1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavcodec/proresenc_anatoliy.c
Andreas Rheinhardt 4243da4ff4 avcodec/codec_internal: Use union for FFCodec decode/encode callbacks
This is possible, because every given FFCodec has to implement
exactly one of these. Doing so decreases sizeof(FFCodec) and
therefore decreases the size of the binary.
Notice that in case of position-independent code the decrease
is in .data.rel.ro, so that this translates to decreased
memory consumption.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2022-04-05 20:02:37 +02:00

974 lines
36 KiB
C

/*
* Apple ProRes encoder
*
* Copyright (c) 2011 Anatoliy Wasserman
* Copyright (c) 2012 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Apple ProRes encoder (Anatoliy Wasserman version)
* Known FOURCCs: 'ap4h' (444), 'apch' (HQ), 'apcn' (422), 'apcs' (LT), 'acpo' (Proxy)
*/
#include "libavutil/mem_internal.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "codec_internal.h"
#include "dct.h"
#include "encode.h"
#include "internal.h"
#include "profiles.h"
#include "proresdata.h"
#include "put_bits.h"
#include "bytestream.h"
#include "fdctdsp.h"
#define DEFAULT_SLICE_MB_WIDTH 8
static const AVProfile profiles[] = {
{ FF_PROFILE_PRORES_PROXY, "apco"},
{ FF_PROFILE_PRORES_LT, "apcs"},
{ FF_PROFILE_PRORES_STANDARD, "apcn"},
{ FF_PROFILE_PRORES_HQ, "apch"},
{ FF_PROFILE_PRORES_4444, "ap4h"},
{ FF_PROFILE_PRORES_XQ, "ap4x"},
{ FF_PROFILE_UNKNOWN }
};
static const int qp_start_table[] = { 8, 3, 2, 1, 1, 1};
static const int qp_end_table[] = { 13, 9, 6, 6, 5, 4};
static const int bitrate_table[] = { 1000, 2100, 3500, 5400, 7000, 10000};
static const int valid_primaries[] = { AVCOL_PRI_RESERVED0, AVCOL_PRI_BT709, AVCOL_PRI_UNSPECIFIED, AVCOL_PRI_BT470BG,
AVCOL_PRI_SMPTE170M, AVCOL_PRI_BT2020, AVCOL_PRI_SMPTE431, AVCOL_PRI_SMPTE432, INT_MAX };
static const int valid_trc[] = { AVCOL_TRC_RESERVED0, AVCOL_TRC_BT709, AVCOL_TRC_UNSPECIFIED, AVCOL_TRC_SMPTE2084,
AVCOL_TRC_ARIB_STD_B67, INT_MAX };
static const int valid_colorspace[] = { AVCOL_SPC_BT709, AVCOL_SPC_UNSPECIFIED, AVCOL_SPC_SMPTE170M,
AVCOL_SPC_BT2020_NCL, INT_MAX };
static const uint8_t QMAT_LUMA[6][64] = {
{
4, 7, 9, 11, 13, 14, 15, 63,
7, 7, 11, 12, 14, 15, 63, 63,
9, 11, 13, 14, 15, 63, 63, 63,
11, 11, 13, 14, 63, 63, 63, 63,
11, 13, 14, 63, 63, 63, 63, 63,
13, 14, 63, 63, 63, 63, 63, 63,
13, 63, 63, 63, 63, 63, 63, 63,
63, 63, 63, 63, 63, 63, 63, 63
}, {
4, 5, 6, 7, 9, 11, 13, 15,
5, 5, 7, 8, 11, 13, 15, 17,
6, 7, 9, 11, 13, 15, 15, 17,
7, 7, 9, 11, 13, 15, 17, 19,
7, 9, 11, 13, 14, 16, 19, 23,
9, 11, 13, 14, 16, 19, 23, 29,
9, 11, 13, 15, 17, 21, 28, 35,
11, 13, 16, 17, 21, 28, 35, 41
}, {
4, 4, 5, 5, 6, 7, 7, 9,
4, 4, 5, 6, 7, 7, 9, 9,
5, 5, 6, 7, 7, 9, 9, 10,
5, 5, 6, 7, 7, 9, 9, 10,
5, 6, 7, 7, 8, 9, 10, 12,
6, 7, 7, 8, 9, 10, 12, 15,
6, 7, 7, 9, 10, 11, 14, 17,
7, 7, 9, 10, 11, 14, 17, 21
}, {
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 5,
4, 4, 4, 4, 4, 4, 5, 5,
4, 4, 4, 4, 4, 5, 5, 6,
4, 4, 4, 4, 5, 5, 6, 7,
4, 4, 4, 4, 5, 6, 7, 7
}, { /* 444 */
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 5,
4, 4, 4, 4, 4, 4, 5, 5,
4, 4, 4, 4, 4, 5, 5, 6,
4, 4, 4, 4, 5, 5, 6, 7,
4, 4, 4, 4, 5, 6, 7, 7
}, { /* 444 XQ */
2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 3,
2, 2, 2, 2, 2, 2, 3, 3,
2, 2, 2, 2, 2, 3, 3, 3,
2, 2, 2, 2, 3, 3, 3, 4,
2, 2, 2, 2, 3, 3, 4, 4,
}
};
static const uint8_t QMAT_CHROMA[6][64] = {
{
4, 7, 9, 11, 13, 14, 63, 63,
7, 7, 11, 12, 14, 63, 63, 63,
9, 11, 13, 14, 63, 63, 63, 63,
11, 11, 13, 14, 63, 63, 63, 63,
11, 13, 14, 63, 63, 63, 63, 63,
13, 14, 63, 63, 63, 63, 63, 63,
13, 63, 63, 63, 63, 63, 63, 63,
63, 63, 63, 63, 63, 63, 63, 63
}, {
4, 5, 6, 7, 9, 11, 13, 15,
5, 5, 7, 8, 11, 13, 15, 17,
6, 7, 9, 11, 13, 15, 15, 17,
7, 7, 9, 11, 13, 15, 17, 19,
7, 9, 11, 13, 14, 16, 19, 23,
9, 11, 13, 14, 16, 19, 23, 29,
9, 11, 13, 15, 17, 21, 28, 35,
11, 13, 16, 17, 21, 28, 35, 41
}, {
4, 4, 5, 5, 6, 7, 7, 9,
4, 4, 5, 6, 7, 7, 9, 9,
5, 5, 6, 7, 7, 9, 9, 10,
5, 5, 6, 7, 7, 9, 9, 10,
5, 6, 7, 7, 8, 9, 10, 12,
6, 7, 7, 8, 9, 10, 12, 15,
6, 7, 7, 9, 10, 11, 14, 17,
7, 7, 9, 10, 11, 14, 17, 21
}, {
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 5,
4, 4, 4, 4, 4, 4, 5, 5,
4, 4, 4, 4, 4, 5, 5, 6,
4, 4, 4, 4, 5, 5, 6, 7,
4, 4, 4, 4, 5, 6, 7, 7
}, { /* 444 */
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 5,
4, 4, 4, 4, 4, 4, 5, 5,
4, 4, 4, 4, 4, 5, 5, 6,
4, 4, 4, 4, 5, 5, 6, 7,
4, 4, 4, 4, 5, 6, 7, 7
}, { /* 444 xq */
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 5,
4, 4, 4, 4, 4, 4, 5, 5,
4, 4, 4, 4, 4, 5, 5, 6,
4, 4, 4, 4, 5, 5, 6, 7,
4, 4, 4, 4, 5, 6, 7, 7
}
};
typedef struct {
AVClass *class;
FDCTDSPContext fdsp;
uint8_t* fill_y;
uint8_t* fill_u;
uint8_t* fill_v;
uint8_t* fill_a;
int qmat_luma[16][64];
int qmat_chroma[16][64];
const uint8_t *scantable;
int is_422;
int need_alpha;
int is_interlaced;
char *vendor;
} ProresContext;
static void encode_codeword(PutBitContext *pb, int val, int codebook)
{
unsigned int rice_order, exp_order, switch_bits, first_exp, exp, zeros;
/* number of bits to switch between rice and exp golomb */
switch_bits = codebook & 3;
rice_order = codebook >> 5;
exp_order = (codebook >> 2) & 7;
first_exp = ((switch_bits + 1) << rice_order);
if (val >= first_exp) { /* exp golomb */
val -= first_exp;
val += (1 << exp_order);
exp = av_log2(val);
zeros = exp - exp_order + switch_bits + 1;
put_bits(pb, zeros, 0);
put_bits(pb, exp + 1, val);
} else if (rice_order) {
put_bits(pb, (val >> rice_order), 0);
put_bits(pb, 1, 1);
put_sbits(pb, rice_order, val);
} else {
put_bits(pb, val, 0);
put_bits(pb, 1, 1);
}
}
#define QSCALE(qmat,ind,val) ((val) / ((qmat)[ind]))
#define TO_GOLOMB(val) (((val) * 2) ^ ((val) >> 31))
#define DIFF_SIGN(val, sign) (((val) >> 31) ^ (sign))
#define IS_NEGATIVE(val) ((((val) >> 31) ^ -1) + 1)
#define TO_GOLOMB2(val,sign) ((val)==0 ? 0 : ((val) << 1) + (sign))
static av_always_inline int get_level(int val)
{
int sign = (val >> 31);
return (val ^ sign) - sign;
}
#define FIRST_DC_CB 0xB8
static const uint8_t dc_codebook[7] = { 0x04, 0x28, 0x28, 0x4D, 0x4D, 0x70, 0x70};
static void encode_dc_coeffs(PutBitContext *pb, int16_t *in,
int blocks_per_slice, int *qmat)
{
int prev_dc, code;
int i, sign, idx;
int new_dc, delta, diff_sign, new_code;
prev_dc = QSCALE(qmat, 0, in[0] - 16384);
code = TO_GOLOMB(prev_dc);
encode_codeword(pb, code, FIRST_DC_CB);
code = 5; sign = 0; idx = 64;
for (i = 1; i < blocks_per_slice; i++, idx += 64) {
new_dc = QSCALE(qmat, 0, in[idx] - 16384);
delta = new_dc - prev_dc;
diff_sign = DIFF_SIGN(delta, sign);
new_code = TO_GOLOMB2(get_level(delta), diff_sign);
encode_codeword(pb, new_code, dc_codebook[FFMIN(code, 6)]);
code = new_code;
sign = delta >> 31;
prev_dc = new_dc;
}
}
static const uint8_t run_to_cb[16] = { 0x06, 0x06, 0x05, 0x05, 0x04, 0x29,
0x29, 0x29, 0x29, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x4C };
static const uint8_t lev_to_cb[10] = { 0x04, 0x0A, 0x05, 0x06, 0x04, 0x28,
0x28, 0x28, 0x28, 0x4C };
static void encode_ac_coeffs(PutBitContext *pb,
int16_t *in, int blocks_per_slice, int *qmat, const uint8_t ff_prores_scan[64])
{
int prev_run = 4;
int prev_level = 2;
int run = 0, level, code, i, j;
for (i = 1; i < 64; i++) {
int indp = ff_prores_scan[i];
for (j = 0; j < blocks_per_slice; j++) {
int val = QSCALE(qmat, indp, in[(j << 6) + indp]);
if (val) {
encode_codeword(pb, run, run_to_cb[FFMIN(prev_run, 15)]);
prev_run = run;
run = 0;
level = get_level(val);
code = level - 1;
encode_codeword(pb, code, lev_to_cb[FFMIN(prev_level, 9)]);
prev_level = level;
put_bits(pb, 1, IS_NEGATIVE(val));
} else {
++run;
}
}
}
}
static void get(uint8_t *pixels, int stride, int16_t* block)
{
int i;
for (i = 0; i < 8; i++) {
AV_WN64(block, AV_RN64(pixels));
AV_WN64(block+4, AV_RN64(pixels+8));
pixels += stride;
block += 8;
}
}
static void fdct_get(FDCTDSPContext *fdsp, uint8_t *pixels, int stride, int16_t* block)
{
get(pixels, stride, block);
fdsp->fdct(block);
}
static void calc_plane_dct(FDCTDSPContext *fdsp, uint8_t *src, int16_t * blocks, int src_stride, int mb_count, int chroma, int is_422)
{
int16_t *block;
int i;
block = blocks;
if (!chroma) { /* Luma plane */
for (i = 0; i < mb_count; i++) {
fdct_get(fdsp, src, src_stride, block + (0 << 6));
fdct_get(fdsp, src + 16, src_stride, block + (1 << 6));
fdct_get(fdsp, src + 8 * src_stride, src_stride, block + (2 << 6));
fdct_get(fdsp, src + 16 + 8 * src_stride, src_stride, block + (3 << 6));
block += 256;
src += 32;
}
} else if (chroma && is_422){ /* chroma plane 422 */
for (i = 0; i < mb_count; i++) {
fdct_get(fdsp, src, src_stride, block + (0 << 6));
fdct_get(fdsp, src + 8 * src_stride, src_stride, block + (1 << 6));
block += (256 >> 1);
src += (32 >> 1);
}
} else { /* chroma plane 444 */
for (i = 0; i < mb_count; i++) {
fdct_get(fdsp, src, src_stride, block + (0 << 6));
fdct_get(fdsp, src + 8 * src_stride, src_stride, block + (1 << 6));
fdct_get(fdsp, src + 16, src_stride, block + (2 << 6));
fdct_get(fdsp, src + 16 + 8 * src_stride, src_stride, block + (3 << 6));
block += 256;
src += 32;
}
}
}
static int encode_slice_plane(int16_t *blocks, int mb_count, uint8_t *buf, unsigned buf_size, int *qmat, int sub_sample_chroma,
const uint8_t ff_prores_scan[64])
{
int blocks_per_slice;
PutBitContext pb;
blocks_per_slice = mb_count << (2 - sub_sample_chroma);
init_put_bits(&pb, buf, buf_size);
encode_dc_coeffs(&pb, blocks, blocks_per_slice, qmat);
encode_ac_coeffs(&pb, blocks, blocks_per_slice, qmat, ff_prores_scan);
flush_put_bits(&pb);
return put_bits_ptr(&pb) - pb.buf;
}
static av_always_inline unsigned encode_slice_data(AVCodecContext *avctx,
int16_t * blocks_y, int16_t * blocks_u, int16_t * blocks_v,
unsigned mb_count, uint8_t *buf, unsigned data_size,
unsigned* y_data_size, unsigned* u_data_size, unsigned* v_data_size,
int qp)
{
ProresContext* ctx = avctx->priv_data;
*y_data_size = encode_slice_plane(blocks_y, mb_count,
buf, data_size, ctx->qmat_luma[qp - 1], 0, ctx->scantable);
if (!(avctx->flags & AV_CODEC_FLAG_GRAY)) {
*u_data_size = encode_slice_plane(blocks_u, mb_count, buf + *y_data_size, data_size - *y_data_size,
ctx->qmat_chroma[qp - 1], ctx->is_422, ctx->scantable);
*v_data_size = encode_slice_plane(blocks_v, mb_count, buf + *y_data_size + *u_data_size,
data_size - *y_data_size - *u_data_size,
ctx->qmat_chroma[qp - 1], ctx->is_422, ctx->scantable);
}
return *y_data_size + *u_data_size + *v_data_size;
}
static void put_alpha_diff(PutBitContext *pb, int cur, int prev)
{
const int abits = 16;
const int dbits = 7;
const int dsize = 1 << dbits - 1;
int diff = cur - prev;
diff = av_mod_uintp2(diff, abits);
if (diff >= (1 << abits) - dsize)
diff -= 1 << abits;
if (diff < -dsize || diff > dsize || !diff) {
put_bits(pb, 1, 1);
put_bits(pb, abits, diff);
} else {
put_bits(pb, 1, 0);
put_bits(pb, dbits - 1, FFABS(diff) - 1);
put_bits(pb, 1, diff < 0);
}
}
static inline void put_alpha_run(PutBitContext *pb, int run)
{
if (run) {
put_bits(pb, 1, 0);
if (run < 0x10)
put_bits(pb, 4, run);
else
put_bits(pb, 15, run);
} else {
put_bits(pb, 1, 1);
}
}
static av_always_inline int encode_alpha_slice_data(AVCodecContext *avctx, int8_t * src_a,
unsigned mb_count, uint8_t *buf, unsigned data_size, unsigned* a_data_size)
{
const int abits = 16;
const int mask = (1 << abits) - 1;
const int num_coeffs = mb_count * 256;
int prev = mask, cur;
int idx = 0;
int run = 0;
int16_t * blocks = (int16_t *)src_a;
PutBitContext pb;
init_put_bits(&pb, buf, data_size);
cur = blocks[idx++];
put_alpha_diff(&pb, cur, prev);
prev = cur;
do {
cur = blocks[idx++];
if (cur != prev) {
put_alpha_run (&pb, run);
put_alpha_diff(&pb, cur, prev);
prev = cur;
run = 0;
} else {
run++;
}
} while (idx < num_coeffs);
if (run)
put_alpha_run(&pb, run);
flush_put_bits(&pb);
*a_data_size = put_bytes_output(&pb);
if (put_bits_left(&pb) < 0) {
av_log(avctx, AV_LOG_ERROR,
"Underestimated required buffer size.\n");
return AVERROR_BUG;
} else {
return 0;
}
}
static inline void subimage_with_fill_template(uint16_t *src, unsigned x, unsigned y,
unsigned stride, unsigned width, unsigned height, uint16_t *dst,
unsigned dst_width, unsigned dst_height, int is_alpha_plane,
int is_interlaced, int is_top_field)
{
int box_width = FFMIN(width - x, dst_width);
int i, j, src_stride, box_height;
uint16_t last_pix, *last_line;
if (!is_interlaced) {
src_stride = stride >> 1;
src += y * src_stride + x;
box_height = FFMIN(height - y, dst_height);
} else {
src_stride = stride; /* 2 lines stride */
src += y * src_stride + x;
box_height = FFMIN(height/2 - y, dst_height);
if (!is_top_field)
src += stride >> 1;
}
for (i = 0; i < box_height; ++i) {
for (j = 0; j < box_width; ++j) {
if (!is_alpha_plane) {
dst[j] = src[j];
} else {
dst[j] = src[j] << 6; /* alpha 10b to 16b */
}
}
if (!is_alpha_plane) {
last_pix = dst[j - 1];
} else {
last_pix = dst[j - 1] << 6; /* alpha 10b to 16b */
}
for (; j < dst_width; j++)
dst[j] = last_pix;
src += src_stride;
dst += dst_width;
}
last_line = dst - dst_width;
for (; i < dst_height; i++) {
for (j = 0; j < dst_width; ++j) {
dst[j] = last_line[j];
}
dst += dst_width;
}
}
static void subimage_with_fill(uint16_t *src, unsigned x, unsigned y,
unsigned stride, unsigned width, unsigned height, uint16_t *dst,
unsigned dst_width, unsigned dst_height, int is_interlaced, int is_top_field)
{
subimage_with_fill_template(src, x, y, stride, width, height, dst, dst_width, dst_height, 0, is_interlaced, is_top_field);
}
/* reorganize alpha data and convert 10b -> 16b */
static void subimage_alpha_with_fill(uint16_t *src, unsigned x, unsigned y,
unsigned stride, unsigned width, unsigned height, uint16_t *dst,
unsigned dst_width, unsigned dst_height, int is_interlaced, int is_top_field)
{
subimage_with_fill_template(src, x, y, stride, width, height, dst, dst_width, dst_height, 1, is_interlaced, is_top_field);
}
static int encode_slice(AVCodecContext *avctx, const AVFrame *pic, int mb_x,
int mb_y, unsigned mb_count, uint8_t *buf, unsigned data_size,
int unsafe, int *qp, int is_interlaced, int is_top_field)
{
int luma_stride, chroma_stride, alpha_stride = 0;
ProresContext* ctx = avctx->priv_data;
int hdr_size = 6 + (ctx->need_alpha * 2); /* v data size is write when there is alpha */
int ret = 0, slice_size;
uint8_t *dest_y, *dest_u, *dest_v;
unsigned y_data_size = 0, u_data_size = 0, v_data_size = 0, a_data_size = 0;
FDCTDSPContext *fdsp = &ctx->fdsp;
int tgt_bits = (mb_count * bitrate_table[avctx->profile]) >> 2;
int low_bytes = (tgt_bits - (tgt_bits >> 3)) >> 3; // 12% bitrate fluctuation
int high_bytes = (tgt_bits + (tgt_bits >> 3)) >> 3;
LOCAL_ALIGNED(16, int16_t, blocks_y, [DEFAULT_SLICE_MB_WIDTH << 8]);
LOCAL_ALIGNED(16, int16_t, blocks_u, [DEFAULT_SLICE_MB_WIDTH << 8]);
LOCAL_ALIGNED(16, int16_t, blocks_v, [DEFAULT_SLICE_MB_WIDTH << 8]);
luma_stride = pic->linesize[0];
chroma_stride = pic->linesize[1];
if (ctx->need_alpha)
alpha_stride = pic->linesize[3];
if (!is_interlaced) {
dest_y = pic->data[0] + (mb_y << 4) * luma_stride + (mb_x << 5);
dest_u = pic->data[1] + (mb_y << 4) * chroma_stride + (mb_x << (5 - ctx->is_422));
dest_v = pic->data[2] + (mb_y << 4) * chroma_stride + (mb_x << (5 - ctx->is_422));
} else {
dest_y = pic->data[0] + (mb_y << 4) * luma_stride * 2 + (mb_x << 5);
dest_u = pic->data[1] + (mb_y << 4) * chroma_stride * 2 + (mb_x << (5 - ctx->is_422));
dest_v = pic->data[2] + (mb_y << 4) * chroma_stride * 2 + (mb_x << (5 - ctx->is_422));
if (!is_top_field){ /* bottom field, offset dest */
dest_y += luma_stride;
dest_u += chroma_stride;
dest_v += chroma_stride;
}
}
if (unsafe) {
subimage_with_fill((uint16_t *) pic->data[0], mb_x << 4, mb_y << 4,
luma_stride, avctx->width, avctx->height,
(uint16_t *) ctx->fill_y, mb_count << 4, 16, is_interlaced, is_top_field);
subimage_with_fill((uint16_t *) pic->data[1], mb_x << (4 - ctx->is_422), mb_y << 4,
chroma_stride, avctx->width >> ctx->is_422, avctx->height,
(uint16_t *) ctx->fill_u, mb_count << (4 - ctx->is_422), 16, is_interlaced, is_top_field);
subimage_with_fill((uint16_t *) pic->data[2], mb_x << (4 - ctx->is_422), mb_y << 4,
chroma_stride, avctx->width >> ctx->is_422, avctx->height,
(uint16_t *) ctx->fill_v, mb_count << (4 - ctx->is_422), 16, is_interlaced, is_top_field);
/* no need for interlaced special case, data already reorganized in subimage_with_fill */
calc_plane_dct(fdsp, ctx->fill_y, blocks_y, mb_count << 5, mb_count, 0, 0);
calc_plane_dct(fdsp, ctx->fill_u, blocks_u, mb_count << (5 - ctx->is_422), mb_count, 1, ctx->is_422);
calc_plane_dct(fdsp, ctx->fill_v, blocks_v, mb_count << (5 - ctx->is_422), mb_count, 1, ctx->is_422);
slice_size = encode_slice_data(avctx, blocks_y, blocks_u, blocks_v,
mb_count, buf + hdr_size, data_size - hdr_size,
&y_data_size, &u_data_size, &v_data_size,
*qp);
} else {
if (!is_interlaced) {
calc_plane_dct(fdsp, dest_y, blocks_y, luma_stride, mb_count, 0, 0);
calc_plane_dct(fdsp, dest_u, blocks_u, chroma_stride, mb_count, 1, ctx->is_422);
calc_plane_dct(fdsp, dest_v, blocks_v, chroma_stride, mb_count, 1, ctx->is_422);
} else {
calc_plane_dct(fdsp, dest_y, blocks_y, luma_stride * 2, mb_count, 0, 0);
calc_plane_dct(fdsp, dest_u, blocks_u, chroma_stride * 2, mb_count, 1, ctx->is_422);
calc_plane_dct(fdsp, dest_v, blocks_v, chroma_stride * 2, mb_count, 1, ctx->is_422);
}
slice_size = encode_slice_data(avctx, blocks_y, blocks_u, blocks_v,
mb_count, buf + hdr_size, data_size - hdr_size,
&y_data_size, &u_data_size, &v_data_size,
*qp);
if (slice_size > high_bytes && *qp < qp_end_table[avctx->profile]) {
do {
*qp += 1;
slice_size = encode_slice_data(avctx, blocks_y, blocks_u, blocks_v,
mb_count, buf + hdr_size, data_size - hdr_size,
&y_data_size, &u_data_size, &v_data_size,
*qp);
} while (slice_size > high_bytes && *qp < qp_end_table[avctx->profile]);
} else if (slice_size < low_bytes && *qp
> qp_start_table[avctx->profile]) {
do {
*qp -= 1;
slice_size = encode_slice_data(avctx, blocks_y, blocks_u, blocks_v,
mb_count, buf + hdr_size, data_size - hdr_size,
&y_data_size, &u_data_size, &v_data_size,
*qp);
} while (slice_size < low_bytes && *qp > qp_start_table[avctx->profile]);
}
}
buf[0] = hdr_size << 3;
buf[1] = *qp;
AV_WB16(buf + 2, y_data_size);
AV_WB16(buf + 4, u_data_size);
if (ctx->need_alpha) {
AV_WB16(buf + 6, v_data_size); /* write v data size only if there is alpha */
subimage_alpha_with_fill((uint16_t *) pic->data[3], mb_x << 4, mb_y << 4,
alpha_stride, avctx->width, avctx->height,
(uint16_t *) ctx->fill_a, mb_count << 4, 16, is_interlaced, is_top_field);
ret = encode_alpha_slice_data(avctx, ctx->fill_a, mb_count,
buf + hdr_size + slice_size,
data_size - hdr_size - slice_size, &a_data_size);
}
if (ret != 0) {
return ret;
}
return hdr_size + y_data_size + u_data_size + v_data_size + a_data_size;
}
static int prores_encode_picture(AVCodecContext *avctx, const AVFrame *pic,
uint8_t *buf, const int buf_size, const int picture_index, const int is_top_field)
{
ProresContext *ctx = avctx->priv_data;
int mb_width = (avctx->width + 15) >> 4;
int hdr_size, sl_size, i;
int mb_y, sl_data_size, qp, mb_height, picture_height, unsafe_mb_height_limit;
int unsafe_bot, unsafe_right;
uint8_t *sl_data, *sl_data_sizes;
int slice_per_line = 0, rem = mb_width;
if (!ctx->is_interlaced) { /* progressive encoding */
mb_height = (avctx->height + 15) >> 4;
unsafe_mb_height_limit = mb_height;
} else {
if (is_top_field) {
picture_height = (avctx->height + 1) / 2;
} else {
picture_height = avctx->height / 2;
}
mb_height = (picture_height + 15) >> 4;
unsafe_mb_height_limit = mb_height;
}
for (i = av_log2(DEFAULT_SLICE_MB_WIDTH); i >= 0; --i) {
slice_per_line += rem >> i;
rem &= (1 << i) - 1;
}
qp = qp_start_table[avctx->profile];
hdr_size = 8; sl_data_size = buf_size - hdr_size;
sl_data_sizes = buf + hdr_size;
sl_data = sl_data_sizes + (slice_per_line * mb_height * 2);
for (mb_y = 0; mb_y < mb_height; mb_y++) {
int mb_x = 0;
int slice_mb_count = DEFAULT_SLICE_MB_WIDTH;
while (mb_x < mb_width) {
while (mb_width - mb_x < slice_mb_count)
slice_mb_count >>= 1;
unsafe_bot = (avctx->height & 0xf) && (mb_y == unsafe_mb_height_limit - 1);
unsafe_right = (avctx->width & 0xf) && (mb_x + slice_mb_count == mb_width);
sl_size = encode_slice(avctx, pic, mb_x, mb_y, slice_mb_count,
sl_data, sl_data_size, unsafe_bot || unsafe_right, &qp, ctx->is_interlaced, is_top_field);
if (sl_size < 0){
return sl_size;
}
bytestream_put_be16(&sl_data_sizes, sl_size);
sl_data += sl_size;
sl_data_size -= sl_size;
mb_x += slice_mb_count;
}
}
buf[0] = hdr_size << 3;
AV_WB32(buf + 1, sl_data - buf);
AV_WB16(buf + 5, slice_per_line * mb_height); /* picture size */
buf[7] = av_log2(DEFAULT_SLICE_MB_WIDTH) << 4; /* number of slices */
return sl_data - buf;
}
static int prores_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *pict, int *got_packet)
{
ProresContext *ctx = avctx->priv_data;
int header_size = 148;
uint8_t *buf;
int compress_frame_size, pic_size, ret, is_top_field_first = 0;
uint8_t frame_flags;
int frame_size = FFALIGN(avctx->width, 16) * FFALIGN(avctx->height, 16)*16 + 500 + AV_INPUT_BUFFER_MIN_SIZE; //FIXME choose tighter limit
if ((ret = ff_alloc_packet(avctx, pkt, frame_size + AV_INPUT_BUFFER_MIN_SIZE)) < 0)
return ret;
buf = pkt->data;
compress_frame_size = 8 + header_size;
bytestream_put_be32(&buf, compress_frame_size);/* frame size will be update after picture(s) encoding */
bytestream_put_buffer(&buf, "icpf", 4);
bytestream_put_be16(&buf, header_size);
bytestream_put_be16(&buf, 0); /* version */
bytestream_put_buffer(&buf, ctx->vendor, 4);
bytestream_put_be16(&buf, avctx->width);
bytestream_put_be16(&buf, avctx->height);
frame_flags = 0x82; /* 422 not interlaced */
if (avctx->profile >= FF_PROFILE_PRORES_4444) /* 4444 or 4444 Xq */
frame_flags |= 0x40; /* 444 chroma */
if (ctx->is_interlaced) {
if (pict->top_field_first || !pict->interlaced_frame) { /* tff frame or progressive frame interpret as tff */
av_log(avctx, AV_LOG_DEBUG, "use interlaced encoding, top field first\n");
frame_flags |= 0x04; /* interlaced tff */
is_top_field_first = 1;
} else {
av_log(avctx, AV_LOG_DEBUG, "use interlaced encoding, bottom field first\n");
frame_flags |= 0x08; /* interlaced bff */
}
} else {
av_log(avctx, AV_LOG_DEBUG, "use progressive encoding\n");
}
*buf++ = frame_flags;
*buf++ = 0; /* reserved */
/* only write color properties, if valid value. set to unspecified otherwise */
*buf++ = ff_int_from_list_or_default(avctx, "frame color primaries", pict->color_primaries, valid_primaries, 0);
*buf++ = ff_int_from_list_or_default(avctx, "frame color trc", pict->color_trc, valid_trc, 0);
*buf++ = ff_int_from_list_or_default(avctx, "frame colorspace", pict->colorspace, valid_colorspace, 0);
if (avctx->profile >= FF_PROFILE_PRORES_4444) {
if (avctx->pix_fmt == AV_PIX_FMT_YUV444P10) {
*buf++ = 0xA0;/* src b64a and no alpha */
} else {
*buf++ = 0xA2;/* src b64a and 16b alpha */
}
} else {
*buf++ = 32;/* src v210 and no alpha */
}
*buf++ = 0; /* reserved */
*buf++ = 3; /* luma and chroma matrix present */
bytestream_put_buffer(&buf, QMAT_LUMA[avctx->profile], 64);
bytestream_put_buffer(&buf, QMAT_CHROMA[avctx->profile], 64);
pic_size = prores_encode_picture(avctx, pict, buf,
pkt->size - compress_frame_size, 0, is_top_field_first);/* encode progressive or first field */
if (pic_size < 0) {
return pic_size;
}
compress_frame_size += pic_size;
if (ctx->is_interlaced) { /* encode second field */
pic_size = prores_encode_picture(avctx, pict, pkt->data + compress_frame_size,
pkt->size - compress_frame_size, 1, !is_top_field_first);
if (pic_size < 0) {
return pic_size;
}
compress_frame_size += pic_size;
}
AV_WB32(pkt->data, compress_frame_size);/* update frame size */
pkt->size = compress_frame_size;
*got_packet = 1;
return 0;
}
static void scale_mat(const uint8_t* src, int* dst, int scale)
{
int i;
for (i = 0; i < 64; i++)
dst[i] = src[i] * scale;
}
static av_cold int prores_encode_init(AVCodecContext *avctx)
{
int i;
ProresContext* ctx = avctx->priv_data;
avctx->bits_per_raw_sample = 10;
ctx->need_alpha = 0;
ctx->is_interlaced = !!(avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT);
if (ctx->is_interlaced) {
ctx->scantable = ff_prores_interlaced_scan;
} else {
ctx->scantable = ff_prores_progressive_scan;
}
if (avctx->width & 0x1) {
av_log(avctx, AV_LOG_ERROR,
"frame width needs to be multiple of 2\n");
return AVERROR(EINVAL);
}
if (avctx->width > 65534 || avctx->height > 65535) {
av_log(avctx, AV_LOG_ERROR,
"The maximum dimensions are 65534x65535\n");
return AVERROR(EINVAL);
}
if (strlen(ctx->vendor) != 4) {
av_log(avctx, AV_LOG_ERROR, "vendor ID should be 4 bytes\n");
return AVERROR(EINVAL);
}
if (avctx->profile == FF_PROFILE_UNKNOWN) {
if (avctx->pix_fmt == AV_PIX_FMT_YUV422P10) {
avctx->profile = FF_PROFILE_PRORES_STANDARD;
av_log(avctx, AV_LOG_INFO,
"encoding with ProRes standard (apcn) profile\n");
} else if (avctx->pix_fmt == AV_PIX_FMT_YUV444P10) {
avctx->profile = FF_PROFILE_PRORES_4444;
av_log(avctx, AV_LOG_INFO,
"encoding with ProRes 4444 (ap4h) profile\n");
} else if (avctx->pix_fmt == AV_PIX_FMT_YUVA444P10) {
avctx->profile = FF_PROFILE_PRORES_4444;
av_log(avctx, AV_LOG_INFO,
"encoding with ProRes 4444+ (ap4h) profile\n");
}
} else if (avctx->profile < FF_PROFILE_PRORES_PROXY
|| avctx->profile > FF_PROFILE_PRORES_XQ) {
av_log(
avctx,
AV_LOG_ERROR,
"unknown profile %d, use [0 - apco, 1 - apcs, 2 - apcn (default), 3 - apch, 4 - ap4h, 5 - ap4x]\n",
avctx->profile);
return AVERROR(EINVAL);
} else if ((avctx->pix_fmt == AV_PIX_FMT_YUV422P10) && (avctx->profile > FF_PROFILE_PRORES_HQ)){
av_log(avctx, AV_LOG_ERROR,
"encoding with ProRes 444/Xq (ap4h/ap4x) profile, need YUV444P10 input\n");
return AVERROR(EINVAL);
} else if ((avctx->pix_fmt == AV_PIX_FMT_YUV444P10 || avctx->pix_fmt == AV_PIX_FMT_YUVA444P10)
&& (avctx->profile < FF_PROFILE_PRORES_4444)){
av_log(avctx, AV_LOG_ERROR,
"encoding with ProRes Proxy/LT/422/422 HQ (apco, apcs, apcn, ap4h) profile, need YUV422P10 input\n");
return AVERROR(EINVAL);
}
if (avctx->profile < FF_PROFILE_PRORES_4444) { /* 422 versions */
ctx->is_422 = 1;
if ((avctx->height & 0xf) || (avctx->width & 0xf)) {
ctx->fill_y = av_malloc(4 * (DEFAULT_SLICE_MB_WIDTH << 8));
if (!ctx->fill_y)
return AVERROR(ENOMEM);
ctx->fill_u = ctx->fill_y + (DEFAULT_SLICE_MB_WIDTH << 9);
ctx->fill_v = ctx->fill_u + (DEFAULT_SLICE_MB_WIDTH << 8);
}
} else { /* 444 */
ctx->is_422 = 0;
if ((avctx->height & 0xf) || (avctx->width & 0xf)) {
ctx->fill_y = av_malloc(3 * (DEFAULT_SLICE_MB_WIDTH << 9));
if (!ctx->fill_y)
return AVERROR(ENOMEM);
ctx->fill_u = ctx->fill_y + (DEFAULT_SLICE_MB_WIDTH << 9);
ctx->fill_v = ctx->fill_u + (DEFAULT_SLICE_MB_WIDTH << 9);
}
if (avctx->pix_fmt == AV_PIX_FMT_YUVA444P10) {
ctx->need_alpha = 1;
ctx->fill_a = av_malloc(DEFAULT_SLICE_MB_WIDTH << 9); /* 8 blocks x 16px x 16px x sizeof (uint16) */
if (!ctx->fill_a)
return AVERROR(ENOMEM);
}
}
ff_fdctdsp_init(&ctx->fdsp, avctx);
avctx->codec_tag = AV_RL32((const uint8_t*)profiles[avctx->profile].name);
for (i = 1; i <= 16; i++) {
scale_mat(QMAT_LUMA[avctx->profile] , ctx->qmat_luma[i - 1] , i);
scale_mat(QMAT_CHROMA[avctx->profile], ctx->qmat_chroma[i - 1], i);
}
return 0;
}
static av_cold int prores_encode_close(AVCodecContext *avctx)
{
ProresContext* ctx = avctx->priv_data;
av_freep(&ctx->fill_y);
av_freep(&ctx->fill_a);
return 0;
}
#define OFFSET(x) offsetof(ProresContext, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "vendor", "vendor ID", OFFSET(vendor), AV_OPT_TYPE_STRING, { .str = "fmpg" }, 0, 0, VE },
{ NULL }
};
static const AVClass prores_enc_class = {
.class_name = "ProRes encoder",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_NONE
};
const FFCodec ff_prores_aw_encoder = {
.p.name = "prores_aw",
.p.long_name = NULL_IF_CONFIG_SMALL("Apple ProRes"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_PRORES,
.p.pix_fmts = pix_fmts,
.priv_data_size = sizeof(ProresContext),
.init = prores_encode_init,
.close = prores_encode_close,
FF_CODEC_ENCODE_CB(prores_encode_frame),
.p.capabilities = AV_CODEC_CAP_FRAME_THREADS,
.p.priv_class = &prores_enc_class,
.p.profiles = NULL_IF_CONFIG_SMALL(ff_prores_profiles),
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
};
const FFCodec ff_prores_encoder = {
.p.name = "prores",
.p.long_name = NULL_IF_CONFIG_SMALL("Apple ProRes"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_PRORES,
.p.pix_fmts = pix_fmts,
.priv_data_size = sizeof(ProresContext),
.init = prores_encode_init,
.close = prores_encode_close,
FF_CODEC_ENCODE_CB(prores_encode_frame),
.p.capabilities = AV_CODEC_CAP_FRAME_THREADS,
.p.priv_class = &prores_enc_class,
.p.profiles = NULL_IF_CONFIG_SMALL(ff_prores_profiles),
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
};