|
|
static av_always_inline void hl_decode_mb_idct_luma(H264Context *h, int mb_type, int is_h264, int simple, int transform_bypass,
|
|
int pixel_shift, int *block_offset, int linesize, uint8_t *dest_y, int p)
|
|
{
|
|
MpegEncContext * const s = &h->s;
|
|
void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
|
|
int i;
|
|
block_offset += 16*p;
|
|
if(!IS_INTRA4x4(mb_type)){
|
|
if(is_h264){
|
|
if(IS_INTRA16x16(mb_type)){
|
|
if(transform_bypass){
|
|
if(h->sps.profile_idc==244 && (h->intra16x16_pred_mode==VERT_PRED8x8 || h->intra16x16_pred_mode==HOR_PRED8x8)){
|
|
h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset, h->mb + (p*256 << pixel_shift), linesize);
|
|
}else{
|
|
for(i=0; i<16; i++){
|
|
if(h->non_zero_count_cache[ scan8[i+p*16] ] || dctcoef_get(h->mb, pixel_shift, i*16+p*256))
|
|
s->dsp.add_pixels4(dest_y + block_offset[i], h->mb + (i*16+p*256 << pixel_shift), linesize);
|
|
}
|
|
}
|
|
}else{
|
|
h->h264dsp.h264_idct_add16intra(dest_y, block_offset, h->mb + (p*256 << pixel_shift), linesize, h->non_zero_count_cache+p*5*8);
|
|
}
|
|
}else if(h->cbp&15){
|
|
if(transform_bypass){
|
|
const int di = IS_8x8DCT(mb_type) ? 4 : 1;
|
|
idct_add= IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
|
|
for(i=0; i<16; i+=di){
|
|
if(h->non_zero_count_cache[ scan8[i+p*16] ]){
|
|
idct_add(dest_y + block_offset[i], h->mb + (i*16+p*256 << pixel_shift), linesize);
|
|
}
|
|
}
|
|
}else{
|
|
if(IS_8x8DCT(mb_type)){
|
|
h->h264dsp.h264_idct8_add4(dest_y, block_offset, h->mb + (p*256 << pixel_shift), linesize, h->non_zero_count_cache+p*5*8);
|
|
}else{
|
|
h->h264dsp.h264_idct_add16(dest_y, block_offset, h->mb + (p*256 << pixel_shift), linesize, h->non_zero_count_cache+p*5*8);
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
for(i=0; i<16; i++){
|
|
if(h->non_zero_count_cache[ scan8[i+p*16] ] || h->mb[i*16+p*256]){ //FIXME benchmark weird rule, & below
|
|
uint8_t * const ptr= dest_y + block_offset[i];
|
|
ff_svq3_add_idct_c(ptr, h->mb + i*16 + p*256, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple, int pixel_shift){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_x= s->mb_x;
|
|
const int mb_y= s->mb_y;
|
|
const int mb_xy= h->mb_xy;
|
|
const int mb_type = s->current_picture.f.mb_type[mb_xy];
|
|
uint8_t *dest_y, *dest_cb, *dest_cr;
|
|
int linesize, uvlinesize /*dct_offset*/;
|
|
int i, j;
|
|
int *block_offset = &h->block_offset[0];
|
|
const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
|
|
/* is_h264 should always be true if SVQ3 is disabled. */
|
|
const int is_h264 = !CONFIG_SVQ3_DECODER || simple || s->codec_id == CODEC_ID_H264;
|
|
void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
|
|
|
|
dest_y = s->current_picture.f.data[0] + ((mb_x << pixel_shift) + mb_y * s->linesize ) * 16;
|
|
dest_cb = s->current_picture.f.data[1] + ((mb_x << pixel_shift) + mb_y * s->uvlinesize) * 8;
|
|
dest_cr = s->current_picture.f.data[2] + ((mb_x << pixel_shift) + mb_y * s->uvlinesize) * 8;
|
|
|
|
s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + (64 << pixel_shift), s->linesize, 4);
|
|
s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + (64 << pixel_shift), dest_cr - dest_cb, 2);
|
|
|
|
h->list_counts[mb_xy]= h->list_count;
|
|
|
|
if (!simple && MB_FIELD) {
|
|
linesize = h->mb_linesize = s->linesize * 2;
|
|
uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
|
|
block_offset = &h->block_offset[48];
|
|
if(mb_y&1){ //FIXME move out of this function?
|
|
dest_y -= s->linesize*15;
|
|
dest_cb-= s->uvlinesize*7;
|
|
dest_cr-= s->uvlinesize*7;
|
|
}
|
|
if(FRAME_MBAFF) {
|
|
int list;
|
|
for(list=0; list<h->list_count; list++){
|
|
if(!USES_LIST(mb_type, list))
|
|
continue;
|
|
if(IS_16X16(mb_type)){
|
|
int8_t *ref = &h->ref_cache[list][scan8[0]];
|
|
fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
|
|
}else{
|
|
for(i=0; i<16; i+=4){
|
|
int ref = h->ref_cache[list][scan8[i]];
|
|
if(ref >= 0)
|
|
fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
linesize = h->mb_linesize = s->linesize;
|
|
uvlinesize = h->mb_uvlinesize = s->uvlinesize;
|
|
// dct_offset = s->linesize * 16;
|
|
}
|
|
|
|
if (!simple && IS_INTRA_PCM(mb_type)) {
|
|
if (pixel_shift) {
|
|
const int bit_depth = h->sps.bit_depth_luma;
|
|
int j;
|
|
GetBitContext gb;
|
|
init_get_bits(&gb, (uint8_t*)h->mb, 384*bit_depth);
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
uint16_t *tmp_y = (uint16_t*)(dest_y + i*linesize);
|
|
for (j = 0; j < 16; j++)
|
|
tmp_y[j] = get_bits(&gb, bit_depth);
|
|
}
|
|
if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
|
if (!h->sps.chroma_format_idc) {
|
|
for (i = 0; i < 8; i++) {
|
|
uint16_t *tmp_cb = (uint16_t*)(dest_cb + i*uvlinesize);
|
|
for (j = 0; j < 8; j++) {
|
|
tmp_cb[j] = 1 << (bit_depth - 1);
|
|
}
|
|
}
|
|
for (i = 0; i < 8; i++) {
|
|
uint16_t *tmp_cr = (uint16_t*)(dest_cr + i*uvlinesize);
|
|
for (j = 0; j < 8; j++) {
|
|
tmp_cr[j] = 1 << (bit_depth - 1);
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < 8; i++) {
|
|
uint16_t *tmp_cb = (uint16_t*)(dest_cb + i*uvlinesize);
|
|
for (j = 0; j < 8; j++)
|
|
tmp_cb[j] = get_bits(&gb, bit_depth);
|
|
}
|
|
for (i = 0; i < 8; i++) {
|
|
uint16_t *tmp_cr = (uint16_t*)(dest_cr + i*uvlinesize);
|
|
for (j = 0; j < 8; j++)
|
|
tmp_cr[j] = get_bits(&gb, bit_depth);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (i=0; i<16; i++) {
|
|
memcpy(dest_y + i* linesize, h->mb + i*8, 16);
|
|
}
|
|
if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
|
if (!h->sps.chroma_format_idc) {
|
|
for (i = 0; i < 8; i++) {
|
|
memset(dest_cb + i*uvlinesize, 128, 8);
|
|
memset(dest_cr + i*uvlinesize, 128, 8);
|
|
}
|
|
} else {
|
|
for (i = 0; i < 8; i++) {
|
|
memcpy(dest_cb + i*uvlinesize, h->mb + 128 + i*4, 8);
|
|
memcpy(dest_cr + i*uvlinesize, h->mb + 160 + i*4, 8);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if(IS_INTRA(mb_type)){
|
|
if(h->deblocking_filter)
|
|
xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, 0, simple, pixel_shift);
|
|
|
|
if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
|
|
h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
|
|
h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
|
|
}
|
|
|
|
hl_decode_mb_predict_luma(h, mb_type, is_h264, simple, transform_bypass, pixel_shift, block_offset, linesize, dest_y, 0);
|
|
|
|
if(h->deblocking_filter)
|
|
xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, 0, simple, pixel_shift);
|
|
}else if(is_h264){
|
|
hl_motion(h, dest_y, dest_cb, dest_cr,
|
|
s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
|
|
s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
|
|
h->h264dsp.weight_h264_pixels_tab,
|
|
h->h264dsp.biweight_h264_pixels_tab, pixel_shift, 0);
|
|
}
|
|
|
|
hl_decode_mb_idct_luma(h, mb_type, is_h264, simple, transform_bypass, pixel_shift, block_offset, linesize, dest_y, 0);
|
|
|
|
if((simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)) && (h->cbp&0x30)){
|
|
uint8_t *dest[2] = {dest_cb, dest_cr};
|
|
if(transform_bypass){
|
|
if(IS_INTRA(mb_type) && h->sps.profile_idc==244 && (h->chroma_pred_mode==VERT_PRED8x8 || h->chroma_pred_mode==HOR_PRED8x8)){
|
|
h->hpc.pred8x8_add[h->chroma_pred_mode](dest[0], block_offset + 16, h->mb + (16*16*1 << pixel_shift), uvlinesize);
|
|
h->hpc.pred8x8_add[h->chroma_pred_mode](dest[1], block_offset + 32, h->mb + (16*16*2 << pixel_shift), uvlinesize);
|
|
}else{
|
|
idct_add = s->dsp.add_pixels4;
|
|
for(j=1; j<3; j++){
|
|
for(i=j*16; i<j*16+4; i++){
|
|
if(h->non_zero_count_cache[ scan8[i] ] || dctcoef_get(h->mb, pixel_shift, i*16))
|
|
idct_add (dest[j-1] + block_offset[i], h->mb + (i*16 << pixel_shift), uvlinesize);
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
if(is_h264){
|
|
if(h->non_zero_count_cache[ scan8[CHROMA_DC_BLOCK_INDEX+0] ])
|
|
h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + (16*16*1 << pixel_shift), h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
|
|
if(h->non_zero_count_cache[ scan8[CHROMA_DC_BLOCK_INDEX+1] ])
|
|
h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + (16*16*2 << pixel_shift), h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
|
|
h->h264dsp.h264_idct_add8(dest, block_offset,
|
|
h->mb, uvlinesize,
|
|
h->non_zero_count_cache);
|
|
}else{
|
|
h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + 16*16*1, h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
|
|
h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + 16*16*2, h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
|
|
for(j=1; j<3; j++){
|
|
for(i=j*16; i<j*16+4; i++){
|
|
if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
|
|
uint8_t * const ptr= dest[j-1] + block_offset[i];
|
|
ff_svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, ff_h264_chroma_qp[0][s->qscale + 12] - 12, 2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if(h->cbp || IS_INTRA(mb_type))
|
|
{
|
|
s->dsp.clear_blocks(h->mb);
|
|
s->dsp.clear_blocks(h->mb+(24*16<<pixel_shift));
|
|
}
|
|
}
|
|
|
|
static av_always_inline void hl_decode_mb_444_internal(H264Context *h, int simple, int pixel_shift){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_x= s->mb_x;
|
|
const int mb_y= s->mb_y;
|
|
const int mb_xy= h->mb_xy;
|
|
const int mb_type = s->current_picture.f.mb_type[mb_xy];
|
|
uint8_t *dest[3];
|
|
int linesize;
|
|
int i, j, p;
|
|
int *block_offset = &h->block_offset[0];
|
|
const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
|
|
const int plane_count = (simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)) ? 3 : 1;
|
|
|
|
for (p = 0; p < plane_count; p++)
|
|
{
|
|
dest[p] = s->current_picture.f.data[p] + ((mb_x << pixel_shift) + mb_y * s->linesize) * 16;
|
|
s->dsp.prefetch(dest[p] + (s->mb_x&3)*4*s->linesize + (64 << pixel_shift), s->linesize, 4);
|
|
}
|
|
|
|
h->list_counts[mb_xy]= h->list_count;
|
|
|
|
if (!simple && MB_FIELD) {
|
|
linesize = h->mb_linesize = h->mb_uvlinesize = s->linesize * 2;
|
|
block_offset = &h->block_offset[48];
|
|
if(mb_y&1) //FIXME move out of this function?
|
|
for (p = 0; p < 3; p++)
|
|
dest[p] -= s->linesize*15;
|
|
if(FRAME_MBAFF) {
|
|
int list;
|
|
for(list=0; list<h->list_count; list++){
|
|
if(!USES_LIST(mb_type, list))
|
|
continue;
|
|
if(IS_16X16(mb_type)){
|
|
int8_t *ref = &h->ref_cache[list][scan8[0]];
|
|
fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
|
|
}else{
|
|
for(i=0; i<16; i+=4){
|
|
int ref = h->ref_cache[list][scan8[i]];
|
|
if(ref >= 0)
|
|
fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
linesize = h->mb_linesize = h->mb_uvlinesize = s->linesize;
|
|
}
|
|
|
|
if (!simple && IS_INTRA_PCM(mb_type)) {
|
|
if (pixel_shift) {
|
|
const int bit_depth = h->sps.bit_depth_luma;
|
|
GetBitContext gb;
|
|
init_get_bits(&gb, (uint8_t*)h->mb, 768*bit_depth);
|
|
|
|
for (p = 0; p < plane_count; p++) {
|
|
for (i = 0; i < 16; i++) {
|
|
uint16_t *tmp = (uint16_t*)(dest[p] + i*linesize);
|
|
for (j = 0; j < 16; j++)
|
|
tmp[j] = get_bits(&gb, bit_depth);
|
|
}
|
|
}
|
|
} else {
|
|
for (p = 0; p < plane_count; p++) {
|
|
for (i = 0; i < 16; i++) {
|
|
memcpy(dest[p] + i*linesize, h->mb + p*128 + i*8, 16);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if(IS_INTRA(mb_type)){
|
|
if(h->deblocking_filter)
|
|
xchg_mb_border(h, dest[0], dest[1], dest[2], linesize, linesize, 1, 1, simple, pixel_shift);
|
|
|
|
for (p = 0; p < plane_count; p++)
|
|
hl_decode_mb_predict_luma(h, mb_type, 1, simple, transform_bypass, pixel_shift, block_offset, linesize, dest[p], p);
|
|
|
|
if(h->deblocking_filter)
|
|
xchg_mb_border(h, dest[0], dest[1], dest[2], linesize, linesize, 0, 1, simple, pixel_shift);
|
|
}else{
|
|
hl_motion(h, dest[0], dest[1], dest[2],
|
|
s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
|
|
s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
|
|
h->h264dsp.weight_h264_pixels_tab,
|
|
h->h264dsp.biweight_h264_pixels_tab, pixel_shift, 1);
|
|
}
|
|
|
|
for (p = 0; p < plane_count; p++)
|
|
hl_decode_mb_idct_luma(h, mb_type, 1, simple, transform_bypass, pixel_shift, block_offset, linesize, dest[p], p);
|
|
}
|
|
if(h->cbp || IS_INTRA(mb_type))
|
|
{
|
|
s->dsp.clear_blocks(h->mb);
|
|
s->dsp.clear_blocks(h->mb+(24*16<<pixel_shift));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Process a macroblock; this case avoids checks for expensive uncommon cases.
|
|
*/
|
|
#define hl_decode_mb_simple(sh, bits) \
|
|
static void hl_decode_mb_simple_ ## bits(H264Context *h){ \
|
|
hl_decode_mb_internal(h, 1, sh); \
|
|
}
|
|
hl_decode_mb_simple(0, 8);
|
|
hl_decode_mb_simple(1, 16);
|
|
|
|
/**
|
|
* Process a macroblock; this handles edge cases, such as interlacing.
|
|
*/
|
|
static void av_noinline hl_decode_mb_complex(H264Context *h){
|
|
hl_decode_mb_internal(h, 0, h->pixel_shift);
|
|
}
|
|
|
|
static void av_noinline hl_decode_mb_444_complex(H264Context *h){
|
|
hl_decode_mb_444_internal(h, 0, h->pixel_shift);
|
|
}
|
|
|
|
static void av_noinline hl_decode_mb_444_simple(H264Context *h){
|
|
hl_decode_mb_444_internal(h, 1, 0);
|
|
}
|
|
|
|
void ff_h264_hl_decode_mb(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= h->mb_xy;
|
|
const int mb_type = s->current_picture.f.mb_type[mb_xy];
|
|
int is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0;
|
|
|
|
if (CHROMA444) {
|
|
if(is_complex || h->pixel_shift)
|
|
hl_decode_mb_444_complex(h);
|
|
else
|
|
hl_decode_mb_444_simple(h);
|
|
} else if (is_complex) {
|
|
hl_decode_mb_complex(h);
|
|
} else if (h->pixel_shift) {
|
|
hl_decode_mb_simple_16(h);
|
|
} else
|
|
hl_decode_mb_simple_8(h);
|
|
}
|
|
|
|
static int pred_weight_table(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
int list, i;
|
|
int luma_def, chroma_def;
|
|
|
|
h->use_weight= 0;
|
|
h->use_weight_chroma= 0;
|
|
h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
|
|
if(h->sps.chroma_format_idc)
|
|
h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
|
|
luma_def = 1<<h->luma_log2_weight_denom;
|
|
chroma_def = 1<<h->chroma_log2_weight_denom;
|
|
|
|
for(list=0; list<2; list++){
|
|
h->luma_weight_flag[list] = 0;
|
|
h->chroma_weight_flag[list] = 0;
|
|
for(i=0; i<h->ref_count[list]; i++){
|
|
int luma_weight_flag, chroma_weight_flag;
|
|
|
|
luma_weight_flag= get_bits1(&s->gb);
|
|
if(luma_weight_flag){
|
|
h->luma_weight[i][list][0]= get_se_golomb(&s->gb);
|
|
h->luma_weight[i][list][1]= get_se_golomb(&s->gb);
|
|
if( h->luma_weight[i][list][0] != luma_def
|
|
|| h->luma_weight[i][list][1] != 0) {
|
|
h->use_weight= 1;
|
|
h->luma_weight_flag[list]= 1;
|
|
}
|
|
}else{
|
|
h->luma_weight[i][list][0]= luma_def;
|
|
h->luma_weight[i][list][1]= 0;
|
|
}
|
|
|
|
if(h->sps.chroma_format_idc){
|
|
chroma_weight_flag= get_bits1(&s->gb);
|
|
if(chroma_weight_flag){
|
|
int j;
|
|
for(j=0; j<2; j++){
|
|
h->chroma_weight[i][list][j][0]= get_se_golomb(&s->gb);
|
|
h->chroma_weight[i][list][j][1]= get_se_golomb(&s->gb);
|
|
if( h->chroma_weight[i][list][j][0] != chroma_def
|
|
|| h->chroma_weight[i][list][j][1] != 0) {
|
|
h->use_weight_chroma= 1;
|
|
h->chroma_weight_flag[list]= 1;
|
|
}
|
|
}
|
|
}else{
|
|
int j;
|
|
for(j=0; j<2; j++){
|
|
h->chroma_weight[i][list][j][0]= chroma_def;
|
|
h->chroma_weight[i][list][j][1]= 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if(h->slice_type_nos != AV_PICTURE_TYPE_B) break;
|
|
}
|
|
h->use_weight= h->use_weight || h->use_weight_chroma;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Initialize implicit_weight table.
|
|
* @param field 0/1 initialize the weight for interlaced MBAFF
|
|
* -1 initializes the rest
|
|
*/
|
|
static void implicit_weight_table(H264Context *h, int field){
|
|
MpegEncContext * const s = &h->s;
|
|
int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
h->luma_weight_flag[i] = 0;
|
|
h->chroma_weight_flag[i] = 0;
|
|
}
|
|
|
|
if(field < 0){
|
|
if (s->picture_structure == PICT_FRAME) {
|
|
cur_poc = s->current_picture_ptr->poc;
|
|
} else {
|
|
cur_poc = s->current_picture_ptr->field_poc[s->picture_structure - 1];
|
|
}
|
|
if( h->ref_count[0] == 1 && h->ref_count[1] == 1 && !FRAME_MBAFF
|
|
&& h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
|
|
h->use_weight= 0;
|
|
h->use_weight_chroma= 0;
|
|
return;
|
|
}
|
|
ref_start= 0;
|
|
ref_count0= h->ref_count[0];
|
|
ref_count1= h->ref_count[1];
|
|
}else{
|
|
cur_poc = s->current_picture_ptr->field_poc[field];
|
|
ref_start= 16;
|
|
ref_count0= 16+2*h->ref_count[0];
|
|
ref_count1= 16+2*h->ref_count[1];
|
|
}
|
|
|
|
h->use_weight= 2;
|
|
h->use_weight_chroma= 2;
|
|
h->luma_log2_weight_denom= 5;
|
|
h->chroma_log2_weight_denom= 5;
|
|
|
|
for(ref0=ref_start; ref0 < ref_count0; ref0++){
|
|
int poc0 = h->ref_list[0][ref0].poc;
|
|
for(ref1=ref_start; ref1 < ref_count1; ref1++){
|
|
int w = 32;
|
|
if (!h->ref_list[0][ref0].long_ref && !h->ref_list[1][ref1].long_ref) {
|
|
int poc1 = h->ref_list[1][ref1].poc;
|
|
int td = av_clip(poc1 - poc0, -128, 127);
|
|
if(td){
|
|
int tb = av_clip(cur_poc - poc0, -128, 127);
|
|
int tx = (16384 + (FFABS(td) >> 1)) / td;
|
|
int dist_scale_factor = (tb*tx + 32) >> 8;
|
|
if(dist_scale_factor >= -64 && dist_scale_factor <= 128)
|
|
w = 64 - dist_scale_factor;
|
|
}
|
|
}
|
|
if(field<0){
|
|
h->implicit_weight[ref0][ref1][0]=
|
|
h->implicit_weight[ref0][ref1][1]= w;
|
|
}else{
|
|
h->implicit_weight[ref0][ref1][field]=w;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* instantaneous decoder refresh.
|
|
*/
|
|
static void idr(H264Context *h){
|
|
ff_h264_remove_all_refs(h);
|
|
h->prev_frame_num= 0;
|
|
h->prev_frame_num_offset= 0;
|
|
h->prev_poc_msb=
|
|
h->prev_poc_lsb= 0;
|
|
}
|
|
|
|
/* forget old pics after a seek */
|
|
static void flush_dpb(AVCodecContext *avctx){
|
|
H264Context *h= avctx->priv_data;
|
|
int i;
|
|
for(i=0; i<MAX_DELAYED_PIC_COUNT; i++) {
|
|
if(h->delayed_pic[i])
|
|
h->delayed_pic[i]->f.reference = 0;
|
|
h->delayed_pic[i]= NULL;
|
|
}
|
|
h->outputed_poc=h->next_outputed_poc= INT_MIN;
|
|
h->prev_interlaced_frame = 1;
|
|
idr(h);
|
|
if(h->s.current_picture_ptr)
|
|
h->s.current_picture_ptr->f.reference = 0;
|
|
h->s.first_field= 0;
|
|
ff_h264_reset_sei(h);
|
|
ff_mpeg_flush(avctx);
|
|
}
|
|
|
|
static int init_poc(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
const int max_frame_num= 1<<h->sps.log2_max_frame_num;
|
|
int field_poc[2];
|
|
Picture *cur = s->current_picture_ptr;
|
|
|
|
h->frame_num_offset= h->prev_frame_num_offset;
|
|
if(h->frame_num < h->prev_frame_num)
|
|
h->frame_num_offset += max_frame_num;
|
|
|
|
if(h->sps.poc_type==0){
|
|
const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
|
|
|
|
if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
|
|
h->poc_msb = h->prev_poc_msb + max_poc_lsb;
|
|
else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
|
|
h->poc_msb = h->prev_poc_msb - max_poc_lsb;
|
|
else
|
|
h->poc_msb = h->prev_poc_msb;
|
|
//printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
|
|
field_poc[0] =
|
|
field_poc[1] = h->poc_msb + h->poc_lsb;
|
|
if(s->picture_structure == PICT_FRAME)
|
|
field_poc[1] += h->delta_poc_bottom;
|
|
}else if(h->sps.poc_type==1){
|
|
int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
|
|
int i;
|
|
|
|
if(h->sps.poc_cycle_length != 0)
|
|
abs_frame_num = h->frame_num_offset + h->frame_num;
|
|
else
|
|
abs_frame_num = 0;
|
|
|
|
if(h->nal_ref_idc==0 && abs_frame_num > 0)
|
|
abs_frame_num--;
|
|
|
|
expected_delta_per_poc_cycle = 0;
|
|
for(i=0; i < h->sps.poc_cycle_length; i++)
|
|
expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
|
|
|
|
if(abs_frame_num > 0){
|
|
int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
|
|
int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
|
|
|
|
expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
|
|
for(i = 0; i <= frame_num_in_poc_cycle; i++)
|
|
expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
|
|
} else
|
|
expectedpoc = 0;
|
|
|
|
if(h->nal_ref_idc == 0)
|
|
expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
|
|
|
|
field_poc[0] = expectedpoc + h->delta_poc[0];
|
|
field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
|
|
|
|
if(s->picture_structure == PICT_FRAME)
|
|
field_poc[1] += h->delta_poc[1];
|
|
}else{
|
|
int poc= 2*(h->frame_num_offset + h->frame_num);
|
|
|
|
if(!h->nal_ref_idc)
|
|
poc--;
|
|
|
|
field_poc[0]= poc;
|
|
field_poc[1]= poc;
|
|
}
|
|
|
|
if(s->picture_structure != PICT_BOTTOM_FIELD)
|
|
s->current_picture_ptr->field_poc[0]= field_poc[0];
|
|
if(s->picture_structure != PICT_TOP_FIELD)
|
|
s->current_picture_ptr->field_poc[1]= field_poc[1];
|
|
cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* initialize scan tables
|
|
*/
|
|
static void init_scan_tables(H264Context *h){
|
|
int i;
|
|
for(i=0; i<16; i++){
|
|
#define T(x) (x>>2) | ((x<<2) & 0xF)
|
|
h->zigzag_scan[i] = T(zigzag_scan[i]);
|
|
h-> field_scan[i] = T( field_scan[i]);
|
|
#undef T
|
|
}
|
|
for(i=0; i<64; i++){
|
|
#define T(x) (x>>3) | ((x&7)<<3)
|
|
h->zigzag_scan8x8[i] = T(ff_zigzag_direct[i]);
|
|
h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
|
|
h->field_scan8x8[i] = T(field_scan8x8[i]);
|
|
h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
|
|
#undef T
|
|
}
|
|
if(h->sps.transform_bypass){ //FIXME same ugly
|
|
h->zigzag_scan_q0 = zigzag_scan;
|
|
h->zigzag_scan8x8_q0 = ff_zigzag_direct;
|
|
h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
|
|
h->field_scan_q0 = field_scan;
|
|
h->field_scan8x8_q0 = field_scan8x8;
|
|
h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
|
|
}else{
|
|
h->zigzag_scan_q0 = h->zigzag_scan;
|
|
h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
|
|
h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
|
|
h->field_scan_q0 = h->field_scan;
|
|
h->field_scan8x8_q0 = h->field_scan8x8;
|
|
h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
|
|
}
|
|
}
|
|
|
|
static int field_end(H264Context *h, int in_setup){
|
|
MpegEncContext * const s = &h->s;
|
|
AVCodecContext * const avctx= s->avctx;
|
|
int err = 0;
|
|
s->mb_y= 0;
|
|
|
|
if (!in_setup && !s->dropable)
|
|
ff_thread_report_progress((AVFrame*)s->current_picture_ptr, (16*s->mb_height >> FIELD_PICTURE) - 1,
|
|
s->picture_structure==PICT_BOTTOM_FIELD);
|
|
|
|
if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
|
|
ff_vdpau_h264_set_reference_frames(s);
|
|
|
|
if(in_setup || !(avctx->active_thread_type&FF_THREAD_FRAME)){
|
|
if(!s->dropable) {
|
|
err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
|
|
h->prev_poc_msb= h->poc_msb;
|
|
h->prev_poc_lsb= h->poc_lsb;
|
|
}
|
|
h->prev_frame_num_offset= h->frame_num_offset;
|
|
h->prev_frame_num= h->frame_num;
|
|
h->outputed_poc = h->next_outputed_poc;
|
|
}
|
|
|
|
if (avctx->hwaccel) {
|
|
if (avctx->hwaccel->end_frame(avctx) < 0)
|
|
av_log(avctx, AV_LOG_ERROR, "hardware accelerator failed to decode picture\n");
|
|
}
|
|
|
|
if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
|
|
ff_vdpau_h264_picture_complete(s);
|
|
|
|
/*
|
|
* FIXME: Error handling code does not seem to support interlaced
|
|
* when slices span multiple rows
|
|
* The ff_er_add_slice calls don't work right for bottom
|
|
* fields; they cause massive erroneous error concealing
|
|
* Error marking covers both fields (top and bottom).
|
|
* This causes a mismatched s->error_count
|
|
* and a bad error table. Further, the error count goes to
|
|
* INT_MAX when called for bottom field, because mb_y is
|
|
* past end by one (callers fault) and resync_mb_y != 0
|
|
* causes problems for the first MB line, too.
|
|
*/
|
|
if (!FIELD_PICTURE)
|
|
ff_er_frame_end(s);
|
|
|
|
MPV_frame_end(s);
|
|
|
|
h->current_slice=0;
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* Replicate H264 "master" context to thread contexts.
|
|
*/
|
|
static void clone_slice(H264Context *dst, H264Context *src)
|
|
{
|
|
memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
|
|
dst->s.current_picture_ptr = src->s.current_picture_ptr;
|
|
dst->s.current_picture = src->s.current_picture;
|
|
dst->s.linesize = src->s.linesize;
|
|
dst->s.uvlinesize = src->s.uvlinesize;
|
|
dst->s.first_field = src->s.first_field;
|
|
|
|
dst->prev_poc_msb = src->prev_poc_msb;
|
|
dst->prev_poc_lsb = src->prev_poc_lsb;
|
|
dst->prev_frame_num_offset = src->prev_frame_num_offset;
|
|
dst->prev_frame_num = src->prev_frame_num;
|
|
dst->short_ref_count = src->short_ref_count;
|
|
|
|
memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
|
|
memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
|
|
memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
|
|
memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
|
|
|
|
memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
|
|
memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
|
|
}
|
|
|
|
/**
|
|
* computes profile from profile_idc and constraint_set?_flags
|
|
*
|
|
* @param sps SPS
|
|
*
|
|
* @return profile as defined by FF_PROFILE_H264_*
|
|
*/
|
|
int ff_h264_get_profile(SPS *sps)
|
|
{
|
|
int profile = sps->profile_idc;
|
|
|
|
switch(sps->profile_idc) {
|
|
case FF_PROFILE_H264_BASELINE:
|
|
// constraint_set1_flag set to 1
|
|
profile |= (sps->constraint_set_flags & 1<<1) ? FF_PROFILE_H264_CONSTRAINED : 0;
|
|
break;
|
|
case FF_PROFILE_H264_HIGH_10:
|
|
case FF_PROFILE_H264_HIGH_422:
|
|
case FF_PROFILE_H264_HIGH_444_PREDICTIVE:
|
|
// constraint_set3_flag set to 1
|
|
profile |= (sps->constraint_set_flags & 1<<3) ? FF_PROFILE_H264_INTRA : 0;
|
|
break;
|
|
}
|
|
|
|
return profile;
|
|
}
|
|
|
|
/**
|
|
* decodes a slice header.
|
|
* This will also call MPV_common_init() and frame_start() as needed.
|
|
*
|
|
* @param h h264context
|
|
* @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
|
|
*
|
|
* @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
|
|
*/
|
|
static int decode_slice_header(H264Context *h, H264Context *h0){
|
|
MpegEncContext * const s = &h->s;
|
|
MpegEncContext * const s0 = &h0->s;
|
|
unsigned int first_mb_in_slice;
|
|
unsigned int pps_id;
|
|
int num_ref_idx_active_override_flag;
|
|
unsigned int slice_type, tmp, i, j;
|
|
int default_ref_list_done = 0;
|
|
int last_pic_structure;
|
|
|
|
s->dropable= h->nal_ref_idc == 0;
|
|
|
|
/* FIXME: 2tap qpel isn't implemented for high bit depth. */
|
|
if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc && !h->pixel_shift){
|
|
s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
|
|
s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
|
|
}else{
|
|
s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
|
|
s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
|
|
}
|
|
|
|
first_mb_in_slice= get_ue_golomb(&s->gb);
|
|
|
|
if(first_mb_in_slice == 0){ //FIXME better field boundary detection
|
|
if(h0->current_slice && FIELD_PICTURE){
|
|
field_end(h, 1);
|
|
}
|
|
|
|
h0->current_slice = 0;
|
|
if (!s0->first_field)
|
|
s->current_picture_ptr= NULL;
|
|
}
|
|
|
|
slice_type= get_ue_golomb_31(&s->gb);
|
|
if(slice_type > 9){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
|
|
return -1;
|
|
}
|
|
if(slice_type > 4){
|
|
slice_type -= 5;
|
|
h->slice_type_fixed=1;
|
|
}else
|
|
h->slice_type_fixed=0;
|
|
|
|
slice_type= golomb_to_pict_type[ slice_type ];
|
|
if (slice_type == AV_PICTURE_TYPE_I
|
|
|| (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
|
|
default_ref_list_done = 1;
|
|
}
|
|
h->slice_type= slice_type;
|
|
h->slice_type_nos= slice_type & 3;
|
|
|
|
s->pict_type= h->slice_type; // to make a few old functions happy, it's wrong though
|
|
|
|
pps_id= get_ue_golomb(&s->gb);
|
|
if(pps_id>=MAX_PPS_COUNT){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
|
|
return -1;
|
|
}
|
|
if(!h0->pps_buffers[pps_id]) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "non-existing PPS %u referenced\n", pps_id);
|
|
return -1;
|
|
}
|
|
h->pps= *h0->pps_buffers[pps_id];
|
|
|
|
if(!h0->sps_buffers[h->pps.sps_id]) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "non-existing SPS %u referenced\n", h->pps.sps_id);
|
|
return -1;
|
|
}
|
|
h->sps = *h0->sps_buffers[h->pps.sps_id];
|
|
|
|
s->avctx->profile = ff_h264_get_profile(&h->sps);
|
|
s->avctx->level = h->sps.level_idc;
|
|
s->avctx->refs = h->sps.ref_frame_count;
|
|
|
|
if(h == h0 && h->dequant_coeff_pps != pps_id){
|
|
h->dequant_coeff_pps = pps_id;
|
|
init_dequant_tables(h);
|
|
}
|
|
|
|
s->mb_width= h->sps.mb_width;
|
|
s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
|
|
|
|
h->b_stride= s->mb_width*4;
|
|
|
|
s->width = 16*s->mb_width - (2>>CHROMA444)*FFMIN(h->sps.crop_right, (8<<CHROMA444)-1);
|
|
if(h->sps.frame_mbs_only_flag)
|
|
s->height= 16*s->mb_height - (2>>CHROMA444)*FFMIN(h->sps.crop_bottom, (8<<CHROMA444)-1);
|
|
else
|
|
s->height= 16*s->mb_height - (4>>CHROMA444)*FFMIN(h->sps.crop_bottom, (8<<CHROMA444)-1);
|
|
|
|
if (s->context_initialized
|
|
&& ( s->width != s->avctx->width || s->height != s->avctx->height
|
|
|| av_cmp_q(h->sps.sar, s->avctx->sample_aspect_ratio))) {
|
|
if(h != h0) {
|
|
av_log_missing_feature(s->avctx, "Width/height changing with threads is", 0);
|
|
return -1; // width / height changed during parallelized decoding
|
|
}
|
|
free_tables(h, 0);
|
|
flush_dpb(s->avctx);
|
|
MPV_common_end(s);
|
|
}
|
|
if (!s->context_initialized) {
|
|
if (h != h0) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "Cannot (re-)initialize context during parallel decoding.\n");
|
|
return -1;
|
|
}
|
|
|
|
avcodec_set_dimensions(s->avctx, s->width, s->height);
|
|
s->avctx->sample_aspect_ratio= h->sps.sar;
|
|
av_assert0(s->avctx->sample_aspect_ratio.den);
|
|
|
|
if(h->sps.video_signal_type_present_flag){
|
|
s->avctx->color_range = h->sps.full_range ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
|
|
if(h->sps.colour_description_present_flag){
|
|
s->avctx->color_primaries = h->sps.color_primaries;
|
|
s->avctx->color_trc = h->sps.color_trc;
|
|
s->avctx->colorspace = h->sps.colorspace;
|
|
}
|
|
}
|
|
|
|
if(h->sps.timing_info_present_flag){
|
|
int64_t den= h->sps.time_scale;
|
|
if(h->x264_build < 44U)
|
|
den *= 2;
|
|
av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
|
|
h->sps.num_units_in_tick, den, 1<<30);
|
|
}
|
|
|
|
switch (h->sps.bit_depth_luma) {
|
|
case 9 :
|
|
s->avctx->pix_fmt = CHROMA444 ? PIX_FMT_YUV444P9 : PIX_FMT_YUV420P9;
|
|
break;
|
|
case 10 :
|
|
s->avctx->pix_fmt = CHROMA444 ? PIX_FMT_YUV444P10 : PIX_FMT_YUV420P10;
|
|
break;
|
|
default:
|
|
if (CHROMA444){
|
|
s->avctx->pix_fmt = s->avctx->color_range == AVCOL_RANGE_JPEG ? PIX_FMT_YUVJ444P : PIX_FMT_YUV444P;
|
|
}else{
|
|
s->avctx->pix_fmt = s->avctx->get_format(s->avctx,
|
|
s->avctx->codec->pix_fmts ?
|
|
s->avctx->codec->pix_fmts :
|
|
s->avctx->color_range == AVCOL_RANGE_JPEG ?
|
|
hwaccel_pixfmt_list_h264_jpeg_420 :
|
|
ff_hwaccel_pixfmt_list_420);
|
|
}
|
|
}
|
|
|
|
s->avctx->hwaccel = ff_find_hwaccel(s->avctx->codec->id, s->avctx->pix_fmt);
|
|
|
|
if (MPV_common_init(s) < 0) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "MPV_common_init() failed.\n");
|
|
return -1;
|
|
}
|
|
s->first_field = 0;
|
|
h->prev_interlaced_frame = 1;
|
|
|
|
init_scan_tables(h);
|
|
if (ff_h264_alloc_tables(h) < 0) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "Could not allocate memory for h264\n");
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_SLICE)) {
|
|
if (context_init(h) < 0) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "context_init() failed.\n");
|
|
return -1;
|
|
}
|
|
} else {
|
|
for(i = 1; i < s->avctx->thread_count; i++) {
|
|
H264Context *c;
|
|
c = h->thread_context[i] = av_malloc(sizeof(H264Context));
|
|
memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
|
|
memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
|
|
c->h264dsp = h->h264dsp;
|
|
c->sps = h->sps;
|
|
c->pps = h->pps;
|
|
c->pixel_shift = h->pixel_shift;
|
|
init_scan_tables(c);
|
|
clone_tables(c, h, i);
|
|
}
|
|
|
|
for(i = 0; i < s->avctx->thread_count; i++)
|
|
if (context_init(h->thread_context[i]) < 0) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "context_init() failed.\n");
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
|
|
|
|
h->mb_mbaff = 0;
|
|
h->mb_aff_frame = 0;
|
|
last_pic_structure = s0->picture_structure;
|
|
if(h->sps.frame_mbs_only_flag){
|
|
s->picture_structure= PICT_FRAME;
|
|
}else{
|
|
if(get_bits1(&s->gb)) { //field_pic_flag
|
|
s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
|
|
} else {
|
|
s->picture_structure= PICT_FRAME;
|
|
h->mb_aff_frame = h->sps.mb_aff;
|
|
}
|
|
}
|
|
h->mb_field_decoding_flag= s->picture_structure != PICT_FRAME;
|
|
|
|
if(h0->current_slice == 0){
|
|
// Shorten frame num gaps so we don't have to allocate reference frames just to throw them away
|
|
if(h->frame_num != h->prev_frame_num) {
|
|
int unwrap_prev_frame_num = h->prev_frame_num, max_frame_num = 1<<h->sps.log2_max_frame_num;
|
|
|
|
if (unwrap_prev_frame_num > h->frame_num) unwrap_prev_frame_num -= max_frame_num;
|
|
|
|
if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) {
|
|
unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1;
|
|
if (unwrap_prev_frame_num < 0)
|
|
unwrap_prev_frame_num += max_frame_num;
|
|
|
|
h->prev_frame_num = unwrap_prev_frame_num;
|
|
}
|
|
}
|
|
|
|
while(h->frame_num != h->prev_frame_num &&
|
|
h->frame_num != (h->prev_frame_num+1)%(1<<h->sps.log2_max_frame_num)){
|
|
Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num);
|
|
if (ff_h264_frame_start(h) < 0)
|
|
return -1;
|
|
h->prev_frame_num++;
|
|
h->prev_frame_num %= 1<<h->sps.log2_max_frame_num;
|
|
s->current_picture_ptr->frame_num= h->prev_frame_num;
|
|
ff_thread_report_progress((AVFrame*)s->current_picture_ptr, INT_MAX, 0);
|
|
ff_thread_report_progress((AVFrame*)s->current_picture_ptr, INT_MAX, 1);
|
|
ff_generate_sliding_window_mmcos(h);
|
|
if (ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index) < 0 &&
|
|
s->avctx->error_recognition >= FF_ER_EXPLODE)
|
|
return AVERROR_INVALIDDATA;
|
|
/* Error concealment: if a ref is missing, copy the previous ref in its place.
|
|
* FIXME: avoiding a memcpy would be nice, but ref handling makes many assumptions
|
|
* about there being no actual duplicates.
|
|
* FIXME: this doesn't copy padding for out-of-frame motion vectors. Given we're
|
|
* concealing a lost frame, this probably isn't noticable by comparison, but it should
|
|
* be fixed. */
|
|
if (h->short_ref_count) {
|
|
if (prev) {
|
|
av_image_copy(h->short_ref[0]->f.data, h->short_ref[0]->f.linesize,
|
|
(const uint8_t**)prev->f.data, prev->f.linesize,
|
|
s->avctx->pix_fmt, s->mb_width*16, s->mb_height*16);
|
|
h->short_ref[0]->poc = prev->poc+2;
|
|
}
|
|
h->short_ref[0]->frame_num = h->prev_frame_num;
|
|
}
|
|
}
|
|
|
|
/* See if we have a decoded first field looking for a pair... */
|
|
if (s0->first_field) {
|
|
assert(s0->current_picture_ptr);
|
|
assert(s0->current_picture_ptr->f.data[0]);
|
|
assert(s0->current_picture_ptr->f.reference != DELAYED_PIC_REF);
|
|
|
|
/* figure out if we have a complementary field pair */
|
|
if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
|
|
/*
|
|
* Previous field is unmatched. Don't display it, but let it
|
|
* remain for reference if marked as such.
|
|
*/
|
|
s0->current_picture_ptr = NULL;
|
|
s0->first_field = FIELD_PICTURE;
|
|
|
|
} else {
|
|
if (h->nal_ref_idc &&
|
|
s0->current_picture_ptr->f.reference &&
|
|
s0->current_picture_ptr->frame_num != h->frame_num) {
|
|
/*
|
|
* This and previous field were reference, but had
|
|
* different frame_nums. Consider this field first in
|
|
* pair. Throw away previous field except for reference
|
|
* purposes.
|
|
*/
|
|
s0->first_field = 1;
|
|
s0->current_picture_ptr = NULL;
|
|
|
|
} else {
|
|
/* Second field in complementary pair */
|
|
s0->first_field = 0;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
/* Frame or first field in a potentially complementary pair */
|
|
assert(!s0->current_picture_ptr);
|
|
s0->first_field = FIELD_PICTURE;
|
|
}
|
|
|
|
if(!FIELD_PICTURE || s0->first_field) {
|
|
if (ff_h264_frame_start(h) < 0) {
|
|
s0->first_field = 0;
|
|
return -1;
|
|
}
|
|
} else {
|
|
ff_release_unused_pictures(s, 0);
|
|
}
|
|
}
|
|
if(h != h0)
|
|
clone_slice(h, h0);
|
|
|
|
s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
|
|
|
|
assert(s->mb_num == s->mb_width * s->mb_height);
|
|
if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
|
|
first_mb_in_slice >= s->mb_num){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
|
|
return -1;
|
|
}
|
|
s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
|
|
s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
|
|
if (s->picture_structure == PICT_BOTTOM_FIELD)
|
|
s->resync_mb_y = s->mb_y = s->mb_y + 1;
|
|
assert(s->mb_y < s->mb_height);
|
|
|
|
if(s->picture_structure==PICT_FRAME){
|
|
h->curr_pic_num= h->frame_num;
|
|
h->max_pic_num= 1<< h->sps.log2_max_frame_num;
|
|
}else{
|
|
h->curr_pic_num= 2*h->frame_num + 1;
|
|
h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
|
|
}
|
|
|
|
if(h->nal_unit_type == NAL_IDR_SLICE){
|
|
get_ue_golomb(&s->gb); /* idr_pic_id */
|
|
}
|
|
|
|
if(h->sps.poc_type==0){
|
|
h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
|
|
|
|
if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
|
|
h->delta_poc_bottom= get_se_golomb(&s->gb);
|
|
}
|
|
}
|
|
|
|
if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
|
|
h->delta_poc[0]= get_se_golomb(&s->gb);
|
|
|
|
if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
|
|
h->delta_poc[1]= get_se_golomb(&s->gb);
|
|
}
|
|
|
|
init_poc(h);
|
|
|
|
if(h->pps.redundant_pic_cnt_present){
|
|
h->redundant_pic_count= get_ue_golomb(&s->gb);
|
|
}
|
|
|
|
//set defaults, might be overridden a few lines later
|
|
h->ref_count[0]= h->pps.ref_count[0];
|
|
h->ref_count[1]= h->pps.ref_count[1];
|
|
|
|
if(h->slice_type_nos != AV_PICTURE_TYPE_I){
|
|
if(h->slice_type_nos == AV_PICTURE_TYPE_B){
|
|
h->direct_spatial_mv_pred= get_bits1(&s->gb);
|
|
}
|
|
num_ref_idx_active_override_flag= get_bits1(&s->gb);
|
|
|
|
if(num_ref_idx_active_override_flag){
|
|
h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
|
|
if(h->slice_type_nos==AV_PICTURE_TYPE_B)
|
|
h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
|
|
|
|
if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
|
|
h->ref_count[0]= h->ref_count[1]= 1;
|
|
return -1;
|
|
}
|
|
}
|
|
if(h->slice_type_nos == AV_PICTURE_TYPE_B)
|
|
h->list_count= 2;
|
|
else
|
|
h->list_count= 1;
|
|
}else
|
|
h->list_count= 0;
|
|
|
|
if(!default_ref_list_done){
|
|
ff_h264_fill_default_ref_list(h);
|
|
}
|
|
|
|
if(h->slice_type_nos!=AV_PICTURE_TYPE_I && ff_h264_decode_ref_pic_list_reordering(h) < 0) {
|
|
h->ref_count[1]= h->ref_count[0]= 0;
|
|
return -1;
|
|
}
|
|
|
|
if(h->slice_type_nos!=AV_PICTURE_TYPE_I){
|
|
s->last_picture_ptr= &h->ref_list[0][0];
|
|
ff_copy_picture(&s->last_picture, s->last_picture_ptr);
|
|
}
|
|
if(h->slice_type_nos==AV_PICTURE_TYPE_B){
|
|
s->next_picture_ptr= &h->ref_list[1][0];
|
|
ff_copy_picture(&s->next_picture, s->next_picture_ptr);
|
|
}
|
|
|
|
if( (h->pps.weighted_pred && h->slice_type_nos == AV_PICTURE_TYPE_P )
|
|
|| (h->pps.weighted_bipred_idc==1 && h->slice_type_nos== AV_PICTURE_TYPE_B ) )
|
|
pred_weight_table(h);
|
|
else if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== AV_PICTURE_TYPE_B){
|
|
implicit_weight_table(h, -1);
|
|
}else {
|
|
h->use_weight = 0;
|
|
for (i = 0; i < 2; i++) {
|
|
h->luma_weight_flag[i] = 0;
|
|
h->chroma_weight_flag[i] = 0;
|
|
}
|
|
}
|
|
|
|
if(h->nal_ref_idc && ff_h264_decode_ref_pic_marking(h0, &s->gb) < 0 &&
|
|
s->avctx->error_recognition >= FF_ER_EXPLODE)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
if(FRAME_MBAFF){
|
|
ff_h264_fill_mbaff_ref_list(h);
|
|
|
|
if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== AV_PICTURE_TYPE_B){
|
|
implicit_weight_table(h, 0);
|
|
implicit_weight_table(h, 1);
|
|
}
|
|
}
|
|
|
|
if(h->slice_type_nos==AV_PICTURE_TYPE_B && !h->direct_spatial_mv_pred)
|
|
ff_h264_direct_dist_scale_factor(h);
|
|
ff_h264_direct_ref_list_init(h);
|
|
|
|
if( h->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac ){
|
|
tmp = get_ue_golomb_31(&s->gb);
|
|
if(tmp > 2){
|
|
av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
|
|
return -1;
|
|
}
|
|
h->cabac_init_idc= tmp;
|
|
}
|
|
|
|
h->last_qscale_diff = 0;
|
|
tmp = h->pps.init_qp + get_se_golomb(&s->gb);
|
|
if(tmp>51+6*(h->sps.bit_depth_luma-8)){
|
|
av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
|
|
return -1;
|
|
}
|
|
s->qscale= tmp;
|
|
h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
|
|
h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
|
|
//FIXME qscale / qp ... stuff
|
|
if(h->slice_type == AV_PICTURE_TYPE_SP){
|
|
get_bits1(&s->gb); /* sp_for_switch_flag */
|
|
}
|
|
if(h->slice_type==AV_PICTURE_TYPE_SP || h->slice_type == AV_PICTURE_TYPE_SI){
|
|
get_se_golomb(&s->gb); /* slice_qs_delta */
|
|
}
|
|
|
|
h->deblocking_filter = 1;
|
|
h->slice_alpha_c0_offset = 52;
|
|
h->slice_beta_offset = 52;
|
|
if( h->pps.deblocking_filter_parameters_present ) {
|
|
tmp= get_ue_golomb_31(&s->gb);
|
|
if(tmp > 2){
|
|
av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
|
|
return -1;
|
|
}
|
|
h->deblocking_filter= tmp;
|
|
if(h->deblocking_filter < 2)
|
|
h->deblocking_filter^= 1; // 1<->0
|
|
|
|
if( h->deblocking_filter ) {
|
|
h->slice_alpha_c0_offset += get_se_golomb(&s->gb) << 1;
|
|
h->slice_beta_offset += get_se_golomb(&s->gb) << 1;
|
|
if( h->slice_alpha_c0_offset > 104U
|
|
|| h->slice_beta_offset > 104U){
|
|
av_log(s->avctx, AV_LOG_ERROR, "deblocking filter parameters %d %d out of range\n", h->slice_alpha_c0_offset, h->slice_beta_offset);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
|
|
||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type_nos != AV_PICTURE_TYPE_I)
|
|
||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == AV_PICTURE_TYPE_B)
|
|
||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
|
|
h->deblocking_filter= 0;
|
|
|
|
if(h->deblocking_filter == 1 && h0->max_contexts > 1) {
|
|
if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
|
|
/* Cheat slightly for speed:
|
|
Do not bother to deblock across slices. */
|
|
h->deblocking_filter = 2;
|
|
} else {
|
|
h0->max_contexts = 1;
|
|
if(!h0->single_decode_warning) {
|
|
av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
|
|
h0->single_decode_warning = 1;
|
|
}
|
|
if (h != h0) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "Deblocking switched inside frame.\n");
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
h->qp_thresh = 15 + 52 - FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset)
|
|
- FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1])
|
|
+ 6 * (h->sps.bit_depth_luma - 8);
|
|
|
|
#if 0 //FMO
|
|
if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
|
|
slice_group_change_cycle= get_bits(&s->gb, ?);
|
|
#endif
|
|
|
|
h0->last_slice_type = slice_type;
|
|
h->slice_num = ++h0->current_slice;
|
|
if(h->slice_num >= MAX_SLICES){
|
|
av_log(s->avctx, AV_LOG_ERROR, "Too many slices, increase MAX_SLICES and recompile\n");
|
|
}
|
|
|
|
for(j=0; j<2; j++){
|
|
int id_list[16];
|
|
int *ref2frm= h->ref2frm[h->slice_num&(MAX_SLICES-1)][j];
|
|
for(i=0; i<16; i++){
|
|
id_list[i]= 60;
|
|
if (h->ref_list[j][i].f.data[0]) {
|
|
int k;
|
|
uint8_t *base = h->ref_list[j][i].f.base[0];
|
|
for(k=0; k<h->short_ref_count; k++)
|
|
if (h->short_ref[k]->f.base[0] == base) {
|
|
id_list[i]= k;
|
|
break;
|
|
}
|
|
for(k=0; k<h->long_ref_count; k++)
|
|
if (h->long_ref[k] && h->long_ref[k]->f.base[0] == base) {
|
|
id_list[i]= h->short_ref_count + k;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
ref2frm[0]=
|
|
ref2frm[1]= -1;
|
|
for(i=0; i<16; i++)
|
|
ref2frm[i+2]= 4*id_list[i]
|
|
+ (h->ref_list[j][i].f.reference & 3);
|
|
ref2frm[18+0]=
|
|
ref2frm[18+1]= -1;
|
|
for(i=16; i<48; i++)
|
|
ref2frm[i+4]= 4*id_list[(i-16)>>1]
|
|
+ (h->ref_list[j][i].f.reference & 3);
|
|
}
|
|
|
|
//FIXME: fix draw_edges+PAFF+frame threads
|
|
h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE || (!h->sps.frame_mbs_only_flag && s->avctx->active_thread_type)) ? 0 : 16;
|
|
h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
|
|
|
|
if(s->avctx->debug&FF_DEBUG_PICT_INFO){
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
|
|
h->slice_num,
|
|
(s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
|
|
first_mb_in_slice,
|
|
av_get_picture_type_char(h->slice_type), h->slice_type_fixed ? " fix" : "", h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
|
|
pps_id, h->frame_num,
|
|
s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
|
|
h->ref_count[0], h->ref_count[1],
|
|
s->qscale,
|
|
h->deblocking_filter, h->slice_alpha_c0_offset/2-26, h->slice_beta_offset/2-26,
|
|
h->use_weight,
|
|
h->use_weight==1 && h->use_weight_chroma ? "c" : "",
|
|
h->slice_type == AV_PICTURE_TYPE_B ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""
|
|
);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ff_h264_get_slice_type(const H264Context *h)
|
|
{
|
|
switch (h->slice_type) {
|
|
case AV_PICTURE_TYPE_P: return 0;
|
|
case AV_PICTURE_TYPE_B: return 1;
|
|
case AV_PICTURE_TYPE_I: return 2;
|
|
case AV_PICTURE_TYPE_SP: return 3;
|
|
case AV_PICTURE_TYPE_SI: return 4;
|
|
default: return -1;
|
|
}
|
|
}
|
|
|
|
static av_always_inline void fill_filter_caches_inter(H264Context *h, MpegEncContext * const s, int mb_type, int top_xy,
|
|
int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list)
|
|
{
|
|
int b_stride = h->b_stride;
|
|
int16_t (*mv_dst)[2] = &h->mv_cache[list][scan8[0]];
|
|
int8_t *ref_cache = &h->ref_cache[list][scan8[0]];
|
|
if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
|
|
if(USES_LIST(top_type, list)){
|
|
const int b_xy= h->mb2b_xy[top_xy] + 3*b_stride;
|
|
const int b8_xy= 4*top_xy + 2;
|
|
int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
|
|
AV_COPY128(mv_dst - 1*8, s->current_picture.f.motion_val[list][b_xy + 0]);
|
|
ref_cache[0 - 1*8]=
|
|
ref_cache[1 - 1*8]= ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 0]];
|
|
ref_cache[2 - 1*8]=
|
|
ref_cache[3 - 1*8]= ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 1]];
|
|
}else{
|
|
AV_ZERO128(mv_dst - 1*8);
|
|
AV_WN32A(&ref_cache[0 - 1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
|
|
}
|
|
|
|
if(!IS_INTERLACED(mb_type^left_type[LTOP])){
|
|
if(USES_LIST(left_type[LTOP], list)){
|
|
const int b_xy= h->mb2b_xy[left_xy[LTOP]] + 3;
|
|
const int b8_xy= 4*left_xy[LTOP] + 1;
|
|
int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[LTOP]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
|
|
AV_COPY32(mv_dst - 1 + 0, s->current_picture.f.motion_val[list][b_xy + b_stride*0]);
|
|
AV_COPY32(mv_dst - 1 + 8, s->current_picture.f.motion_val[list][b_xy + b_stride*1]);
|
|
AV_COPY32(mv_dst - 1 + 16, s->current_picture.f.motion_val[list][b_xy + b_stride*2]);
|
|
AV_COPY32(mv_dst - 1 + 24, s->current_picture.f.motion_val[list][b_xy + b_stride*3]);
|
|
ref_cache[-1 + 0]=
|
|
ref_cache[-1 + 8]= ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 2*0]];
|
|
ref_cache[-1 + 16]=
|
|
ref_cache[-1 + 24]= ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 2*1]];
|
|
}else{
|
|
AV_ZERO32(mv_dst - 1 + 0);
|
|
AV_ZERO32(mv_dst - 1 + 8);
|
|
AV_ZERO32(mv_dst - 1 +16);
|
|
AV_ZERO32(mv_dst - 1 +24);
|
|
ref_cache[-1 + 0]=
|
|
ref_cache[-1 + 8]=
|
|
ref_cache[-1 + 16]=
|
|
ref_cache[-1 + 24]= LIST_NOT_USED;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(!USES_LIST(mb_type, list)){
|
|
fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0,0), 4);
|
|
AV_WN32A(&ref_cache[0*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
|
|
AV_WN32A(&ref_cache[1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
|
|
AV_WN32A(&ref_cache[2*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
|
|
AV_WN32A(&ref_cache[3*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
|
|
return;
|
|
}
|
|
|
|
{
|
|
int8_t *ref = &s->current_picture.f.ref_index[list][4*mb_xy];
|
|
int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
|
|
uint32_t ref01 = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
|
|
uint32_t ref23 = (pack16to32(ref2frm[list][ref[2]],ref2frm[list][ref[3]])&0x00FF00FF)*0x0101;
|
|
AV_WN32A(&ref_cache[0*8], ref01);
|
|
AV_WN32A(&ref_cache[1*8], ref01);
|
|
AV_WN32A(&ref_cache[2*8], ref23);
|
|
AV_WN32A(&ref_cache[3*8], ref23);
|
|
}
|
|
|
|
{
|
|
int16_t (*mv_src)[2] = &s->current_picture.f.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
|
|
AV_COPY128(mv_dst + 8*0, mv_src + 0*b_stride);
|
|
AV_COPY128(mv_dst + 8*1, mv_src + 1*b_stride);
|
|
AV_COPY128(mv_dst + 8*2, mv_src + 2*b_stride);
|
|
AV_COPY128(mv_dst + 8*3, mv_src + 3*b_stride);
|
|
}
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @return non zero if the loop filter can be skiped
|
|
*/
|
|
static int fill_filter_caches(H264Context *h, int mb_type){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= h->mb_xy;
|
|
int top_xy, left_xy[LEFT_MBS];
|
|
int top_type, left_type[LEFT_MBS];
|
|
uint8_t *nnz;
|
|
uint8_t *nnz_cache;
|
|
|
|
top_xy = mb_xy - (s->mb_stride << MB_FIELD);
|
|
|
|
/* Wow, what a mess, why didn't they simplify the interlacing & intra
|
|
* stuff, I can't imagine that these complex rules are worth it. */
|
|
|
|
left_xy[LBOT] = left_xy[LTOP] = mb_xy-1;
|
|
if(FRAME_MBAFF){
|
|
const int left_mb_field_flag = IS_INTERLACED(s->current_picture.f.mb_type[mb_xy - 1]);
|
|
const int curr_mb_field_flag = IS_INTERLACED(mb_type);
|
|
if(s->mb_y&1){
|
|
if (left_mb_field_flag != curr_mb_field_flag) {
|
|
left_xy[LTOP] -= s->mb_stride;
|
|
}
|
|
}else{
|
|
if(curr_mb_field_flag){
|
|
top_xy += s->mb_stride & (((s->current_picture.f.mb_type[top_xy] >> 7) & 1) - 1);
|
|
}
|
|
if (left_mb_field_flag != curr_mb_field_flag) {
|
|
left_xy[LBOT] += s->mb_stride;
|
|
}
|
|
}
|
|
}
|
|
|
|
h->top_mb_xy = top_xy;
|
|
h->left_mb_xy[LTOP] = left_xy[LTOP];
|
|
h->left_mb_xy[LBOT] = left_xy[LBOT];
|
|
{
|
|
//for sufficiently low qp, filtering wouldn't do anything
|
|
//this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
|
|
int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
|
|
int qp = s->current_picture.f.qscale_table[mb_xy];
|
|
if(qp <= qp_thresh
|
|
&& (left_xy[LTOP] < 0 || ((qp + s->current_picture.f.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh)
|
|
&& (top_xy < 0 || ((qp + s->current_picture.f.qscale_table[top_xy ] + 1) >> 1) <= qp_thresh)) {
|
|
if(!FRAME_MBAFF)
|
|
return 1;
|
|
if ((left_xy[LTOP] < 0 || ((qp + s->current_picture.f.qscale_table[left_xy[LBOT] ] + 1) >> 1) <= qp_thresh) &&
|
|
(top_xy < s->mb_stride || ((qp + s->current_picture.f.qscale_table[top_xy - s->mb_stride] + 1) >> 1) <= qp_thresh))
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
top_type = s->current_picture.f.mb_type[top_xy];
|
|
left_type[LTOP] = s->current_picture.f.mb_type[left_xy[LTOP]];
|
|
left_type[LBOT] = s->current_picture.f.mb_type[left_xy[LBOT]];
|
|
if(h->deblocking_filter == 2){
|
|
if(h->slice_table[top_xy ] != h->slice_num) top_type= 0;
|
|
if(h->slice_table[left_xy[LBOT]] != h->slice_num) left_type[LTOP]= left_type[LBOT]= 0;
|
|
}else{
|
|
if(h->slice_table[top_xy ] == 0xFFFF) top_type= 0;
|
|
if(h->slice_table[left_xy[LBOT]] == 0xFFFF) left_type[LTOP]= left_type[LBOT] =0;
|
|
}
|
|
h->top_type = top_type;
|
|
h->left_type[LTOP]= left_type[LTOP];
|
|
h->left_type[LBOT]= left_type[LBOT];
|
|
|
|
if(IS_INTRA(mb_type))
|
|
return 0;
|
|
|
|
fill_filter_caches_inter(h, s, mb_type, top_xy, left_xy, top_type, left_type, mb_xy, 0);
|
|
if(h->list_count == 2)
|
|
fill_filter_caches_inter(h, s, mb_type, top_xy, left_xy, top_type, left_type, mb_xy, 1);
|
|
|
|
nnz = h->non_zero_count[mb_xy];
|
|
nnz_cache = h->non_zero_count_cache;
|
|
AV_COPY32(&nnz_cache[4+8*1], &nnz[ 0]);
|
|
AV_COPY32(&nnz_cache[4+8*2], &nnz[ 4]);
|
|
AV_COPY32(&nnz_cache[4+8*3], &nnz[ 8]);
|
|
AV_COPY32(&nnz_cache[4+8*4], &nnz[12]);
|
|
h->cbp= h->cbp_table[mb_xy];
|
|
|
|
if(top_type){
|
|
nnz = h->non_zero_count[top_xy];
|
|
AV_COPY32(&nnz_cache[4+8*0], &nnz[3*4]);
|
|
}
|
|
|
|
if(left_type[LTOP]){
|
|
nnz = h->non_zero_count[left_xy[LTOP]];
|
|
nnz_cache[3+8*1]= nnz[3+0*4];
|
|
nnz_cache[3+8*2]= nnz[3+1*4];
|
|
nnz_cache[3+8*3]= nnz[3+2*4];
|
|
nnz_cache[3+8*4]= nnz[3+3*4];
|
|
}
|
|
|
|
// CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
|
|
if(!CABAC && h->pps.transform_8x8_mode){
|
|
if(IS_8x8DCT(top_type)){
|
|
nnz_cache[4+8*0]=
|
|
nnz_cache[5+8*0]= (h->cbp_table[top_xy] & 0x4000) >> 12;
|
|
nnz_cache[6+8*0]=
|
|
nnz_cache[7+8*0]= (h->cbp_table[top_xy] & 0x8000) >> 12;
|
|
}
|
|
if(IS_8x8DCT(left_type[LTOP])){
|
|
nnz_cache[3+8*1]=
|
|
nnz_cache[3+8*2]= (h->cbp_table[left_xy[LTOP]]&0x2000) >> 12; //FIXME check MBAFF
|
|
}
|
|
if(IS_8x8DCT(left_type[LBOT])){
|
|
nnz_cache[3+8*3]=
|
|
nnz_cache[3+8*4]= (h->cbp_table[left_xy[LBOT]]&0x8000) >> 12; //FIXME check MBAFF
|
|
}
|
|
|
|
if(IS_8x8DCT(mb_type)){
|
|
nnz_cache[scan8[0 ]]= nnz_cache[scan8[1 ]]=
|
|
nnz_cache[scan8[2 ]]= nnz_cache[scan8[3 ]]= (h->cbp & 0x1000) >> 12;
|
|
|
|
nnz_cache[scan8[0+ 4]]= nnz_cache[scan8[1+ 4]]=
|
|
nnz_cache[scan8[2+ 4]]= nnz_cache[scan8[3+ 4]]= (h->cbp & 0x2000) >> 12;
|
|
|
|
nnz_cache[scan8[0+ 8]]= nnz_cache[scan8[1+ 8]]=
|
|
nnz_cache[scan8[2+ 8]]= nnz_cache[scan8[3+ 8]]= (h->cbp & 0x4000) >> 12;
|
|
|
|
nnz_cache[scan8[0+12]]= nnz_cache[scan8[1+12]]=
|
|
nnz_cache[scan8[2+12]]= nnz_cache[scan8[3+12]]= (h->cbp & 0x8000) >> 12;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void loop_filter(H264Context *h, int start_x, int end_x){
|
|
MpegEncContext * const s = &h->s;
|
|
uint8_t *dest_y, *dest_cb, *dest_cr;
|
|
int linesize, uvlinesize, mb_x, mb_y;
|
|
const int end_mb_y= s->mb_y + FRAME_MBAFF;
|
|
const int old_slice_type= h->slice_type;
|
|
const int pixel_shift = h->pixel_shift;
|
|
|
|
if(h->deblocking_filter) {
|
|
for(mb_x= start_x; mb_x<end_x; mb_x++){
|
|
for(mb_y=end_mb_y - FRAME_MBAFF; mb_y<= end_mb_y; mb_y++){
|
|
int mb_xy, mb_type;
|
|
mb_xy = h->mb_xy = mb_x + mb_y*s->mb_stride;
|
|
h->slice_num= h->slice_table[mb_xy];
|
|
mb_type = s->current_picture.f.mb_type[mb_xy];
|
|
h->list_count= h->list_counts[mb_xy];
|
|
|
|
if(FRAME_MBAFF)
|
|
h->mb_mbaff = h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
|
|
|
|
s->mb_x= mb_x;
|
|
s->mb_y= mb_y;
|
|
dest_y = s->current_picture.f.data[0] + ((mb_x << pixel_shift) + mb_y * s->linesize ) * 16;
|
|
dest_cb = s->current_picture.f.data[1] + ((mb_x << pixel_shift) + mb_y * s->uvlinesize) * (8 << CHROMA444);
|
|
dest_cr = s->current_picture.f.data[2] + ((mb_x << pixel_shift) + mb_y * s->uvlinesize) * (8 << CHROMA444);
|
|
//FIXME simplify above
|
|
|
|
if (MB_FIELD) {
|
|
linesize = h->mb_linesize = s->linesize * 2;
|
|
uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
|
|
if(mb_y&1){ //FIXME move out of this function?
|
|
dest_y -= s->linesize*15;
|
|
dest_cb-= s->uvlinesize*((8 << CHROMA444)-1);
|
|
dest_cr-= s->uvlinesize*((8 << CHROMA444)-1);
|
|
}
|
|
} else {
|
|
linesize = h->mb_linesize = s->linesize;
|
|
uvlinesize = h->mb_uvlinesize = s->uvlinesize;
|
|
}
|
|
backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, CHROMA444, 0);
|
|
if(fill_filter_caches(h, mb_type))
|
|
continue;
|
|
h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.f.qscale_table[mb_xy]);
|
|
h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.f.qscale_table[mb_xy]);
|
|
|
|
if (FRAME_MBAFF) {
|
|
ff_h264_filter_mb (h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
|
|
} else {
|
|
ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
h->slice_type= old_slice_type;
|
|
s->mb_x= end_x;
|
|
s->mb_y= end_mb_y - FRAME_MBAFF;
|
|
h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
|
|
h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
|
|
}
|
|
|
|
static void predict_field_decoding_flag(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
|
|
int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
|
|
? s->current_picture.f.mb_type[mb_xy - 1]
|
|
: (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
|
|
? s->current_picture.f.mb_type[mb_xy - s->mb_stride]
|
|
: 0;
|
|
h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
|
|
}
|
|
|
|
/**
|
|
* Draw edges and report progress for the last MB row.
|
|
*/
|
|
static void decode_finish_row(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
int top = 16*(s->mb_y >> FIELD_PICTURE);
|
|
int height = 16 << FRAME_MBAFF;
|
|
int deblock_border = (16 + 4) << FRAME_MBAFF;
|
|
int pic_height = 16*s->mb_height >> FIELD_PICTURE;
|
|
|
|
if (h->deblocking_filter) {
|
|
if((top + height) >= pic_height)
|
|
height += deblock_border;
|
|
|
|
top -= deblock_border;
|
|
}
|
|
|
|
if (top >= pic_height || (top + height) < h->emu_edge_height)
|
|
return;
|
|
|
|
height = FFMIN(height, pic_height - top);
|
|
if (top < h->emu_edge_height) {
|
|
height = top+height;
|
|
top = 0;
|
|
}
|
|
|
|
ff_draw_horiz_band(s, top, height);
|
|
|
|
if (s->dropable) return;
|
|
|
|
ff_thread_report_progress((AVFrame*)s->current_picture_ptr, top + height - 1,
|
|
s->picture_structure==PICT_BOTTOM_FIELD);
|
|
}
|
|
|
|
static int decode_slice(struct AVCodecContext *avctx, void *arg){
|
|
H264Context *h = *(void**)arg;
|
|
MpegEncContext * const s = &h->s;
|
|
const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
|
|
int lf_x_start = s->mb_x;
|
|
|
|
s->mb_skip_run= -1;
|
|
|
|
h->is_complex = FRAME_MBAFF || s->picture_structure != PICT_FRAME || s->codec_id != CODEC_ID_H264 ||
|
|
(CONFIG_GRAY && (s->flags&CODEC_FLAG_GRAY));
|
|
|
|
if( h->pps.cabac ) {
|
|
/* realign */
|
|
align_get_bits( &s->gb );
|
|
|
|
/* init cabac */
|
|
ff_init_cabac_states( &h->cabac);
|
|
ff_init_cabac_decoder( &h->cabac,
|
|
s->gb.buffer + get_bits_count(&s->gb)/8,
|
|
(get_bits_left(&s->gb) + 7)/8);
|
|
|
|
ff_h264_init_cabac_states(h);
|
|
|
|
for(;;){
|
|
//START_TIMER
|
|
int ret = ff_h264_decode_mb_cabac(h);
|
|
int eos;
|
|
//STOP_TIMER("decode_mb_cabac")
|
|
|
|
if(ret>=0) ff_h264_hl_decode_mb(h);
|
|
|
|
if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
|
|
s->mb_y++;
|
|
|
|
ret = ff_h264_decode_mb_cabac(h);
|
|
|
|
if(ret>=0) ff_h264_hl_decode_mb(h);
|
|
s->mb_y--;
|
|
}
|
|
eos = get_cabac_terminate( &h->cabac );
|
|
|
|
if((s->workaround_bugs & FF_BUG_TRUNCATED) && h->cabac.bytestream > h->cabac.bytestream_end + 2){
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
|
|
if (s->mb_x >= lf_x_start) loop_filter(h, lf_x_start, s->mb_x + 1);
|
|
return 0;
|
|
}
|
|
if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
|
|
return -1;
|
|
}
|
|
|
|
if( ++s->mb_x >= s->mb_width ) {
|
|
loop_filter(h, lf_x_start, s->mb_x);
|
|
s->mb_x = lf_x_start = 0;
|
|
decode_finish_row(h);
|
|
++s->mb_y;
|
|
if(FIELD_OR_MBAFF_PICTURE) {
|
|
++s->mb_y;
|
|
if(FRAME_MBAFF && s->mb_y < s->mb_height)
|
|
predict_field_decoding_flag(h);
|
|
}
|
|
}
|
|
|
|
if( eos || s->mb_y >= s->mb_height ) {
|
|
tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
|
|
if (s->mb_x > lf_x_start) loop_filter(h, lf_x_start, s->mb_x);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
for(;;){
|
|
int ret = ff_h264_decode_mb_cavlc(h);
|
|
|
|
if(ret>=0) ff_h264_hl_decode_mb(h);
|
|
|
|
if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
|
|
s->mb_y++;
|
|
ret = ff_h264_decode_mb_cavlc(h);
|
|
|
|
if(ret>=0) ff_h264_hl_decode_mb(h);
|
|
s->mb_y--;
|
|
}
|
|
|
|
if(ret<0){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
|
|
return -1;
|
|
}
|
|
|
|
if(++s->mb_x >= s->mb_width){
|
|
loop_filter(h, lf_x_start, s->mb_x);
|
|
s->mb_x = lf_x_start = 0;
|
|
decode_finish_row(h);
|
|
++s->mb_y;
|
|
if(FIELD_OR_MBAFF_PICTURE) {
|
|
++s->mb_y;
|
|
if(FRAME_MBAFF && s->mb_y < s->mb_height)
|
|
predict_field_decoding_flag(h);
|
|
}
|
|
if(s->mb_y >= s->mb_height){
|
|
tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
|
|
|
|
if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
|
|
|
|
return 0;
|
|
}else{
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
|
|
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
|
|
tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
|
|
if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
|
|
if (s->mb_x > lf_x_start) loop_filter(h, lf_x_start, s->mb_x);
|
|
|
|
return 0;
|
|
}else{
|
|
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
|
|
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Call decode_slice() for each context.
|
|
*
|
|
* @param h h264 master context
|
|
* @param context_count number of contexts to execute
|
|
*/
|
|
static int execute_decode_slices(H264Context *h, int context_count){
|
|
MpegEncContext * const s = &h->s;
|
|
AVCodecContext * const avctx= s->avctx;
|
|
H264Context *hx;
|
|
int i;
|
|
|
|
if (s->avctx->hwaccel || s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
|
|
return 0;
|
|
if(context_count == 1) {
|
|
return decode_slice(avctx, &h);
|
|
} else {
|
|
for(i = 1; i < context_count; i++) {
|
|
hx = h->thread_context[i];
|
|
hx->s.error_recognition = avctx->error_recognition;
|
|
hx->s.error_count = 0;
|
|
}
|
|
|
|
avctx->execute(avctx, (void *)decode_slice,
|
|
h->thread_context, NULL, context_count, sizeof(void*));
|
|
|
|
/* pull back stuff from slices to master context */
|
|
hx = h->thread_context[context_count - 1];
|
|
s->mb_x = hx->s.mb_x;
|
|
s->mb_y = hx->s.mb_y;
|
|
s->dropable = hx->s.dropable;
|
|
s->picture_structure = hx->s.picture_structure;
|
|
for(i = 1; i < context_count; i++)
|
|
h->s.error_count += h->thread_context[i]->s.error_count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){
|
|
MpegEncContext * const s = &h->s;
|
|
AVCodecContext * const avctx= s->avctx;
|
|
H264Context *hx; ///< thread context
|
|
int buf_index;
|
|
int context_count;
|
|
int next_avc;
|
|
int pass = !(avctx->active_thread_type & FF_THREAD_FRAME);
|
|
int nals_needed=0; ///< number of NALs that need decoding before the next frame thread starts
|
|
int nal_index;
|
|
|
|
h->max_contexts = (HAVE_THREADS && (s->avctx->active_thread_type&FF_THREAD_SLICE)) ? avctx->thread_count : 1;
|
|
if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
|
|
h->current_slice = 0;
|
|
if (!s->first_field)
|
|
s->current_picture_ptr= NULL;
|
|
ff_h264_reset_sei(h);
|
|
}
|
|
|
|
for(;pass <= 1;pass++){
|
|
buf_index = 0;
|
|
context_count = 0;
|
|
next_avc = h->is_avc ? 0 : buf_size;
|
|
nal_index = 0;
|
|
for(;;){
|
|
int consumed;
|
|
int dst_length;
|
|
int bit_length;
|
|
const uint8_t *ptr;
|
|
int i, nalsize = 0;
|
|
int err;
|
|
|
|
if(buf_index >= next_avc) {
|
|
if(buf_index >= buf_size) break;
|
|
nalsize = 0;
|
|
for(i = 0; i < h->nal_length_size; i++)
|
|
nalsize = (nalsize << 8) | buf[buf_index++];
|
|
if(nalsize <= 0 || nalsize > buf_size - buf_index){
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
|
|
break;
|
|
}
|
|
next_avc= buf_index + nalsize;
|
|
} else {
|
|
// start code prefix search
|
|
for(; buf_index + 3 < next_avc; buf_index++){
|
|
// This should always succeed in the first iteration.
|
|
if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
|
|
break;
|
|
}
|
|
|
|
if(buf_index+3 >= buf_size) break;
|
|
|
|
buf_index+=3;
|
|
if(buf_index >= next_avc) continue;
|
|
}
|
|
|
|
hx = h->thread_context[context_count];
|
|
|
|
ptr= ff_h264_decode_nal(hx, buf + buf_index, &dst_length, &consumed, next_avc - buf_index);
|
|
if (ptr==NULL || dst_length < 0){
|
|
return -1;
|
|
}
|
|
i= buf_index + consumed;
|
|
if((s->workaround_bugs & FF_BUG_AUTODETECT) && i+3<next_avc &&
|
|
buf[i]==0x00 && buf[i+1]==0x00 && buf[i+2]==0x01 && buf[i+3]==0xE0)
|
|
s->workaround_bugs |= FF_BUG_TRUNCATED;
|
|
|
|
if(!(s->workaround_bugs & FF_BUG_TRUNCATED)){
|
|
while(ptr[dst_length - 1] == 0 && dst_length > 0)
|
|
dst_length--;
|
|
}
|
|
bit_length= !dst_length ? 0 : (8*dst_length - ff_h264_decode_rbsp_trailing(h, ptr + dst_length - 1));
|
|
|
|
if(s->avctx->debug&FF_DEBUG_STARTCODE){
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length);
|
|
}
|
|
|
|
if (h->is_avc && (nalsize != consumed) && nalsize){
|
|
av_log(h->s.avctx, AV_LOG_DEBUG, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
|
|
}
|
|
|
|
buf_index += consumed;
|
|
nal_index++;
|
|
|
|
if(pass == 0) {
|
|
// packets can sometimes contain multiple PPS/SPS
|
|
// e.g. two PAFF field pictures in one packet, or a demuxer which splits NALs strangely
|
|
// if so, when frame threading we can't start the next thread until we've read all of them
|
|
switch (hx->nal_unit_type) {
|
|
case NAL_SPS:
|
|
case NAL_PPS:
|
|
nals_needed = nal_index;
|
|
break;
|
|
case NAL_IDR_SLICE:
|
|
case NAL_SLICE:
|
|
init_get_bits(&hx->s.gb, ptr, bit_length);
|
|
if (!get_ue_golomb(&hx->s.gb))
|
|
nals_needed = nal_index;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
//FIXME do not discard SEI id
|
|
if(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0)
|
|
continue;
|
|
|
|
again:
|
|
err = 0;
|
|
switch(hx->nal_unit_type){
|
|
case NAL_IDR_SLICE:
|
|
if (h->nal_unit_type != NAL_IDR_SLICE) {
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices");
|
|
return -1;
|
|
}
|
|
idr(h); //FIXME ensure we don't loose some frames if there is reordering
|
|
case NAL_SLICE:
|
|
init_get_bits(&hx->s.gb, ptr, bit_length);
|
|
hx->intra_gb_ptr=
|
|
hx->inter_gb_ptr= &hx->s.gb;
|
|
hx->s.data_partitioning = 0;
|
|
|
|
if((err = decode_slice_header(hx, h)))
|
|
break;
|
|
|
|
s->current_picture_ptr->f.key_frame |=
|
|
(hx->nal_unit_type == NAL_IDR_SLICE) ||
|
|
(h->sei_recovery_frame_cnt >= 0);
|
|
|
|
if (h->current_slice == 1) {
|
|
if(!(s->flags2 & CODEC_FLAG2_CHUNKS)) {
|
|
decode_postinit(h, nal_index >= nals_needed);
|
|
}
|
|
|
|
if (s->avctx->hwaccel && s->avctx->hwaccel->start_frame(s->avctx, NULL, 0) < 0)
|
|
return -1;
|
|
if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
|
|
ff_vdpau_h264_picture_start(s);
|
|
}
|
|
|
|
if(hx->redundant_pic_count==0
|
|
&& (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
|
|
&& (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=AV_PICTURE_TYPE_B)
|
|
&& (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==AV_PICTURE_TYPE_I)
|
|
&& avctx->skip_frame < AVDISCARD_ALL){
|
|
if(avctx->hwaccel) {
|
|
if (avctx->hwaccel->decode_slice(avctx, &buf[buf_index - consumed], consumed) < 0)
|
|
return -1;
|
|
}else
|
|
if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
|
|
static const uint8_t start_code[] = {0x00, 0x00, 0x01};
|
|
ff_vdpau_add_data_chunk(s, start_code, sizeof(start_code));
|
|
ff_vdpau_add_data_chunk(s, &buf[buf_index - consumed], consumed );
|
|
}else
|
|
context_count++;
|
|
}
|
|
break;
|
|
case NAL_DPA:
|
|
init_get_bits(&hx->s.gb, ptr, bit_length);
|
|
hx->intra_gb_ptr=
|
|
hx->inter_gb_ptr= NULL;
|
|
|
|
if ((err = decode_slice_header(hx, h)) < 0)
|
|
break;
|
|
|
|
hx->s.data_partitioning = 1;
|
|
|
|
break;
|
|
case NAL_DPB:
|
|
init_get_bits(&hx->intra_gb, ptr, bit_length);
|
|
hx->intra_gb_ptr= &hx->intra_gb;
|
|
break;
|
|
case NAL_DPC:
|
|
init_get_bits(&hx->inter_gb, ptr, bit_length);
|
|
hx->inter_gb_ptr= &hx->inter_gb;
|
|
|
|
if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning
|
|
&& s->context_initialized
|
|
&& (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
|
|
&& (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=AV_PICTURE_TYPE_B)
|
|
&& (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==AV_PICTURE_TYPE_I)
|
|
&& avctx->skip_frame < AVDISCARD_ALL)
|
|
context_count++;
|
|
break;
|
|
case NAL_SEI:
|
|
init_get_bits(&s->gb, ptr, bit_length);
|
|
ff_h264_decode_sei(h);
|
|
break;
|
|
case NAL_SPS:
|
|
init_get_bits(&s->gb, ptr, bit_length);
|
|
ff_h264_decode_seq_parameter_set(h);
|
|
|
|
if (s->flags& CODEC_FLAG_LOW_DELAY ||
|
|
(h->sps.bitstream_restriction_flag && !h->sps.num_reorder_frames))
|
|
s->low_delay=1;
|
|
|
|
if(avctx->has_b_frames < 2)
|
|
avctx->has_b_frames= !s->low_delay;
|
|
|
|
if (avctx->bits_per_raw_sample != h->sps.bit_depth_luma) {
|
|
if (h->sps.bit_depth_luma >= 8 && h->sps.bit_depth_luma <= 10) {
|
|
avctx->bits_per_raw_sample = h->sps.bit_depth_luma;
|
|
h->pixel_shift = h->sps.bit_depth_luma > 8;
|
|
|
|
ff_h264dsp_init(&h->h264dsp, h->sps.bit_depth_luma);
|
|
ff_h264_pred_init(&h->hpc, s->codec_id, h->sps.bit_depth_luma);
|
|
s->dsp.dct_bits = h->sps.bit_depth_luma > 8 ? 32 : 16;
|
|
dsputil_init(&s->dsp, s->avctx);
|
|
} else {
|
|
av_log(avctx, AV_LOG_ERROR, "Unsupported bit depth: %d\n", h->sps.bit_depth_luma);
|
|
return -1;
|
|
}
|
|
}
|
|
break;
|
|
case NAL_PPS:
|
|
init_get_bits(&s->gb, ptr, bit_length);
|
|
|
|
ff_h264_decode_picture_parameter_set(h, bit_length);
|
|
|
|
break;
|
|
case NAL_AUD:
|
|
case NAL_END_SEQUENCE:
|
|
case NAL_END_STREAM:
|
|
case NAL_FILLER_DATA:
|
|
case NAL_SPS_EXT:
|
|
case NAL_AUXILIARY_SLICE:
|
|
break;
|
|
default:
|
|
av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", hx->nal_unit_type, bit_length);
|
|
}
|
|
|
|
if(context_count == h->max_contexts) {
|
|
execute_decode_slices(h, context_count);
|
|
context_count = 0;
|
|
}
|
|
|
|
if (err < 0)
|
|
av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
|
|
else if(err == 1) {
|
|
/* Slice could not be decoded in parallel mode, copy down
|
|
* NAL unit stuff to context 0 and restart. Note that
|
|
* rbsp_buffer is not transferred, but since we no longer
|
|
* run in parallel mode this should not be an issue. */
|
|
h->nal_unit_type = hx->nal_unit_type;
|
|
h->nal_ref_idc = hx->nal_ref_idc;
|
|
hx = h;
|
|
goto again;
|
|
}
|
|
}
|
|
}
|
|
if(context_count)
|
|
execute_decode_slices(h, context_count);
|
|
return buf_index;
|
|
}
|
|
|
|
/**
|
|
* returns the number of bytes consumed for building the current frame
|
|
*/
|
|
static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
|
|
if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
|
|
if(pos+10>buf_size) pos=buf_size; // oops ;)
|
|
|
|
return pos;
|
|
}
|
|
|
|
static int decode_frame(AVCodecContext *avctx,
|
|
void *data, int *data_size,
|
|
AVPacket *avpkt)
|
|
{
|
|
const uint8_t *buf = avpkt->data;
|
|
int buf_size = avpkt->size;
|
|
H264Context *h = avctx->priv_data;
|
|
MpegEncContext *s = &h->s;
|
|
AVFrame *pict = data;
|
|
int buf_index;
|
|
|
|
s->flags= avctx->flags;
|
|
s->flags2= avctx->flags2;
|
|
|
|
/* end of stream, output what is still in the buffers */
|
|
out:
|
|
if (buf_size == 0) {
|
|
Picture *out;
|
|
int i, out_idx;
|
|
|
|
s->current_picture_ptr = NULL;
|
|
|
|
//FIXME factorize this with the output code below
|
|
out = h->delayed_pic[0];
|
|
out_idx = 0;
|
|
for (i = 1; h->delayed_pic[i] && !h->delayed_pic[i]->f.key_frame && !h->delayed_pic[i]->mmco_reset; i++)
|
|
if(h->delayed_pic[i]->poc < out->poc){
|
|
out = h->delayed_pic[i];
|
|
out_idx = i;
|
|
}
|
|
|
|
for(i=out_idx; h->delayed_pic[i]; i++)
|
|
h->delayed_pic[i] = h->delayed_pic[i+1];
|
|
|
|
if(out){
|
|
*data_size = sizeof(AVFrame);
|
|
*pict= *(AVFrame*)out;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
buf_index=decode_nal_units(h, buf, buf_size);
|
|
if(buf_index < 0)
|
|
return -1;
|
|
|
|
if (!s->current_picture_ptr && h->nal_unit_type == NAL_END_SEQUENCE) {
|
|
buf_size = 0;
|
|
goto out;
|
|
}
|
|
|
|
if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
|
|
if (avctx->skip_frame >= AVDISCARD_NONREF)
|
|
return 0;
|
|
av_log(avctx, AV_LOG_ERROR, "no frame!\n");
|
|
return -1;
|
|
}
|
|
|
|
if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
|
|
|
|
if(s->flags2 & CODEC_FLAG2_CHUNKS) decode_postinit(h, 1);
|
|
|
|
field_end(h, 0);
|
|
|
|
if (!h->next_output_pic) {
|
|
/* Wait for second field. */
|
|
*data_size = 0;
|
|
|
|
} else {
|
|
*data_size = sizeof(AVFrame);
|
|
*pict = *(AVFrame*)h->next_output_pic;
|
|
}
|
|
}
|
|
|
|
assert(pict->data[0] || !*data_size);
|
|
ff_print_debug_info(s, pict);
|
|
//printf("out %d\n", (int)pict->data[0]);
|
|
|
|
return get_consumed_bytes(s, buf_index, buf_size);
|
|
}
|
|
#if 0
|
|
static inline void fill_mb_avail(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
|
|
|
|
if(s->mb_y){
|
|
h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
|
|
h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
|
|
h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
|
|
}else{
|
|
h->mb_avail[0]=
|
|
h->mb_avail[1]=
|
|
h->mb_avail[2]= 0;
|
|
}
|
|
h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
|
|
h->mb_avail[4]= 1; //FIXME move out
|
|
h->mb_avail[5]= 0; //FIXME move out
|
|
}
|
|
#endif
|
|
|
|
#ifdef TEST
|
|
#undef printf
|
|
#undef random
|
|
#define COUNT 8000
|
|
#define SIZE (COUNT*40)
|
|
int main(void){
|
|
int i;
|
|
uint8_t temp[SIZE];
|
|
PutBitContext pb;
|
|
GetBitContext gb;
|
|
// int int_temp[10000];
|
|
DSPContext dsp;
|
|
AVCodecContext avctx;
|
|
|
|
dsputil_init(&dsp, &avctx);
|
|
|
|
init_put_bits(&pb, temp, SIZE);
|
|
printf("testing unsigned exp golomb\n");
|
|
for(i=0; i<COUNT; i++){
|
|
START_TIMER
|
|
set_ue_golomb(&pb, i);
|
|
STOP_TIMER("set_ue_golomb");
|
|
}
|
|
flush_put_bits(&pb);
|
|
|
|
init_get_bits(&gb, temp, 8*SIZE);
|
|
for(i=0; i<COUNT; i++){
|
|
int j, s;
|
|
|
|
s= show_bits(&gb, 24);
|
|
|
|
START_TIMER
|
|
j= get_ue_golomb(&gb);
|
|
if(j != i){
|
|
printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
|
|
// return -1;
|
|
}
|
|
STOP_TIMER("get_ue_golomb");
|
|
}
|
|
|
|
|
|
init_put_bits(&pb, temp, SIZE);
|
|
printf("testing signed exp golomb\n");
|
|
for(i=0; i<COUNT; i++){
|
|
START_TIMER
|
|
set_se_golomb(&pb, i - COUNT/2);
|
|
STOP_TIMER("set_se_golomb");
|
|
}
|
|
flush_put_bits(&pb);
|
|
|
|
init_get_bits(&gb, temp, 8*SIZE);
|
|
for(i=0; i<COUNT; i++){
|
|
int j, s;
|
|
|
|
s= show_bits(&gb, 24);
|
|
|
|
START_TIMER
|
|
j= get_se_golomb(&gb);
|
|
if(j != i - COUNT/2){
|
|
printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
|
|
// return -1;
|
|
}
|
|
STOP_TIMER("get_se_golomb");
|
|
}
|
|
|
|
printf("Testing RBSP\n");
|
|
|
|
|
|
return 0;
|
|
}
|
|
#endif /* TEST */
|
|
|
|
|
|
av_cold void ff_h264_free_context(H264Context *h)
|
|
{
|
|
int i;
|
|
|
|
free_tables(h, 1); //FIXME cleanup init stuff perhaps
|
|
|
|
for(i = 0; i < MAX_SPS_COUNT; i++)
|
|
av_freep(h->sps_buffers + i);
|
|
|
|
for(i = 0; i < MAX_PPS_COUNT; i++)
|
|
av_freep(h->pps_buffers + i);
|
|
}
|
|
|
|
av_cold int ff_h264_decode_end(AVCodecContext *avctx)
|
|
{
|
|
H264Context *h = avctx->priv_data;
|
|
MpegEncContext *s = &h->s;
|
|
|
|
ff_h264_free_context(h);
|
|
|
|
MPV_common_end(s);
|
|
|
|
// memset(h, 0, sizeof(H264Context));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const AVProfile profiles[] = {
|
|
{ FF_PROFILE_H264_BASELINE, "Baseline" },
|
|
{ FF_PROFILE_H264_CONSTRAINED_BASELINE, "Constrained Baseline" },
|
|
{ FF_PROFILE_H264_MAIN, "Main" },
|
|
{ FF_PROFILE_H264_EXTENDED, "Extended" },
|
|
{ FF_PROFILE_H264_HIGH, "High" },
|
|
{ FF_PROFILE_H264_HIGH_10, "High 10" },
|
|
{ FF_PROFILE_H264_HIGH_10_INTRA, "High 10 Intra" },
|
|
{ FF_PROFILE_H264_HIGH_422, "High 4:2:2" },
|
|
{ FF_PROFILE_H264_HIGH_422_INTRA, "High 4:2:2 Intra" },
|
|
{ FF_PROFILE_H264_HIGH_444, "High 4:4:4" },
|
|
{ FF_PROFILE_H264_HIGH_444_PREDICTIVE, "High 4:4:4 Predictive" },
|
|
{ FF_PROFILE_H264_HIGH_444_INTRA, "High 4:4:4 Intra" },
|
|
{ FF_PROFILE_H264_CAVLC_444, "CAVLC 4:4:4" },
|
|
{ FF_PROFILE_UNKNOWN },
|
|
};
|
|
|
|
AVCodec ff_h264_decoder = {
|
|
.name = "h264",
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.id = CODEC_ID_H264,
|
|
.priv_data_size = sizeof(H264Context),
|
|
.init = ff_h264_decode_init,
|
|
.close = ff_h264_decode_end,
|
|
.decode = decode_frame,
|
|
.capabilities = /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_DELAY |
|
|
CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS,
|
|
.flush= flush_dpb,
|
|
.long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
|
|
.init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
|
|
.update_thread_context = ONLY_IF_THREADS_ENABLED(decode_update_thread_context),
|
|
.profiles = NULL_IF_CONFIG_SMALL(profiles),
|
|
};
|
|
|
|
#if CONFIG_H264_VDPAU_DECODER
|
|
AVCodec ff_h264_vdpau_decoder = {
|
|
.name = "h264_vdpau",
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.id = CODEC_ID_H264,
|
|
.priv_data_size = sizeof(H264Context),
|
|
.init = ff_h264_decode_init,
|
|
.close = ff_h264_decode_end,
|
|
.decode = decode_frame,
|
|
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
|
|
.flush= flush_dpb,
|
|
.long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"),
|
|
.pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_H264, PIX_FMT_NONE},
|
|
.profiles = NULL_IF_CONFIG_SMALL(profiles),
|
|
};
|
|
#endif
|