1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavcodec/hevc.c
Anton Khirnov 84b9463984 hevc: remove a redundant line
pred_mode is overwritten a few lines immediately below.
2014-11-17 09:25:12 +01:00

3258 lines
119 KiB
C

/*
* HEVC video decoder
*
* Copyright (C) 2012 - 2013 Guillaume Martres
* Copyright (C) 2012 - 2013 Mickael Raulet
* Copyright (C) 2012 - 2013 Gildas Cocherel
* Copyright (C) 2012 - 2013 Wassim Hamidouche
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/attributes.h"
#include "libavutil/common.h"
#include "libavutil/display.h"
#include "libavutil/internal.h"
#include "libavutil/md5.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/stereo3d.h"
#include "bswapdsp.h"
#include "bytestream.h"
#include "cabac_functions.h"
#include "golomb.h"
#include "hevc.h"
const uint8_t ff_hevc_qpel_extra_before[4] = { 0, 3, 3, 2 };
const uint8_t ff_hevc_qpel_extra_after[4] = { 0, 3, 4, 4 };
const uint8_t ff_hevc_qpel_extra[4] = { 0, 6, 7, 6 };
static const uint8_t scan_1x1[1] = { 0 };
static const uint8_t horiz_scan2x2_x[4] = { 0, 1, 0, 1 };
static const uint8_t horiz_scan2x2_y[4] = { 0, 0, 1, 1 };
static const uint8_t horiz_scan4x4_x[16] = {
0, 1, 2, 3,
0, 1, 2, 3,
0, 1, 2, 3,
0, 1, 2, 3,
};
static const uint8_t horiz_scan4x4_y[16] = {
0, 0, 0, 0,
1, 1, 1, 1,
2, 2, 2, 2,
3, 3, 3, 3,
};
static const uint8_t horiz_scan8x8_inv[8][8] = {
{ 0, 1, 2, 3, 16, 17, 18, 19, },
{ 4, 5, 6, 7, 20, 21, 22, 23, },
{ 8, 9, 10, 11, 24, 25, 26, 27, },
{ 12, 13, 14, 15, 28, 29, 30, 31, },
{ 32, 33, 34, 35, 48, 49, 50, 51, },
{ 36, 37, 38, 39, 52, 53, 54, 55, },
{ 40, 41, 42, 43, 56, 57, 58, 59, },
{ 44, 45, 46, 47, 60, 61, 62, 63, },
};
static const uint8_t diag_scan2x2_x[4] = { 0, 0, 1, 1 };
static const uint8_t diag_scan2x2_y[4] = { 0, 1, 0, 1 };
static const uint8_t diag_scan2x2_inv[2][2] = {
{ 0, 2, },
{ 1, 3, },
};
const uint8_t ff_hevc_diag_scan4x4_x[16] = {
0, 0, 1, 0,
1, 2, 0, 1,
2, 3, 1, 2,
3, 2, 3, 3,
};
const uint8_t ff_hevc_diag_scan4x4_y[16] = {
0, 1, 0, 2,
1, 0, 3, 2,
1, 0, 3, 2,
1, 3, 2, 3,
};
static const uint8_t diag_scan4x4_inv[4][4] = {
{ 0, 2, 5, 9, },
{ 1, 4, 8, 12, },
{ 3, 7, 11, 14, },
{ 6, 10, 13, 15, },
};
const uint8_t ff_hevc_diag_scan8x8_x[64] = {
0, 0, 1, 0,
1, 2, 0, 1,
2, 3, 0, 1,
2, 3, 4, 0,
1, 2, 3, 4,
5, 0, 1, 2,
3, 4, 5, 6,
0, 1, 2, 3,
4, 5, 6, 7,
1, 2, 3, 4,
5, 6, 7, 2,
3, 4, 5, 6,
7, 3, 4, 5,
6, 7, 4, 5,
6, 7, 5, 6,
7, 6, 7, 7,
};
const uint8_t ff_hevc_diag_scan8x8_y[64] = {
0, 1, 0, 2,
1, 0, 3, 2,
1, 0, 4, 3,
2, 1, 0, 5,
4, 3, 2, 1,
0, 6, 5, 4,
3, 2, 1, 0,
7, 6, 5, 4,
3, 2, 1, 0,
7, 6, 5, 4,
3, 2, 1, 7,
6, 5, 4, 3,
2, 7, 6, 5,
4, 3, 7, 6,
5, 4, 7, 6,
5, 7, 6, 7,
};
static const uint8_t diag_scan8x8_inv[8][8] = {
{ 0, 2, 5, 9, 14, 20, 27, 35, },
{ 1, 4, 8, 13, 19, 26, 34, 42, },
{ 3, 7, 12, 18, 25, 33, 41, 48, },
{ 6, 11, 17, 24, 32, 40, 47, 53, },
{ 10, 16, 23, 31, 39, 46, 52, 57, },
{ 15, 22, 30, 38, 45, 51, 56, 60, },
{ 21, 29, 37, 44, 50, 55, 59, 62, },
{ 28, 36, 43, 49, 54, 58, 61, 63, },
};
/**
* NOTE: Each function hls_foo correspond to the function foo in the
* specification (HLS stands for High Level Syntax).
*/
/**
* Section 5.7
*/
/* free everything allocated by pic_arrays_init() */
static void pic_arrays_free(HEVCContext *s)
{
av_freep(&s->sao);
av_freep(&s->deblock);
av_freep(&s->skip_flag);
av_freep(&s->tab_ct_depth);
av_freep(&s->tab_ipm);
av_freep(&s->cbf_luma);
av_freep(&s->is_pcm);
av_freep(&s->qp_y_tab);
av_freep(&s->tab_slice_address);
av_freep(&s->filter_slice_edges);
av_freep(&s->horizontal_bs);
av_freep(&s->vertical_bs);
av_buffer_pool_uninit(&s->tab_mvf_pool);
av_buffer_pool_uninit(&s->rpl_tab_pool);
}
/* allocate arrays that depend on frame dimensions */
static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
{
int log2_min_cb_size = sps->log2_min_cb_size;
int width = sps->width;
int height = sps->height;
int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
((height >> log2_min_cb_size) + 1);
int ctb_count = sps->ctb_width * sps->ctb_height;
int min_pu_size = sps->min_pu_width * sps->min_pu_height;
s->bs_width = width >> 3;
s->bs_height = height >> 3;
s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
if (!s->sao || !s->deblock)
goto fail;
s->skip_flag = av_malloc(pic_size_in_ctb);
s->tab_ct_depth = av_malloc(sps->min_cb_height * sps->min_cb_width);
if (!s->skip_flag || !s->tab_ct_depth)
goto fail;
s->cbf_luma = av_malloc(sps->min_tb_width * sps->min_tb_height);
s->tab_ipm = av_mallocz(min_pu_size);
s->is_pcm = av_malloc(min_pu_size);
if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
goto fail;
s->filter_slice_edges = av_malloc(ctb_count);
s->tab_slice_address = av_malloc(pic_size_in_ctb *
sizeof(*s->tab_slice_address));
s->qp_y_tab = av_malloc(pic_size_in_ctb *
sizeof(*s->qp_y_tab));
if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
goto fail;
s->horizontal_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
s->vertical_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
if (!s->horizontal_bs || !s->vertical_bs)
goto fail;
s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
av_buffer_alloc);
s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
av_buffer_allocz);
if (!s->tab_mvf_pool || !s->rpl_tab_pool)
goto fail;
return 0;
fail:
pic_arrays_free(s);
return AVERROR(ENOMEM);
}
static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
{
int i = 0;
int j = 0;
uint8_t luma_weight_l0_flag[16];
uint8_t chroma_weight_l0_flag[16];
uint8_t luma_weight_l1_flag[16];
uint8_t chroma_weight_l1_flag[16];
s->sh.luma_log2_weight_denom = get_ue_golomb_long(gb);
if (s->sps->chroma_format_idc != 0) {
int delta = get_se_golomb(gb);
s->sh.chroma_log2_weight_denom = av_clip_c(s->sh.luma_log2_weight_denom + delta, 0, 7);
}
for (i = 0; i < s->sh.nb_refs[L0]; i++) {
luma_weight_l0_flag[i] = get_bits1(gb);
if (!luma_weight_l0_flag[i]) {
s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
s->sh.luma_offset_l0[i] = 0;
}
}
if (s->sps->chroma_format_idc != 0) { // FIXME: invert "if" and "for"
for (i = 0; i < s->sh.nb_refs[L0]; i++)
chroma_weight_l0_flag[i] = get_bits1(gb);
} else {
for (i = 0; i < s->sh.nb_refs[L0]; i++)
chroma_weight_l0_flag[i] = 0;
}
for (i = 0; i < s->sh.nb_refs[L0]; i++) {
if (luma_weight_l0_flag[i]) {
int delta_luma_weight_l0 = get_se_golomb(gb);
s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
s->sh.luma_offset_l0[i] = get_se_golomb(gb);
}
if (chroma_weight_l0_flag[i]) {
for (j = 0; j < 2; j++) {
int delta_chroma_weight_l0 = get_se_golomb(gb);
int delta_chroma_offset_l0 = get_se_golomb(gb);
s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
s->sh.chroma_offset_l0[i][j] = av_clip_c((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
>> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
}
} else {
s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
s->sh.chroma_offset_l0[i][0] = 0;
s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
s->sh.chroma_offset_l0[i][1] = 0;
}
}
if (s->sh.slice_type == B_SLICE) {
for (i = 0; i < s->sh.nb_refs[L1]; i++) {
luma_weight_l1_flag[i] = get_bits1(gb);
if (!luma_weight_l1_flag[i]) {
s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
s->sh.luma_offset_l1[i] = 0;
}
}
if (s->sps->chroma_format_idc != 0) {
for (i = 0; i < s->sh.nb_refs[L1]; i++)
chroma_weight_l1_flag[i] = get_bits1(gb);
} else {
for (i = 0; i < s->sh.nb_refs[L1]; i++)
chroma_weight_l1_flag[i] = 0;
}
for (i = 0; i < s->sh.nb_refs[L1]; i++) {
if (luma_weight_l1_flag[i]) {
int delta_luma_weight_l1 = get_se_golomb(gb);
s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
s->sh.luma_offset_l1[i] = get_se_golomb(gb);
}
if (chroma_weight_l1_flag[i]) {
for (j = 0; j < 2; j++) {
int delta_chroma_weight_l1 = get_se_golomb(gb);
int delta_chroma_offset_l1 = get_se_golomb(gb);
s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
s->sh.chroma_offset_l1[i][j] = av_clip_c((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
>> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
}
} else {
s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
s->sh.chroma_offset_l1[i][0] = 0;
s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
s->sh.chroma_offset_l1[i][1] = 0;
}
}
}
}
static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
{
const HEVCSPS *sps = s->sps;
int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
int prev_delta_msb = 0;
unsigned int nb_sps = 0, nb_sh;
int i;
rps->nb_refs = 0;
if (!sps->long_term_ref_pics_present_flag)
return 0;
if (sps->num_long_term_ref_pics_sps > 0)
nb_sps = get_ue_golomb_long(gb);
nb_sh = get_ue_golomb_long(gb);
if (nb_sh + nb_sps > FF_ARRAY_ELEMS(rps->poc))
return AVERROR_INVALIDDATA;
rps->nb_refs = nb_sh + nb_sps;
for (i = 0; i < rps->nb_refs; i++) {
uint8_t delta_poc_msb_present;
if (i < nb_sps) {
uint8_t lt_idx_sps = 0;
if (sps->num_long_term_ref_pics_sps > 1)
lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
} else {
rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
rps->used[i] = get_bits1(gb);
}
delta_poc_msb_present = get_bits1(gb);
if (delta_poc_msb_present) {
int delta = get_ue_golomb_long(gb);
if (i && i != nb_sps)
delta += prev_delta_msb;
rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
prev_delta_msb = delta;
}
}
return 0;
}
static int set_sps(HEVCContext *s, const HEVCSPS *sps)
{
int ret;
unsigned int num = 0, den = 0;
pic_arrays_free(s);
ret = pic_arrays_init(s, sps);
if (ret < 0)
goto fail;
s->avctx->coded_width = sps->width;
s->avctx->coded_height = sps->height;
s->avctx->width = sps->output_width;
s->avctx->height = sps->output_height;
s->avctx->pix_fmt = sps->pix_fmt;
s->avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
ff_set_sar(s->avctx, sps->vui.sar);
if (sps->vui.video_signal_type_present_flag)
s->avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
: AVCOL_RANGE_MPEG;
else
s->avctx->color_range = AVCOL_RANGE_MPEG;
if (sps->vui.colour_description_present_flag) {
s->avctx->color_primaries = sps->vui.colour_primaries;
s->avctx->color_trc = sps->vui.transfer_characteristic;
s->avctx->colorspace = sps->vui.matrix_coeffs;
} else {
s->avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
s->avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
s->avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
}
ff_hevc_pred_init(&s->hpc, sps->bit_depth);
ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
ff_videodsp_init (&s->vdsp, sps->bit_depth);
if (sps->sao_enabled) {
av_frame_unref(s->tmp_frame);
ret = ff_get_buffer(s->avctx, s->tmp_frame, AV_GET_BUFFER_FLAG_REF);
if (ret < 0)
goto fail;
s->frame = s->tmp_frame;
}
s->sps = sps;
s->vps = (HEVCVPS*) s->vps_list[s->sps->vps_id]->data;
if (s->vps->vps_timing_info_present_flag) {
num = s->vps->vps_num_units_in_tick;
den = s->vps->vps_time_scale;
} else if (sps->vui.vui_timing_info_present_flag) {
num = sps->vui.vui_num_units_in_tick;
den = sps->vui.vui_time_scale;
}
if (num != 0 && den != 0)
av_reduce(&s->avctx->framerate.den, &s->avctx->framerate.num,
num, den, 1 << 30);
return 0;
fail:
pic_arrays_free(s);
s->sps = NULL;
return ret;
}
static int hls_slice_header(HEVCContext *s)
{
GetBitContext *gb = &s->HEVClc.gb;
SliceHeader *sh = &s->sh;
int i, ret;
// Coded parameters
sh->first_slice_in_pic_flag = get_bits1(gb);
if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
s->seq_decode = (s->seq_decode + 1) & 0xff;
s->max_ra = INT_MAX;
if (IS_IDR(s))
ff_hevc_clear_refs(s);
}
if (IS_IRAP(s))
sh->no_output_of_prior_pics_flag = get_bits1(gb);
sh->pps_id = get_ue_golomb_long(gb);
if (sh->pps_id >= MAX_PPS_COUNT || !s->pps_list[sh->pps_id]) {
av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
return AVERROR_INVALIDDATA;
}
if (!sh->first_slice_in_pic_flag &&
s->pps != (HEVCPPS*)s->pps_list[sh->pps_id]->data) {
av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
return AVERROR_INVALIDDATA;
}
s->pps = (HEVCPPS*)s->pps_list[sh->pps_id]->data;
if (s->sps != (HEVCSPS*)s->sps_list[s->pps->sps_id]->data) {
s->sps = (HEVCSPS*)s->sps_list[s->pps->sps_id]->data;
ff_hevc_clear_refs(s);
ret = set_sps(s, s->sps);
if (ret < 0)
return ret;
s->seq_decode = (s->seq_decode + 1) & 0xff;
s->max_ra = INT_MAX;
}
s->avctx->profile = s->sps->ptl.general_ptl.profile_idc;
s->avctx->level = s->sps->ptl.general_ptl.level_idc;
sh->dependent_slice_segment_flag = 0;
if (!sh->first_slice_in_pic_flag) {
int slice_address_length;
if (s->pps->dependent_slice_segments_enabled_flag)
sh->dependent_slice_segment_flag = get_bits1(gb);
slice_address_length = av_ceil_log2(s->sps->ctb_width *
s->sps->ctb_height);
sh->slice_segment_addr = get_bits(gb, slice_address_length);
if (sh->slice_segment_addr >= s->sps->ctb_width * s->sps->ctb_height) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid slice segment address: %u.\n",
sh->slice_segment_addr);
return AVERROR_INVALIDDATA;
}
if (!sh->dependent_slice_segment_flag) {
sh->slice_addr = sh->slice_segment_addr;
s->slice_idx++;
}
} else {
sh->slice_segment_addr = sh->slice_addr = 0;
s->slice_idx = 0;
s->slice_initialized = 0;
}
if (!sh->dependent_slice_segment_flag) {
s->slice_initialized = 0;
for (i = 0; i < s->pps->num_extra_slice_header_bits; i++)
skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
sh->slice_type = get_ue_golomb_long(gb);
if (!(sh->slice_type == I_SLICE ||
sh->slice_type == P_SLICE ||
sh->slice_type == B_SLICE)) {
av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
sh->slice_type);
return AVERROR_INVALIDDATA;
}
if (IS_IRAP(s) && sh->slice_type != I_SLICE) {
av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
return AVERROR_INVALIDDATA;
}
// when flag is not present, picture is inferred to be output
sh->pic_output_flag = 1;
if (s->pps->output_flag_present_flag)
sh->pic_output_flag = get_bits1(gb);
if (s->sps->separate_colour_plane_flag)
sh->colour_plane_id = get_bits(gb, 2);
if (!IS_IDR(s)) {
int short_term_ref_pic_set_sps_flag, poc;
sh->pic_order_cnt_lsb = get_bits(gb, s->sps->log2_max_poc_lsb);
poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
if (!sh->first_slice_in_pic_flag && poc != s->poc) {
av_log(s->avctx, AV_LOG_WARNING,
"Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
if (s->avctx->err_recognition & AV_EF_EXPLODE)
return AVERROR_INVALIDDATA;
poc = s->poc;
}
s->poc = poc;
short_term_ref_pic_set_sps_flag = get_bits1(gb);
if (!short_term_ref_pic_set_sps_flag) {
ret = ff_hevc_decode_short_term_rps(s, &sh->slice_rps, s->sps, 1);
if (ret < 0)
return ret;
sh->short_term_rps = &sh->slice_rps;
} else {
int numbits, rps_idx;
if (!s->sps->nb_st_rps) {
av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
return AVERROR_INVALIDDATA;
}
numbits = av_ceil_log2(s->sps->nb_st_rps);
rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
sh->short_term_rps = &s->sps->st_rps[rps_idx];
}
ret = decode_lt_rps(s, &sh->long_term_rps, gb);
if (ret < 0) {
av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
if (s->avctx->err_recognition & AV_EF_EXPLODE)
return AVERROR_INVALIDDATA;
}
if (s->sps->sps_temporal_mvp_enabled_flag)
sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
else
sh->slice_temporal_mvp_enabled_flag = 0;
} else {
s->sh.short_term_rps = NULL;
s->poc = 0;
}
/* 8.3.1 */
if (s->temporal_id == 0 &&
s->nal_unit_type != NAL_TRAIL_N &&
s->nal_unit_type != NAL_TSA_N &&
s->nal_unit_type != NAL_STSA_N &&
s->nal_unit_type != NAL_RADL_N &&
s->nal_unit_type != NAL_RADL_R &&
s->nal_unit_type != NAL_RASL_N &&
s->nal_unit_type != NAL_RASL_R)
s->pocTid0 = s->poc;
if (s->sps->sao_enabled) {
sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
sh->slice_sample_adaptive_offset_flag[1] =
sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
} else {
sh->slice_sample_adaptive_offset_flag[0] = 0;
sh->slice_sample_adaptive_offset_flag[1] = 0;
sh->slice_sample_adaptive_offset_flag[2] = 0;
}
sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) {
int nb_refs;
sh->nb_refs[L0] = s->pps->num_ref_idx_l0_default_active;
if (sh->slice_type == B_SLICE)
sh->nb_refs[L1] = s->pps->num_ref_idx_l1_default_active;
if (get_bits1(gb)) { // num_ref_idx_active_override_flag
sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
if (sh->slice_type == B_SLICE)
sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
}
if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) {
av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
sh->nb_refs[L0], sh->nb_refs[L1]);
return AVERROR_INVALIDDATA;
}
sh->rpl_modification_flag[0] = 0;
sh->rpl_modification_flag[1] = 0;
nb_refs = ff_hevc_frame_nb_refs(s);
if (!nb_refs) {
av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
return AVERROR_INVALIDDATA;
}
if (s->pps->lists_modification_present_flag && nb_refs > 1) {
sh->rpl_modification_flag[0] = get_bits1(gb);
if (sh->rpl_modification_flag[0]) {
for (i = 0; i < sh->nb_refs[L0]; i++)
sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
}
if (sh->slice_type == B_SLICE) {
sh->rpl_modification_flag[1] = get_bits1(gb);
if (sh->rpl_modification_flag[1] == 1)
for (i = 0; i < sh->nb_refs[L1]; i++)
sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
}
}
if (sh->slice_type == B_SLICE)
sh->mvd_l1_zero_flag = get_bits1(gb);
if (s->pps->cabac_init_present_flag)
sh->cabac_init_flag = get_bits1(gb);
else
sh->cabac_init_flag = 0;
sh->collocated_ref_idx = 0;
if (sh->slice_temporal_mvp_enabled_flag) {
sh->collocated_list = L0;
if (sh->slice_type == B_SLICE)
sh->collocated_list = !get_bits1(gb);
if (sh->nb_refs[sh->collocated_list] > 1) {
sh->collocated_ref_idx = get_ue_golomb_long(gb);
if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid collocated_ref_idx: %d.\n",
sh->collocated_ref_idx);
return AVERROR_INVALIDDATA;
}
}
}
if ((s->pps->weighted_pred_flag && sh->slice_type == P_SLICE) ||
(s->pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) {
pred_weight_table(s, gb);
}
sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid number of merging MVP candidates: %d.\n",
sh->max_num_merge_cand);
return AVERROR_INVALIDDATA;
}
}
sh->slice_qp_delta = get_se_golomb(gb);
if (s->pps->pic_slice_level_chroma_qp_offsets_present_flag) {
sh->slice_cb_qp_offset = get_se_golomb(gb);
sh->slice_cr_qp_offset = get_se_golomb(gb);
} else {
sh->slice_cb_qp_offset = 0;
sh->slice_cr_qp_offset = 0;
}
if (s->pps->deblocking_filter_control_present_flag) {
int deblocking_filter_override_flag = 0;
if (s->pps->deblocking_filter_override_enabled_flag)
deblocking_filter_override_flag = get_bits1(gb);
if (deblocking_filter_override_flag) {
sh->disable_deblocking_filter_flag = get_bits1(gb);
if (!sh->disable_deblocking_filter_flag) {
sh->beta_offset = get_se_golomb(gb) * 2;
sh->tc_offset = get_se_golomb(gb) * 2;
}
} else {
sh->disable_deblocking_filter_flag = s->pps->disable_dbf;
sh->beta_offset = s->pps->beta_offset;
sh->tc_offset = s->pps->tc_offset;
}
} else {
sh->disable_deblocking_filter_flag = 0;
sh->beta_offset = 0;
sh->tc_offset = 0;
}
if (s->pps->seq_loop_filter_across_slices_enabled_flag &&
(sh->slice_sample_adaptive_offset_flag[0] ||
sh->slice_sample_adaptive_offset_flag[1] ||
!sh->disable_deblocking_filter_flag)) {
sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
} else {
sh->slice_loop_filter_across_slices_enabled_flag = s->pps->seq_loop_filter_across_slices_enabled_flag;
}
} else if (!s->slice_initialized) {
av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
return AVERROR_INVALIDDATA;
}
sh->num_entry_point_offsets = 0;
if (s->pps->tiles_enabled_flag || s->pps->entropy_coding_sync_enabled_flag) {
sh->num_entry_point_offsets = get_ue_golomb_long(gb);
if (sh->num_entry_point_offsets > 0) {
int offset_len = get_ue_golomb_long(gb) + 1;
for (i = 0; i < sh->num_entry_point_offsets; i++)
skip_bits(gb, offset_len);
}
}
if (s->pps->slice_header_extension_present_flag) {
unsigned int length = get_ue_golomb_long(gb);
for (i = 0; i < length; i++)
skip_bits(gb, 8); // slice_header_extension_data_byte
}
// Inferred parameters
sh->slice_qp = 26 + s->pps->pic_init_qp_minus26 + sh->slice_qp_delta;
if (sh->slice_qp > 51 ||
sh->slice_qp < -s->sps->qp_bd_offset) {
av_log(s->avctx, AV_LOG_ERROR,
"The slice_qp %d is outside the valid range "
"[%d, 51].\n",
sh->slice_qp,
-s->sps->qp_bd_offset);
return AVERROR_INVALIDDATA;
}
sh->slice_ctb_addr_rs = sh->slice_segment_addr;
if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
return AVERROR_INVALIDDATA;
}
s->HEVClc.first_qp_group = !s->sh.dependent_slice_segment_flag;
if (!s->pps->cu_qp_delta_enabled_flag)
s->HEVClc.qp_y = FFUMOD(s->sh.slice_qp + 52 + 2 * s->sps->qp_bd_offset,
52 + s->sps->qp_bd_offset) - s->sps->qp_bd_offset;
s->slice_initialized = 1;
return 0;
}
#define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
#define SET_SAO(elem, value) \
do { \
if (!sao_merge_up_flag && !sao_merge_left_flag) \
sao->elem = value; \
else if (sao_merge_left_flag) \
sao->elem = CTB(s->sao, rx-1, ry).elem; \
else if (sao_merge_up_flag) \
sao->elem = CTB(s->sao, rx, ry-1).elem; \
else \
sao->elem = 0; \
} while (0)
static void hls_sao_param(HEVCContext *s, int rx, int ry)
{
HEVCLocalContext *lc = &s->HEVClc;
int sao_merge_left_flag = 0;
int sao_merge_up_flag = 0;
int shift = s->sps->bit_depth - FFMIN(s->sps->bit_depth, 10);
SAOParams *sao = &CTB(s->sao, rx, ry);
int c_idx, i;
if (s->sh.slice_sample_adaptive_offset_flag[0] ||
s->sh.slice_sample_adaptive_offset_flag[1]) {
if (rx > 0) {
if (lc->ctb_left_flag)
sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
}
if (ry > 0 && !sao_merge_left_flag) {
if (lc->ctb_up_flag)
sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
}
}
for (c_idx = 0; c_idx < 3; c_idx++) {
if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
sao->type_idx[c_idx] = SAO_NOT_APPLIED;
continue;
}
if (c_idx == 2) {
sao->type_idx[2] = sao->type_idx[1];
sao->eo_class[2] = sao->eo_class[1];
} else {
SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
}
if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
continue;
for (i = 0; i < 4; i++)
SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
if (sao->type_idx[c_idx] == SAO_BAND) {
for (i = 0; i < 4; i++) {
if (sao->offset_abs[c_idx][i]) {
SET_SAO(offset_sign[c_idx][i],
ff_hevc_sao_offset_sign_decode(s));
} else {
sao->offset_sign[c_idx][i] = 0;
}
}
SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
} else if (c_idx != 2) {
SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
}
// Inferred parameters
sao->offset_val[c_idx][0] = 0;
for (i = 0; i < 4; i++) {
sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i] << shift;
if (sao->type_idx[c_idx] == SAO_EDGE) {
if (i > 1)
sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
} else if (sao->offset_sign[c_idx][i]) {
sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
}
}
}
}
#undef SET_SAO
#undef CTB
static void hls_residual_coding(HEVCContext *s, int x0, int y0,
int log2_trafo_size, enum ScanType scan_idx,
int c_idx)
{
#define GET_COORD(offset, n) \
do { \
x_c = (scan_x_cg[offset >> 4] << 2) + scan_x_off[n]; \
y_c = (scan_y_cg[offset >> 4] << 2) + scan_y_off[n]; \
} while (0)
HEVCLocalContext *lc = &s->HEVClc;
int transform_skip_flag = 0;
int last_significant_coeff_x, last_significant_coeff_y;
int last_scan_pos;
int n_end;
int num_coeff = 0;
int greater1_ctx = 1;
int num_last_subset;
int x_cg_last_sig, y_cg_last_sig;
const uint8_t *scan_x_cg, *scan_y_cg, *scan_x_off, *scan_y_off;
ptrdiff_t stride = s->frame->linesize[c_idx];
int hshift = s->sps->hshift[c_idx];
int vshift = s->sps->vshift[c_idx];
uint8_t *dst = &s->frame->data[c_idx][(y0 >> vshift) * stride +
((x0 >> hshift) << s->sps->pixel_shift)];
DECLARE_ALIGNED(16, int16_t, coeffs[MAX_TB_SIZE * MAX_TB_SIZE]) = { 0 };
DECLARE_ALIGNED(8, uint8_t, significant_coeff_group_flag[8][8]) = { { 0 } };
int trafo_size = 1 << log2_trafo_size;
int i, qp, shift, add, scale, scale_m;
const uint8_t level_scale[] = { 40, 45, 51, 57, 64, 72 };
const uint8_t *scale_matrix;
uint8_t dc_scale;
// Derive QP for dequant
if (!lc->cu.cu_transquant_bypass_flag) {
static const int qp_c[] = {
29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
};
static const uint8_t rem6[51 + 2 * 6 + 1] = {
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
};
static const uint8_t div6[51 + 2 * 6 + 1] = {
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3,
3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
};
int qp_y = lc->qp_y;
if (c_idx == 0) {
qp = qp_y + s->sps->qp_bd_offset;
} else {
int qp_i, offset;
if (c_idx == 1)
offset = s->pps->cb_qp_offset + s->sh.slice_cb_qp_offset;
else
offset = s->pps->cr_qp_offset + s->sh.slice_cr_qp_offset;
qp_i = av_clip_c(qp_y + offset, -s->sps->qp_bd_offset, 57);
if (qp_i < 30)
qp = qp_i;
else if (qp_i > 43)
qp = qp_i - 6;
else
qp = qp_c[qp_i - 30];
qp += s->sps->qp_bd_offset;
}
shift = s->sps->bit_depth + log2_trafo_size - 5;
add = 1 << (shift - 1);
scale = level_scale[rem6[qp]] << (div6[qp]);
scale_m = 16; // default when no custom scaling lists.
dc_scale = 16;
if (s->sps->scaling_list_enable_flag) {
const ScalingList *sl = s->pps->scaling_list_data_present_flag ?
&s->pps->scaling_list : &s->sps->scaling_list;
int matrix_id = lc->cu.pred_mode != MODE_INTRA;
if (log2_trafo_size != 5)
matrix_id = 3 * matrix_id + c_idx;
scale_matrix = sl->sl[log2_trafo_size - 2][matrix_id];
if (log2_trafo_size >= 4)
dc_scale = sl->sl_dc[log2_trafo_size - 4][matrix_id];
}
}
if (s->pps->transform_skip_enabled_flag &&
!lc->cu.cu_transquant_bypass_flag &&
log2_trafo_size == 2) {
transform_skip_flag = ff_hevc_transform_skip_flag_decode(s, c_idx);
}
last_significant_coeff_x =
ff_hevc_last_significant_coeff_x_prefix_decode(s, c_idx, log2_trafo_size);
last_significant_coeff_y =
ff_hevc_last_significant_coeff_y_prefix_decode(s, c_idx, log2_trafo_size);
if (last_significant_coeff_x > 3) {
int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_x);
last_significant_coeff_x = (1 << ((last_significant_coeff_x >> 1) - 1)) *
(2 + (last_significant_coeff_x & 1)) +
suffix;
}
if (last_significant_coeff_y > 3) {
int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_y);
last_significant_coeff_y = (1 << ((last_significant_coeff_y >> 1) - 1)) *
(2 + (last_significant_coeff_y & 1)) +
suffix;
}
if (scan_idx == SCAN_VERT)
FFSWAP(int, last_significant_coeff_x, last_significant_coeff_y);
x_cg_last_sig = last_significant_coeff_x >> 2;
y_cg_last_sig = last_significant_coeff_y >> 2;
switch (scan_idx) {
case SCAN_DIAG: {
int last_x_c = last_significant_coeff_x & 3;
int last_y_c = last_significant_coeff_y & 3;
scan_x_off = ff_hevc_diag_scan4x4_x;
scan_y_off = ff_hevc_diag_scan4x4_y;
num_coeff = diag_scan4x4_inv[last_y_c][last_x_c];
if (trafo_size == 4) {
scan_x_cg = scan_1x1;
scan_y_cg = scan_1x1;
} else if (trafo_size == 8) {
num_coeff += diag_scan2x2_inv[y_cg_last_sig][x_cg_last_sig] << 4;
scan_x_cg = diag_scan2x2_x;
scan_y_cg = diag_scan2x2_y;
} else if (trafo_size == 16) {
num_coeff += diag_scan4x4_inv[y_cg_last_sig][x_cg_last_sig] << 4;
scan_x_cg = ff_hevc_diag_scan4x4_x;
scan_y_cg = ff_hevc_diag_scan4x4_y;
} else { // trafo_size == 32
num_coeff += diag_scan8x8_inv[y_cg_last_sig][x_cg_last_sig] << 4;
scan_x_cg = ff_hevc_diag_scan8x8_x;
scan_y_cg = ff_hevc_diag_scan8x8_y;
}
break;
}
case SCAN_HORIZ:
scan_x_cg = horiz_scan2x2_x;
scan_y_cg = horiz_scan2x2_y;
scan_x_off = horiz_scan4x4_x;
scan_y_off = horiz_scan4x4_y;
num_coeff = horiz_scan8x8_inv[last_significant_coeff_y][last_significant_coeff_x];
break;
default: //SCAN_VERT
scan_x_cg = horiz_scan2x2_y;
scan_y_cg = horiz_scan2x2_x;
scan_x_off = horiz_scan4x4_y;
scan_y_off = horiz_scan4x4_x;
num_coeff = horiz_scan8x8_inv[last_significant_coeff_x][last_significant_coeff_y];
break;
}
num_coeff++;
num_last_subset = (num_coeff - 1) >> 4;
for (i = num_last_subset; i >= 0; i--) {
int n, m;
int x_cg, y_cg, x_c, y_c;
int implicit_non_zero_coeff = 0;
int64_t trans_coeff_level;
int prev_sig = 0;
int offset = i << 4;
uint8_t significant_coeff_flag_idx[16];
uint8_t nb_significant_coeff_flag = 0;
x_cg = scan_x_cg[i];
y_cg = scan_y_cg[i];
if (i < num_last_subset && i > 0) {
int ctx_cg = 0;
if (x_cg < (1 << (log2_trafo_size - 2)) - 1)
ctx_cg += significant_coeff_group_flag[x_cg + 1][y_cg];
if (y_cg < (1 << (log2_trafo_size - 2)) - 1)
ctx_cg += significant_coeff_group_flag[x_cg][y_cg + 1];
significant_coeff_group_flag[x_cg][y_cg] =
ff_hevc_significant_coeff_group_flag_decode(s, c_idx, ctx_cg);
implicit_non_zero_coeff = 1;
} else {
significant_coeff_group_flag[x_cg][y_cg] =
((x_cg == x_cg_last_sig && y_cg == y_cg_last_sig) ||
(x_cg == 0 && y_cg == 0));
}
last_scan_pos = num_coeff - offset - 1;
if (i == num_last_subset) {
n_end = last_scan_pos - 1;
significant_coeff_flag_idx[0] = last_scan_pos;
nb_significant_coeff_flag = 1;
} else {
n_end = 15;
}
if (x_cg < ((1 << log2_trafo_size) - 1) >> 2)
prev_sig = significant_coeff_group_flag[x_cg + 1][y_cg];
if (y_cg < ((1 << log2_trafo_size) - 1) >> 2)
prev_sig += significant_coeff_group_flag[x_cg][y_cg + 1] << 1;
for (n = n_end; n >= 0; n--) {
GET_COORD(offset, n);
if (significant_coeff_group_flag[x_cg][y_cg] &&
(n > 0 || implicit_non_zero_coeff == 0)) {
if (ff_hevc_significant_coeff_flag_decode(s, c_idx, x_c, y_c,
log2_trafo_size,
scan_idx,
prev_sig) == 1) {
significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
nb_significant_coeff_flag++;
implicit_non_zero_coeff = 0;
}
} else {
int last_cg = (x_c == (x_cg << 2) && y_c == (y_cg << 2));
if (last_cg && implicit_non_zero_coeff && significant_coeff_group_flag[x_cg][y_cg]) {
significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
nb_significant_coeff_flag++;
}
}
}
n_end = nb_significant_coeff_flag;
if (n_end) {
int first_nz_pos_in_cg = 16;
int last_nz_pos_in_cg = -1;
int c_rice_param = 0;
int first_greater1_coeff_idx = -1;
uint8_t coeff_abs_level_greater1_flag[16] = { 0 };
uint16_t coeff_sign_flag;
int sum_abs = 0;
int sign_hidden = 0;
// initialize first elem of coeff_bas_level_greater1_flag
int ctx_set = (i > 0 && c_idx == 0) ? 2 : 0;
if (!(i == num_last_subset) && greater1_ctx == 0)
ctx_set++;
greater1_ctx = 1;
last_nz_pos_in_cg = significant_coeff_flag_idx[0];
for (m = 0; m < (n_end > 8 ? 8 : n_end); m++) {
int n_idx = significant_coeff_flag_idx[m];
int inc = (ctx_set << 2) + greater1_ctx;
coeff_abs_level_greater1_flag[n_idx] =
ff_hevc_coeff_abs_level_greater1_flag_decode(s, c_idx, inc);
if (coeff_abs_level_greater1_flag[n_idx]) {
greater1_ctx = 0;
} else if (greater1_ctx > 0 && greater1_ctx < 3) {
greater1_ctx++;
}
if (coeff_abs_level_greater1_flag[n_idx] &&
first_greater1_coeff_idx == -1)
first_greater1_coeff_idx = n_idx;
}
first_nz_pos_in_cg = significant_coeff_flag_idx[n_end - 1];
sign_hidden = last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 &&
!lc->cu.cu_transquant_bypass_flag;
if (first_greater1_coeff_idx != -1) {
coeff_abs_level_greater1_flag[first_greater1_coeff_idx] += ff_hevc_coeff_abs_level_greater2_flag_decode(s, c_idx, ctx_set);
}
if (!s->pps->sign_data_hiding_flag || !sign_hidden) {
coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag) << (16 - nb_significant_coeff_flag);
} else {
coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag - 1) << (16 - (nb_significant_coeff_flag - 1));
}
for (m = 0; m < n_end; m++) {
n = significant_coeff_flag_idx[m];
GET_COORD(offset, n);
trans_coeff_level = 1 + coeff_abs_level_greater1_flag[n];
if (trans_coeff_level == ((m < 8) ?
((n == first_greater1_coeff_idx) ? 3 : 2) : 1)) {
int last_coeff_abs_level_remaining = ff_hevc_coeff_abs_level_remaining(s, trans_coeff_level, c_rice_param);
trans_coeff_level += last_coeff_abs_level_remaining;
if ((trans_coeff_level) > (3 * (1 << c_rice_param)))
c_rice_param = FFMIN(c_rice_param + 1, 4);
}
if (s->pps->sign_data_hiding_flag && sign_hidden) {
sum_abs += trans_coeff_level;
if (n == first_nz_pos_in_cg && ((sum_abs & 1) == 1))
trans_coeff_level = -trans_coeff_level;
}
if (coeff_sign_flag >> 15)
trans_coeff_level = -trans_coeff_level;
coeff_sign_flag <<= 1;
if (!lc->cu.cu_transquant_bypass_flag) {
if (s->sps->scaling_list_enable_flag) {
if (y_c || x_c || log2_trafo_size < 4) {
int pos;
switch (log2_trafo_size) {
case 3: pos = (y_c << 3) + x_c; break;
case 4: pos = ((y_c >> 1) << 3) + (x_c >> 1); break;
case 5: pos = ((y_c >> 2) << 3) + (x_c >> 2); break;
default: pos = (y_c << 2) + x_c;
}
scale_m = scale_matrix[pos];
} else {
scale_m = dc_scale;
}
}
trans_coeff_level = (trans_coeff_level * (int64_t)scale * (int64_t)scale_m + add) >> shift;
if(trans_coeff_level < 0) {
if((~trans_coeff_level) & 0xFffffffffff8000)
trans_coeff_level = -32768;
} else {
if (trans_coeff_level & 0xffffffffffff8000)
trans_coeff_level = 32767;
}
}
coeffs[y_c * trafo_size + x_c] = trans_coeff_level;
}
}
}
if (lc->cu.cu_transquant_bypass_flag) {
s->hevcdsp.transquant_bypass[log2_trafo_size - 2](dst, coeffs, stride);
} else {
if (transform_skip_flag)
s->hevcdsp.transform_skip(dst, coeffs, stride);
else if (lc->cu.pred_mode == MODE_INTRA && c_idx == 0 &&
log2_trafo_size == 2)
s->hevcdsp.transform_4x4_luma_add(dst, coeffs, stride);
else
s->hevcdsp.transform_add[log2_trafo_size - 2](dst, coeffs, stride);
}
}
static int hls_transform_unit(HEVCContext *s, int x0, int y0,
int xBase, int yBase, int cb_xBase, int cb_yBase,
int log2_cb_size, int log2_trafo_size,
int trafo_depth, int blk_idx,
int cbf_luma, int cbf_cb, int cbf_cr)
{
HEVCLocalContext *lc = &s->HEVClc;
if (lc->cu.pred_mode == MODE_INTRA) {
int trafo_size = 1 << log2_trafo_size;
ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
if (log2_trafo_size > 2) {
trafo_size = trafo_size << (s->sps->hshift[1] - 1);
ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 1);
s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 2);
} else if (blk_idx == 3) {
trafo_size = trafo_size << s->sps->hshift[1];
ff_hevc_set_neighbour_available(s, xBase, yBase,
trafo_size, trafo_size);
s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
}
}
if (cbf_luma || cbf_cb || cbf_cr) {
int scan_idx = SCAN_DIAG;
int scan_idx_c = SCAN_DIAG;
if (s->pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
if (lc->tu.cu_qp_delta != 0)
if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
lc->tu.is_cu_qp_delta_coded = 1;
if (lc->tu.cu_qp_delta < -(26 + s->sps->qp_bd_offset / 2) ||
lc->tu.cu_qp_delta > (25 + s->sps->qp_bd_offset / 2)) {
av_log(s->avctx, AV_LOG_ERROR,
"The cu_qp_delta %d is outside the valid range "
"[%d, %d].\n",
lc->tu.cu_qp_delta,
-(26 + s->sps->qp_bd_offset / 2),
(25 + s->sps->qp_bd_offset / 2));
return AVERROR_INVALIDDATA;
}
ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size);
}
if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
if (lc->tu.cur_intra_pred_mode >= 6 &&
lc->tu.cur_intra_pred_mode <= 14) {
scan_idx = SCAN_VERT;
} else if (lc->tu.cur_intra_pred_mode >= 22 &&
lc->tu.cur_intra_pred_mode <= 30) {
scan_idx = SCAN_HORIZ;
}
if (lc->pu.intra_pred_mode_c >= 6 &&
lc->pu.intra_pred_mode_c <= 14) {
scan_idx_c = SCAN_VERT;
} else if (lc->pu.intra_pred_mode_c >= 22 &&
lc->pu.intra_pred_mode_c <= 30) {
scan_idx_c = SCAN_HORIZ;
}
}
if (cbf_luma)
hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
if (log2_trafo_size > 2) {
if (cbf_cb)
hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 1);
if (cbf_cr)
hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 2);
} else if (blk_idx == 3) {
if (cbf_cb)
hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 1);
if (cbf_cr)
hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 2);
}
}
return 0;
}
static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
{
int cb_size = 1 << log2_cb_size;
int log2_min_pu_size = s->sps->log2_min_pu_size;
int min_pu_width = s->sps->min_pu_width;
int x_end = FFMIN(x0 + cb_size, s->sps->width);
int y_end = FFMIN(y0 + cb_size, s->sps->height);
int i, j;
for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
s->is_pcm[i + j * min_pu_width] = 2;
}
static int hls_transform_tree(HEVCContext *s, int x0, int y0,
int xBase, int yBase, int cb_xBase, int cb_yBase,
int log2_cb_size, int log2_trafo_size,
int trafo_depth, int blk_idx,
int cbf_cb, int cbf_cr)
{
HEVCLocalContext *lc = &s->HEVClc;
uint8_t split_transform_flag;
int ret;
if (lc->cu.intra_split_flag) {
if (trafo_depth == 1)
lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
} else {
lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[0];
}
if (log2_trafo_size <= s->sps->log2_max_trafo_size &&
log2_trafo_size > s->sps->log2_min_tb_size &&
trafo_depth < lc->cu.max_trafo_depth &&
!(lc->cu.intra_split_flag && trafo_depth == 0)) {
split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
} else {
int inter_split = s->sps->max_transform_hierarchy_depth_inter == 0 &&
lc->cu.pred_mode == MODE_INTER &&
lc->cu.part_mode != PART_2Nx2N &&
trafo_depth == 0;
split_transform_flag = log2_trafo_size > s->sps->log2_max_trafo_size ||
(lc->cu.intra_split_flag && trafo_depth == 0) ||
inter_split;
}
if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cb))
cbf_cb = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
else if (log2_trafo_size > 2 || trafo_depth == 0)
cbf_cb = 0;
if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cr))
cbf_cr = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
else if (log2_trafo_size > 2 || trafo_depth == 0)
cbf_cr = 0;
if (split_transform_flag) {
const int trafo_size_split = 1 << (log2_trafo_size - 1);
const int x1 = x0 + trafo_size_split;
const int y1 = y0 + trafo_size_split;
#define SUBDIVIDE(x, y, idx) \
do { \
ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
log2_trafo_size - 1, trafo_depth + 1, idx, \
cbf_cb, cbf_cr); \
if (ret < 0) \
return ret; \
} while (0)
SUBDIVIDE(x0, y0, 0);
SUBDIVIDE(x1, y0, 1);
SUBDIVIDE(x0, y1, 2);
SUBDIVIDE(x1, y1, 3);
#undef SUBDIVIDE
} else {
int min_tu_size = 1 << s->sps->log2_min_tb_size;
int log2_min_tu_size = s->sps->log2_min_tb_size;
int min_tu_width = s->sps->min_tb_width;
int cbf_luma = 1;
if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
cbf_cb || cbf_cr)
cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
log2_cb_size, log2_trafo_size, trafo_depth,
blk_idx, cbf_luma, cbf_cb, cbf_cr);
if (ret < 0)
return ret;
// TODO: store cbf_luma somewhere else
if (cbf_luma) {
int i, j;
for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
int x_tu = (x0 + j) >> log2_min_tu_size;
int y_tu = (y0 + i) >> log2_min_tu_size;
s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
}
}
if (!s->sh.disable_deblocking_filter_flag) {
ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
if (s->pps->transquant_bypass_enable_flag &&
lc->cu.cu_transquant_bypass_flag)
set_deblocking_bypass(s, x0, y0, log2_trafo_size);
}
}
return 0;
}
static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
{
//TODO: non-4:2:0 support
HEVCLocalContext *lc = &s->HEVClc;
GetBitContext gb;
int cb_size = 1 << log2_cb_size;
int stride0 = s->frame->linesize[0];
uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->sps->pixel_shift)];
int stride1 = s->frame->linesize[1];
uint8_t *dst1 = &s->frame->data[1][(y0 >> s->sps->vshift[1]) * stride1 + ((x0 >> s->sps->hshift[1]) << s->sps->pixel_shift)];
int stride2 = s->frame->linesize[2];
uint8_t *dst2 = &s->frame->data[2][(y0 >> s->sps->vshift[2]) * stride2 + ((x0 >> s->sps->hshift[2]) << s->sps->pixel_shift)];
int length = cb_size * cb_size * s->sps->pcm.bit_depth + ((cb_size * cb_size) >> 1) * s->sps->pcm.bit_depth_chroma;
const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
int ret;
if (!s->sh.disable_deblocking_filter_flag)
ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
ret = init_get_bits(&gb, pcm, length);
if (ret < 0)
return ret;
s->hevcdsp.put_pcm(dst0, stride0, cb_size, &gb, s->sps->pcm.bit_depth);
s->hevcdsp.put_pcm(dst1, stride1, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
s->hevcdsp.put_pcm(dst2, stride2, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
return 0;
}
static void hls_mvd_coding(HEVCContext *s, int x0, int y0, int log2_cb_size)
{
HEVCLocalContext *lc = &s->HEVClc;
int x = ff_hevc_abs_mvd_greater0_flag_decode(s);
int y = ff_hevc_abs_mvd_greater0_flag_decode(s);
if (x)
x += ff_hevc_abs_mvd_greater1_flag_decode(s);
if (y)
y += ff_hevc_abs_mvd_greater1_flag_decode(s);
switch (x) {
case 2: lc->pu.mvd.x = ff_hevc_mvd_decode(s); break;
case 1: lc->pu.mvd.x = ff_hevc_mvd_sign_flag_decode(s); break;
case 0: lc->pu.mvd.x = 0; break;
}
switch (y) {
case 2: lc->pu.mvd.y = ff_hevc_mvd_decode(s); break;
case 1: lc->pu.mvd.y = ff_hevc_mvd_sign_flag_decode(s); break;
case 0: lc->pu.mvd.y = 0; break;
}
}
/**
* 8.5.3.2.2.1 Luma sample interpolation process
*
* @param s HEVC decoding context
* @param dst target buffer for block data at block position
* @param dststride stride of the dst buffer
* @param ref reference picture buffer at origin (0, 0)
* @param mv motion vector (relative to block position) to get pixel data from
* @param x_off horizontal position of block from origin (0, 0)
* @param y_off vertical position of block from origin (0, 0)
* @param block_w width of block
* @param block_h height of block
*/
static void luma_mc(HEVCContext *s, int16_t *dst, ptrdiff_t dststride,
AVFrame *ref, const Mv *mv, int x_off, int y_off,
int block_w, int block_h)
{
HEVCLocalContext *lc = &s->HEVClc;
uint8_t *src = ref->data[0];
ptrdiff_t srcstride = ref->linesize[0];
int pic_width = s->sps->width;
int pic_height = s->sps->height;
int mx = mv->x & 3;
int my = mv->y & 3;
int extra_left = ff_hevc_qpel_extra_before[mx];
int extra_top = ff_hevc_qpel_extra_before[my];
x_off += mv->x >> 2;
y_off += mv->y >> 2;
src += y_off * srcstride + (x_off << s->sps->pixel_shift);
if (x_off < extra_left || y_off < extra_top ||
x_off >= pic_width - block_w - ff_hevc_qpel_extra_after[mx] ||
y_off >= pic_height - block_h - ff_hevc_qpel_extra_after[my]) {
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
int offset = extra_top * srcstride + (extra_left << s->sps->pixel_shift);
int buf_offset = extra_top *
edge_emu_stride + (extra_left << s->sps->pixel_shift);
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
edge_emu_stride, srcstride,
block_w + ff_hevc_qpel_extra[mx],
block_h + ff_hevc_qpel_extra[my],
x_off - extra_left, y_off - extra_top,
pic_width, pic_height);
src = lc->edge_emu_buffer + buf_offset;
srcstride = edge_emu_stride;
}
s->hevcdsp.put_hevc_qpel[my][mx](dst, dststride, src, srcstride, block_w,
block_h, lc->mc_buffer);
}
/**
* 8.5.3.2.2.2 Chroma sample interpolation process
*
* @param s HEVC decoding context
* @param dst1 target buffer for block data at block position (U plane)
* @param dst2 target buffer for block data at block position (V plane)
* @param dststride stride of the dst1 and dst2 buffers
* @param ref reference picture buffer at origin (0, 0)
* @param mv motion vector (relative to block position) to get pixel data from
* @param x_off horizontal position of block from origin (0, 0)
* @param y_off vertical position of block from origin (0, 0)
* @param block_w width of block
* @param block_h height of block
*/
static void chroma_mc(HEVCContext *s, int16_t *dst1, int16_t *dst2,
ptrdiff_t dststride, AVFrame *ref, const Mv *mv,
int x_off, int y_off, int block_w, int block_h)
{
HEVCLocalContext *lc = &s->HEVClc;
uint8_t *src1 = ref->data[1];
uint8_t *src2 = ref->data[2];
ptrdiff_t src1stride = ref->linesize[1];
ptrdiff_t src2stride = ref->linesize[2];
int pic_width = s->sps->width >> 1;
int pic_height = s->sps->height >> 1;
int mx = mv->x & 7;
int my = mv->y & 7;
x_off += mv->x >> 3;
y_off += mv->y >> 3;
src1 += y_off * src1stride + (x_off << s->sps->pixel_shift);
src2 += y_off * src2stride + (x_off << s->sps->pixel_shift);
if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->sps->pixel_shift));
int buf_offset1 = EPEL_EXTRA_BEFORE *
(edge_emu_stride + (1 << s->sps->pixel_shift));
int offset2 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->sps->pixel_shift));
int buf_offset2 = EPEL_EXTRA_BEFORE *
(edge_emu_stride + (1 << s->sps->pixel_shift));
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
edge_emu_stride, src1stride,
block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
x_off - EPEL_EXTRA_BEFORE,
y_off - EPEL_EXTRA_BEFORE,
pic_width, pic_height);
src1 = lc->edge_emu_buffer + buf_offset1;
src1stride = edge_emu_stride;
s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
block_w, block_h, mx, my, lc->mc_buffer);
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src2 - offset2,
edge_emu_stride, src2stride,
block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
x_off - EPEL_EXTRA_BEFORE,
y_off - EPEL_EXTRA_BEFORE,
pic_width, pic_height);
src2 = lc->edge_emu_buffer + buf_offset2;
src2stride = edge_emu_stride;
s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
block_w, block_h, mx, my,
lc->mc_buffer);
} else {
s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
block_w, block_h, mx, my,
lc->mc_buffer);
s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
block_w, block_h, mx, my,
lc->mc_buffer);
}
}
static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
const Mv *mv, int y0, int height)
{
int y = (mv->y >> 2) + y0 + height + 9;
ff_thread_await_progress(&ref->tf, y, 0);
}
static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
int nPbW, int nPbH,
int log2_cb_size, int partIdx)
{
#define POS(c_idx, x, y) \
&s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
(((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)]
HEVCLocalContext *lc = &s->HEVClc;
int merge_idx = 0;
struct MvField current_mv = {{{ 0 }}};
int min_pu_width = s->sps->min_pu_width;
MvField *tab_mvf = s->ref->tab_mvf;
RefPicList *refPicList = s->ref->refPicList;
HEVCFrame *ref0, *ref1;
int tmpstride = MAX_PB_SIZE;
uint8_t *dst0 = POS(0, x0, y0);
uint8_t *dst1 = POS(1, x0, y0);
uint8_t *dst2 = POS(2, x0, y0);
int log2_min_cb_size = s->sps->log2_min_cb_size;
int min_cb_width = s->sps->min_cb_width;
int x_cb = x0 >> log2_min_cb_size;
int y_cb = y0 >> log2_min_cb_size;
int ref_idx[2];
int mvp_flag[2];
int x_pu, y_pu;
int i, j;
if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
if (s->sh.max_num_merge_cand > 1)
merge_idx = ff_hevc_merge_idx_decode(s);
else
merge_idx = 0;
ff_hevc_luma_mv_merge_mode(s, x0, y0,
1 << log2_cb_size,
1 << log2_cb_size,
log2_cb_size, partIdx,
merge_idx, &current_mv);
x_pu = x0 >> s->sps->log2_min_pu_size;
y_pu = y0 >> s->sps->log2_min_pu_size;
for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
} else { /* MODE_INTER */
lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
if (lc->pu.merge_flag) {
if (s->sh.max_num_merge_cand > 1)
merge_idx = ff_hevc_merge_idx_decode(s);
else
merge_idx = 0;
ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
partIdx, merge_idx, &current_mv);
x_pu = x0 >> s->sps->log2_min_pu_size;
y_pu = y0 >> s->sps->log2_min_pu_size;
for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
} else {
enum InterPredIdc inter_pred_idc = PRED_L0;
ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
if (s->sh.slice_type == B_SLICE)
inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
if (inter_pred_idc != PRED_L1) {
if (s->sh.nb_refs[L0]) {
ref_idx[0] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
current_mv.ref_idx[0] = ref_idx[0];
}
current_mv.pred_flag[0] = 1;
hls_mvd_coding(s, x0, y0, 0);
mvp_flag[0] = ff_hevc_mvp_lx_flag_decode(s);
ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
partIdx, merge_idx, &current_mv,
mvp_flag[0], 0);
current_mv.mv[0].x += lc->pu.mvd.x;
current_mv.mv[0].y += lc->pu.mvd.y;
}
if (inter_pred_idc != PRED_L0) {
if (s->sh.nb_refs[L1]) {
ref_idx[1] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
current_mv.ref_idx[1] = ref_idx[1];
}
if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
AV_ZERO32(&lc->pu.mvd);
} else {
hls_mvd_coding(s, x0, y0, 1);
}
current_mv.pred_flag[1] = 1;
mvp_flag[1] = ff_hevc_mvp_lx_flag_decode(s);
ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
partIdx, merge_idx, &current_mv,
mvp_flag[1], 1);
current_mv.mv[1].x += lc->pu.mvd.x;
current_mv.mv[1].y += lc->pu.mvd.y;
}
x_pu = x0 >> s->sps->log2_min_pu_size;
y_pu = y0 >> s->sps->log2_min_pu_size;
for(j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
}
}
if (current_mv.pred_flag[0]) {
ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
if (!ref0)
return;
hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
}
if (current_mv.pred_flag[1]) {
ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
if (!ref1)
return;
hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
}
if (current_mv.pred_flag[0] && !current_mv.pred_flag[1]) {
DECLARE_ALIGNED(16, int16_t, tmp[MAX_PB_SIZE * MAX_PB_SIZE]);
DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
luma_mc(s, tmp, tmpstride, ref0->frame,
&current_mv.mv[0], x0, y0, nPbW, nPbH);
if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
(s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
s->sh.luma_weight_l0[current_mv.ref_idx[0]],
s->sh.luma_offset_l0[current_mv.ref_idx[0]],
dst0, s->frame->linesize[0], tmp,
tmpstride, nPbW, nPbH);
} else {
s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
}
chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
&current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
(s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
dst1, s->frame->linesize[1], tmp, tmpstride,
nPbW / 2, nPbH / 2);
s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
dst2, s->frame->linesize[2], tmp2, tmpstride,
nPbW / 2, nPbH / 2);
} else {
s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
}
} else if (!current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
if (!ref1)
return;
luma_mc(s, tmp, tmpstride, ref1->frame,
&current_mv.mv[1], x0, y0, nPbW, nPbH);
if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
(s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
s->sh.luma_weight_l1[current_mv.ref_idx[1]],
s->sh.luma_offset_l1[current_mv.ref_idx[1]],
dst0, s->frame->linesize[0], tmp, tmpstride,
nPbW, nPbH);
} else {
s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
}
chroma_mc(s, tmp, tmp2, tmpstride, ref1->frame,
&current_mv.mv[1], x0/2, y0/2, nPbW/2, nPbH/2);
if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
(s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
} else {
s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
}
} else if (current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
DECLARE_ALIGNED(16, int16_t, tmp3[MAX_PB_SIZE * MAX_PB_SIZE]);
DECLARE_ALIGNED(16, int16_t, tmp4[MAX_PB_SIZE * MAX_PB_SIZE]);
HEVCFrame *ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
HEVCFrame *ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
if (!ref0 || !ref1)
return;
luma_mc(s, tmp, tmpstride, ref0->frame,
&current_mv.mv[0], x0, y0, nPbW, nPbH);
luma_mc(s, tmp2, tmpstride, ref1->frame,
&current_mv.mv[1], x0, y0, nPbW, nPbH);
if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
(s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
s->hevcdsp.weighted_pred_avg(s->sh.luma_log2_weight_denom,
s->sh.luma_weight_l0[current_mv.ref_idx[0]],
s->sh.luma_weight_l1[current_mv.ref_idx[1]],
s->sh.luma_offset_l0[current_mv.ref_idx[0]],
s->sh.luma_offset_l1[current_mv.ref_idx[1]],
dst0, s->frame->linesize[0],
tmp, tmp2, tmpstride, nPbW, nPbH);
} else {
s->hevcdsp.put_weighted_pred_avg(dst0, s->frame->linesize[0],
tmp, tmp2, tmpstride, nPbW, nPbH);
}
chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
&current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
chroma_mc(s, tmp3, tmp4, tmpstride, ref1->frame,
&current_mv.mv[1], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
(s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom,
s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
dst1, s->frame->linesize[1], tmp, tmp3,
tmpstride, nPbW / 2, nPbH / 2);
s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom,
s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
dst2, s->frame->linesize[2], tmp2, tmp4,
tmpstride, nPbW / 2, nPbH / 2);
} else {
s->hevcdsp.put_weighted_pred_avg(dst1, s->frame->linesize[1], tmp, tmp3, tmpstride, nPbW/2, nPbH/2);
s->hevcdsp.put_weighted_pred_avg(dst2, s->frame->linesize[2], tmp2, tmp4, tmpstride, nPbW/2, nPbH/2);
}
}
}
/**
* 8.4.1
*/
static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
int prev_intra_luma_pred_flag)
{
HEVCLocalContext *lc = &s->HEVClc;
int x_pu = x0 >> s->sps->log2_min_pu_size;
int y_pu = y0 >> s->sps->log2_min_pu_size;
int min_pu_width = s->sps->min_pu_width;
int size_in_pus = pu_size >> s->sps->log2_min_pu_size;
int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1);
int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1);
int cand_up = (lc->ctb_up_flag || y0b) ?
s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
int cand_left = (lc->ctb_left_flag || x0b) ?
s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
int y_ctb = (y0 >> (s->sps->log2_ctb_size)) << (s->sps->log2_ctb_size);
MvField *tab_mvf = s->ref->tab_mvf;
int intra_pred_mode;
int candidate[3];
int i, j;
// intra_pred_mode prediction does not cross vertical CTB boundaries
if ((y0 - 1) < y_ctb)
cand_up = INTRA_DC;
if (cand_left == cand_up) {
if (cand_left < 2) {
candidate[0] = INTRA_PLANAR;
candidate[1] = INTRA_DC;
candidate[2] = INTRA_ANGULAR_26;
} else {
candidate[0] = cand_left;
candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
}
} else {
candidate[0] = cand_left;
candidate[1] = cand_up;
if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
candidate[2] = INTRA_PLANAR;
} else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
candidate[2] = INTRA_DC;
} else {
candidate[2] = INTRA_ANGULAR_26;
}
}
if (prev_intra_luma_pred_flag) {
intra_pred_mode = candidate[lc->pu.mpm_idx];
} else {
if (candidate[0] > candidate[1])
FFSWAP(uint8_t, candidate[0], candidate[1]);
if (candidate[0] > candidate[2])
FFSWAP(uint8_t, candidate[0], candidate[2]);
if (candidate[1] > candidate[2])
FFSWAP(uint8_t, candidate[1], candidate[2]);
intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
for (i = 0; i < 3; i++)
if (intra_pred_mode >= candidate[i])
intra_pred_mode++;
}
/* write the intra prediction units into the mv array */
if (!size_in_pus)
size_in_pus = 1;
for (i = 0; i < size_in_pus; i++) {
memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
intra_pred_mode, size_in_pus);
for (j = 0; j < size_in_pus; j++) {
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].is_intra = 1;
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[0] = 0;
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[1] = 0;
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[0] = 0;
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[1] = 0;
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].x = 0;
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].y = 0;
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].x = 0;
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].y = 0;
}
}
return intra_pred_mode;
}
static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
int log2_cb_size, int ct_depth)
{
int length = (1 << log2_cb_size) >> s->sps->log2_min_cb_size;
int x_cb = x0 >> s->sps->log2_min_cb_size;
int y_cb = y0 >> s->sps->log2_min_cb_size;
int y;
for (y = 0; y < length; y++)
memset(&s->tab_ct_depth[(y_cb + y) * s->sps->min_cb_width + x_cb],
ct_depth, length);
}
static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
int log2_cb_size)
{
HEVCLocalContext *lc = &s->HEVClc;
static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
uint8_t prev_intra_luma_pred_flag[4];
int split = lc->cu.part_mode == PART_NxN;
int pb_size = (1 << log2_cb_size) >> split;
int side = split + 1;
int chroma_mode;
int i, j;
for (i = 0; i < side; i++)
for (j = 0; j < side; j++)
prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
for (i = 0; i < side; i++) {
for (j = 0; j < side; j++) {
if (prev_intra_luma_pred_flag[2 * i + j])
lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
else
lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
lc->pu.intra_pred_mode[2 * i + j] =
luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
prev_intra_luma_pred_flag[2 * i + j]);
}
}
chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
if (chroma_mode != 4) {
if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
lc->pu.intra_pred_mode_c = 34;
else
lc->pu.intra_pred_mode_c = intra_chroma_table[chroma_mode];
} else {
lc->pu.intra_pred_mode_c = lc->pu.intra_pred_mode[0];
}
}
static void intra_prediction_unit_default_value(HEVCContext *s,
int x0, int y0,
int log2_cb_size)
{
HEVCLocalContext *lc = &s->HEVClc;
int pb_size = 1 << log2_cb_size;
int size_in_pus = pb_size >> s->sps->log2_min_pu_size;
int min_pu_width = s->sps->min_pu_width;
MvField *tab_mvf = s->ref->tab_mvf;
int x_pu = x0 >> s->sps->log2_min_pu_size;
int y_pu = y0 >> s->sps->log2_min_pu_size;
int j, k;
if (size_in_pus == 0)
size_in_pus = 1;
for (j = 0; j < size_in_pus; j++) {
memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
for (k = 0; k < size_in_pus; k++)
tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].is_intra = lc->cu.pred_mode == MODE_INTRA;
}
}
static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
{
int cb_size = 1 << log2_cb_size;
HEVCLocalContext *lc = &s->HEVClc;
int log2_min_cb_size = s->sps->log2_min_cb_size;
int length = cb_size >> log2_min_cb_size;
int min_cb_width = s->sps->min_cb_width;
int x_cb = x0 >> log2_min_cb_size;
int y_cb = y0 >> log2_min_cb_size;
int x, y, ret;
lc->cu.x = x0;
lc->cu.y = y0;
lc->cu.pred_mode = MODE_INTRA;
lc->cu.part_mode = PART_2Nx2N;
lc->cu.intra_split_flag = 0;
SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
for (x = 0; x < 4; x++)
lc->pu.intra_pred_mode[x] = 1;
if (s->pps->transquant_bypass_enable_flag) {
lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
if (lc->cu.cu_transquant_bypass_flag)
set_deblocking_bypass(s, x0, y0, log2_cb_size);
} else
lc->cu.cu_transquant_bypass_flag = 0;
if (s->sh.slice_type != I_SLICE) {
uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
x = y_cb * min_cb_width + x_cb;
for (y = 0; y < length; y++) {
memset(&s->skip_flag[x], skip_flag, length);
x += min_cb_width;
}
lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
}
if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
if (!s->sh.disable_deblocking_filter_flag)
ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
} else {
int pcm_flag = 0;
if (s->sh.slice_type != I_SLICE)
lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
if (lc->cu.pred_mode != MODE_INTRA ||
log2_cb_size == s->sps->log2_min_cb_size) {
lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
lc->cu.pred_mode == MODE_INTRA;
}
if (lc->cu.pred_mode == MODE_INTRA) {
if (lc->cu.part_mode == PART_2Nx2N && s->sps->pcm_enabled_flag &&
log2_cb_size >= s->sps->pcm.log2_min_pcm_cb_size &&
log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) {
pcm_flag = ff_hevc_pcm_flag_decode(s);
}
if (pcm_flag) {
intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
if (s->sps->pcm.loop_filter_disable_flag)
set_deblocking_bypass(s, x0, y0, log2_cb_size);
if (ret < 0)
return ret;
} else {
intra_prediction_unit(s, x0, y0, log2_cb_size);
}
} else {
intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
switch (lc->cu.part_mode) {
case PART_2Nx2N:
hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
break;
case PART_2NxN:
hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0);
hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1);
break;
case PART_Nx2N:
hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0);
hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1);
break;
case PART_2NxnU:
hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0);
hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1);
break;
case PART_2NxnD:
hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0);
hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1);
break;
case PART_nLx2N:
hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0);
hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1);
break;
case PART_nRx2N:
hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0);
hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1);
break;
case PART_NxN:
hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0);
hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1);
hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2);
hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3);
break;
}
}
if (!pcm_flag) {
int rqt_root_cbf = 1;
if (lc->cu.pred_mode != MODE_INTRA &&
!(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
}
if (rqt_root_cbf) {
lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
s->sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
s->sps->max_transform_hierarchy_depth_inter;
ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
log2_cb_size,
log2_cb_size, 0, 0, 0, 0);
if (ret < 0)
return ret;
} else {
if (!s->sh.disable_deblocking_filter_flag)
ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
}
}
}
if (s->pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size);
x = y_cb * min_cb_width + x_cb;
for (y = 0; y < length; y++) {
memset(&s->qp_y_tab[x], lc->qp_y, length);
x += min_cb_width;
}
set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth);
return 0;
}
static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
int log2_cb_size, int cb_depth)
{
HEVCLocalContext *lc = &s->HEVClc;
const int cb_size = 1 << log2_cb_size;
int split_cu;
lc->ct.depth = cb_depth;
if (x0 + cb_size <= s->sps->width &&
y0 + cb_size <= s->sps->height &&
log2_cb_size > s->sps->log2_min_cb_size) {
split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
} else {
split_cu = (log2_cb_size > s->sps->log2_min_cb_size);
}
if (s->pps->cu_qp_delta_enabled_flag &&
log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) {
lc->tu.is_cu_qp_delta_coded = 0;
lc->tu.cu_qp_delta = 0;
}
if (split_cu) {
const int cb_size_split = cb_size >> 1;
const int x1 = x0 + cb_size_split;
const int y1 = y0 + cb_size_split;
log2_cb_size--;
cb_depth++;
#define SUBDIVIDE(x, y) \
do { \
if (x < s->sps->width && y < s->sps->height) { \
int ret = hls_coding_quadtree(s, x, y, log2_cb_size, cb_depth);\
if (ret < 0) \
return ret; \
} \
} while (0)
SUBDIVIDE(x0, y0);
SUBDIVIDE(x1, y0);
SUBDIVIDE(x0, y1);
SUBDIVIDE(x1, y1);
} else {
int ret = hls_coding_unit(s, x0, y0, log2_cb_size);
if (ret < 0)
return ret;
}
return 0;
}
static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
int ctb_addr_ts)
{
HEVCLocalContext *lc = &s->HEVClc;
int ctb_size = 1 << s->sps->log2_ctb_size;
int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
if (s->pps->entropy_coding_sync_enabled_flag) {
if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
lc->first_qp_group = 1;
lc->end_of_tiles_x = s->sps->width;
} else if (s->pps->tiles_enabled_flag) {
if (ctb_addr_ts && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) {
int idxX = s->pps->col_idxX[x_ctb >> s->sps->log2_ctb_size];
lc->start_of_tiles_x = x_ctb;
lc->end_of_tiles_x = x_ctb + (s->pps->column_width[idxX] << s->sps->log2_ctb_size);
lc->first_qp_group = 1;
}
} else {
lc->end_of_tiles_x = s->sps->width;
}
lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->sps->height);
lc->boundary_flags = 0;
if (s->pps->tiles_enabled_flag) {
if (x_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
lc->boundary_flags |= BOUNDARY_LEFT_TILE;
if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
if (y_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]])
lc->boundary_flags |= BOUNDARY_UPPER_TILE;
if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->sps->ctb_width])
lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
} else {
if (!ctb_addr_in_slice > 0)
lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
if (ctb_addr_in_slice < s->sps->ctb_width)
lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
}
lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->sps->ctb_width]]));
lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->sps->ctb_width]]));
}
static int hls_slice_data(HEVCContext *s)
{
int ctb_size = 1 << s->sps->log2_ctb_size;
int more_data = 1;
int x_ctb = 0;
int y_ctb = 0;
int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
int ret;
while (more_data && ctb_addr_ts < s->sps->ctb_size) {
int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
x_ctb = (ctb_addr_rs % ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
y_ctb = (ctb_addr_rs / ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
ff_hevc_cabac_init(s, ctb_addr_ts);
hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
ret = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
if (ret < 0)
return ret;
more_data = !ff_hevc_end_of_slice_flag_decode(s);
ctb_addr_ts++;
ff_hevc_save_states(s, ctb_addr_ts);
ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
}
if (x_ctb + ctb_size >= s->sps->width &&
y_ctb + ctb_size >= s->sps->height)
ff_hevc_hls_filter(s, x_ctb, y_ctb);
return ctb_addr_ts;
}
/**
* @return AVERROR_INVALIDDATA if the packet is not a valid NAL unit,
* 0 if the unit should be skipped, 1 otherwise
*/
static int hls_nal_unit(HEVCContext *s)
{
GetBitContext *gb = &s->HEVClc.gb;
int nuh_layer_id;
if (get_bits1(gb) != 0)
return AVERROR_INVALIDDATA;
s->nal_unit_type = get_bits(gb, 6);
nuh_layer_id = get_bits(gb, 6);
s->temporal_id = get_bits(gb, 3) - 1;
if (s->temporal_id < 0)
return AVERROR_INVALIDDATA;
av_log(s->avctx, AV_LOG_DEBUG,
"nal_unit_type: %d, nuh_layer_id: %dtemporal_id: %d\n",
s->nal_unit_type, nuh_layer_id, s->temporal_id);
return nuh_layer_id == 0;
}
static void restore_tqb_pixels(HEVCContext *s)
{
int min_pu_size = 1 << s->sps->log2_min_pu_size;
int x, y, c_idx;
for (c_idx = 0; c_idx < 3; c_idx++) {
ptrdiff_t stride = s->frame->linesize[c_idx];
int hshift = s->sps->hshift[c_idx];
int vshift = s->sps->vshift[c_idx];
for (y = 0; y < s->sps->min_pu_height; y++) {
for (x = 0; x < s->sps->min_pu_width; x++) {
if (s->is_pcm[y * s->sps->min_pu_width + x]) {
int n;
int len = min_pu_size >> hshift;
uint8_t *src = &s->frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
for (n = 0; n < (min_pu_size >> vshift); n++) {
memcpy(dst, src, len);
src += stride;
dst += stride;
}
}
}
}
}
}
static int set_side_data(HEVCContext *s)
{
AVFrame *out = s->ref->frame;
if (s->sei_frame_packing_present &&
s->frame_packing_arrangement_type >= 3 &&
s->frame_packing_arrangement_type <= 5 &&
s->content_interpretation_type > 0 &&
s->content_interpretation_type < 3) {
AVStereo3D *stereo = av_stereo3d_create_side_data(out);
if (!stereo)
return AVERROR(ENOMEM);
switch (s->frame_packing_arrangement_type) {
case 3:
if (s->quincunx_subsampling)
stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
else
stereo->type = AV_STEREO3D_SIDEBYSIDE;
break;
case 4:
stereo->type = AV_STEREO3D_TOPBOTTOM;
break;
case 5:
stereo->type = AV_STEREO3D_FRAMESEQUENCE;
break;
}
if (s->content_interpretation_type == 2)
stereo->flags = AV_STEREO3D_FLAG_INVERT;
}
if (s->sei_display_orientation_present &&
(s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) {
double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
AVFrameSideData *rotation = av_frame_new_side_data(out,
AV_FRAME_DATA_DISPLAYMATRIX,
sizeof(int32_t) * 9);
if (!rotation)
return AVERROR(ENOMEM);
av_display_rotation_set((int32_t *)rotation->data, angle);
av_display_matrix_flip((int32_t *)rotation->data,
s->sei_hflip, s->sei_vflip);
}
return 0;
}
static int hevc_frame_start(HEVCContext *s)
{
HEVCLocalContext *lc = &s->HEVClc;
int ret;
memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
memset(s->vertical_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
memset(s->cbf_luma, 0, s->sps->min_tb_width * s->sps->min_tb_height);
memset(s->is_pcm, 0, s->sps->min_pu_width * s->sps->min_pu_height);
lc->start_of_tiles_x = 0;
s->is_decoded = 0;
s->first_nal_type = s->nal_unit_type;
if (s->pps->tiles_enabled_flag)
lc->end_of_tiles_x = s->pps->column_width[0] << s->sps->log2_ctb_size;
ret = ff_hevc_set_new_ref(s, s->sps->sao_enabled ? &s->sao_frame : &s->frame,
s->poc);
if (ret < 0)
goto fail;
ret = ff_hevc_frame_rps(s);
if (ret < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
goto fail;
}
s->ref->frame->key_frame = IS_IRAP(s);
ret = set_side_data(s);
if (ret < 0)
goto fail;
av_frame_unref(s->output_frame);
ret = ff_hevc_output_frame(s, s->output_frame, 0);
if (ret < 0)
goto fail;
ff_thread_finish_setup(s->avctx);
return 0;
fail:
if (s->ref)
ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
s->ref = NULL;
return ret;
}
static int decode_nal_unit(HEVCContext *s, const uint8_t *nal, int length)
{
HEVCLocalContext *lc = &s->HEVClc;
GetBitContext *gb = &lc->gb;
int ctb_addr_ts, ret;
ret = init_get_bits8(gb, nal, length);
if (ret < 0)
return ret;
ret = hls_nal_unit(s);
if (ret < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n",
s->nal_unit_type);
goto fail;
} else if (!ret)
return 0;
switch (s->nal_unit_type) {
case NAL_VPS:
ret = ff_hevc_decode_nal_vps(s);
if (ret < 0)
goto fail;
break;
case NAL_SPS:
ret = ff_hevc_decode_nal_sps(s);
if (ret < 0)
goto fail;
break;
case NAL_PPS:
ret = ff_hevc_decode_nal_pps(s);
if (ret < 0)
goto fail;
break;
case NAL_SEI_PREFIX:
case NAL_SEI_SUFFIX:
ret = ff_hevc_decode_nal_sei(s);
if (ret < 0)
goto fail;
break;
case NAL_TRAIL_R:
case NAL_TRAIL_N:
case NAL_TSA_N:
case NAL_TSA_R:
case NAL_STSA_N:
case NAL_STSA_R:
case NAL_BLA_W_LP:
case NAL_BLA_W_RADL:
case NAL_BLA_N_LP:
case NAL_IDR_W_RADL:
case NAL_IDR_N_LP:
case NAL_CRA_NUT:
case NAL_RADL_N:
case NAL_RADL_R:
case NAL_RASL_N:
case NAL_RASL_R:
ret = hls_slice_header(s);
if (ret < 0)
return ret;
if (s->max_ra == INT_MAX) {
if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {
s->max_ra = s->poc;
} else {
if (IS_IDR(s))
s->max_ra = INT_MIN;
}
}
if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
s->poc <= s->max_ra) {
s->is_decoded = 0;
break;
} else {
if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
s->max_ra = INT_MIN;
}
if (s->sh.first_slice_in_pic_flag) {
ret = hevc_frame_start(s);
if (ret < 0)
return ret;
} else if (!s->ref) {
av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
goto fail;
}
if (s->nal_unit_type != s->first_nal_type) {
av_log(s->avctx, AV_LOG_ERROR,
"Non-matching NAL types of the VCL NALUs: %d %d\n",
s->first_nal_type, s->nal_unit_type);
return AVERROR_INVALIDDATA;
}
if (!s->sh.dependent_slice_segment_flag &&
s->sh.slice_type != I_SLICE) {
ret = ff_hevc_slice_rpl(s);
if (ret < 0) {
av_log(s->avctx, AV_LOG_WARNING,
"Error constructing the reference lists for the current slice.\n");
goto fail;
}
}
ctb_addr_ts = hls_slice_data(s);
if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) {
s->is_decoded = 1;
if ((s->pps->transquant_bypass_enable_flag ||
(s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) &&
s->sps->sao_enabled)
restore_tqb_pixels(s);
}
if (ctb_addr_ts < 0) {
ret = ctb_addr_ts;
goto fail;
}
break;
case NAL_EOS_NUT:
case NAL_EOB_NUT:
s->seq_decode = (s->seq_decode + 1) & 0xff;
s->max_ra = INT_MAX;
break;
case NAL_AUD:
case NAL_FD_NUT:
break;
default:
av_log(s->avctx, AV_LOG_INFO,
"Skipping NAL unit %d\n", s->nal_unit_type);
}
return 0;
fail:
if (s->avctx->err_recognition & AV_EF_EXPLODE)
return ret;
return 0;
}
/* FIXME: This is adapted from ff_h264_decode_nal, avoiding duplication
* between these functions would be nice. */
static int extract_rbsp(const uint8_t *src, int length,
HEVCNAL *nal)
{
int i, si, di;
uint8_t *dst;
#define STARTCODE_TEST \
if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \
if (src[i + 2] != 3) { \
/* startcode, so we must be past the end */ \
length = i; \
} \
break; \
}
#if HAVE_FAST_UNALIGNED
#define FIND_FIRST_ZERO \
if (i > 0 && !src[i]) \
i--; \
while (src[i]) \
i++
#if HAVE_FAST_64BIT
for (i = 0; i + 1 < length; i += 9) {
if (!((~AV_RN64A(src + i) &
(AV_RN64A(src + i) - 0x0100010001000101ULL)) &
0x8000800080008080ULL))
continue;
FIND_FIRST_ZERO;
STARTCODE_TEST;
i -= 7;
}
#else
for (i = 0; i + 1 < length; i += 5) {
if (!((~AV_RN32A(src + i) &
(AV_RN32A(src + i) - 0x01000101U)) &
0x80008080U))
continue;
FIND_FIRST_ZERO;
STARTCODE_TEST;
i -= 3;
}
#endif /* HAVE_FAST_64BIT */
#else
for (i = 0; i + 1 < length; i += 2) {
if (src[i])
continue;
if (i > 0 && src[i - 1] == 0)
i--;
STARTCODE_TEST;
}
#endif /* HAVE_FAST_UNALIGNED */
if (i >= length - 1) { // no escaped 0
nal->data = src;
nal->size = length;
return length;
}
av_fast_malloc(&nal->rbsp_buffer, &nal->rbsp_buffer_size,
length + FF_INPUT_BUFFER_PADDING_SIZE);
if (!nal->rbsp_buffer)
return AVERROR(ENOMEM);
dst = nal->rbsp_buffer;
memcpy(dst, src, i);
si = di = i;
while (si + 2 < length) {
// remove escapes (very rare 1:2^22)
if (src[si + 2] > 3) {
dst[di++] = src[si++];
dst[di++] = src[si++];
} else if (src[si] == 0 && src[si + 1] == 0) {
if (src[si + 2] == 3) { // escape
dst[di++] = 0;
dst[di++] = 0;
si += 3;
continue;
} else // next start code
goto nsc;
}
dst[di++] = src[si++];
}
while (si < length)
dst[di++] = src[si++];
nsc:
memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
nal->data = dst;
nal->size = di;
return si;
}
static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
{
int i, consumed, ret = 0;
s->ref = NULL;
s->eos = 0;
/* split the input packet into NAL units, so we know the upper bound on the
* number of slices in the frame */
s->nb_nals = 0;
while (length >= 4) {
HEVCNAL *nal;
int extract_length = 0;
if (s->is_nalff) {
int i;
for (i = 0; i < s->nal_length_size; i++)
extract_length = (extract_length << 8) | buf[i];
buf += s->nal_length_size;
length -= s->nal_length_size;
if (extract_length > length) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n");
ret = AVERROR_INVALIDDATA;
goto fail;
}
} else {
if (buf[2] == 0) {
length--;
buf++;
continue;
}
if (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) {
ret = AVERROR_INVALIDDATA;
goto fail;
}
buf += 3;
length -= 3;
extract_length = length;
}
if (s->nals_allocated < s->nb_nals + 1) {
int new_size = s->nals_allocated + 1;
HEVCNAL *tmp = av_realloc_array(s->nals, new_size, sizeof(*tmp));
if (!tmp) {
ret = AVERROR(ENOMEM);
goto fail;
}
s->nals = tmp;
memset(s->nals + s->nals_allocated, 0,
(new_size - s->nals_allocated) * sizeof(*tmp));
s->nals_allocated = new_size;
}
nal = &s->nals[s->nb_nals++];
consumed = extract_rbsp(buf, extract_length, nal);
if (consumed < 0) {
ret = consumed;
goto fail;
}
ret = init_get_bits8(&s->HEVClc.gb, nal->data, nal->size);
if (ret < 0)
goto fail;
hls_nal_unit(s);
if (s->nal_unit_type == NAL_EOB_NUT ||
s->nal_unit_type == NAL_EOS_NUT)
s->eos = 1;
buf += consumed;
length -= consumed;
}
/* parse the NAL units */
for (i = 0; i < s->nb_nals; i++) {
int ret = decode_nal_unit(s, s->nals[i].data, s->nals[i].size);
if (ret < 0) {
av_log(s->avctx, AV_LOG_WARNING,
"Error parsing NAL unit #%d.\n", i);
goto fail;
}
}
fail:
if (s->ref)
ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
return ret;
}
static void print_md5(void *log_ctx, int level, uint8_t md5[16])
{
int i;
for (i = 0; i < 16; i++)
av_log(log_ctx, level, "%02"PRIx8, md5[i]);
}
static int verify_md5(HEVCContext *s, AVFrame *frame)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
int pixel_shift;
int i, j;
if (!desc)
return AVERROR(EINVAL);
pixel_shift = desc->comp[0].depth_minus1 > 7;
av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
s->poc);
/* the checksums are LE, so we have to byteswap for >8bpp formats
* on BE arches */
#if HAVE_BIGENDIAN
if (pixel_shift && !s->checksum_buf) {
av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
FFMAX3(frame->linesize[0], frame->linesize[1],
frame->linesize[2]));
if (!s->checksum_buf)
return AVERROR(ENOMEM);
}
#endif
for (i = 0; frame->data[i]; i++) {
int width = s->avctx->coded_width;
int height = s->avctx->coded_height;
int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
uint8_t md5[16];
av_md5_init(s->md5_ctx);
for (j = 0; j < h; j++) {
const uint8_t *src = frame->data[i] + j * frame->linesize[i];
#if HAVE_BIGENDIAN
if (pixel_shift) {
s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
(const uint16_t *) src, w);
src = s->checksum_buf;
}
#endif
av_md5_update(s->md5_ctx, src, w << pixel_shift);
}
av_md5_final(s->md5_ctx, md5);
if (!memcmp(md5, s->md5[i], 16)) {
av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
print_md5(s->avctx, AV_LOG_DEBUG, md5);
av_log (s->avctx, AV_LOG_DEBUG, "; ");
} else {
av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
print_md5(s->avctx, AV_LOG_ERROR, md5);
av_log (s->avctx, AV_LOG_ERROR, " != ");
print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
av_log (s->avctx, AV_LOG_ERROR, "\n");
return AVERROR_INVALIDDATA;
}
}
av_log(s->avctx, AV_LOG_DEBUG, "\n");
return 0;
}
static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
AVPacket *avpkt)
{
int ret;
HEVCContext *s = avctx->priv_data;
if (!avpkt->size) {
ret = ff_hevc_output_frame(s, data, 1);
if (ret < 0)
return ret;
*got_output = ret;
return 0;
}
s->ref = NULL;
ret = decode_nal_units(s, avpkt->data, avpkt->size);
if (ret < 0)
return ret;
/* verify the SEI checksum */
if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
s->is_md5) {
ret = verify_md5(s, s->ref->frame);
if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
ff_hevc_unref_frame(s, s->ref, ~0);
return ret;
}
}
s->is_md5 = 0;
if (s->is_decoded) {
av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
s->is_decoded = 0;
}
if (s->output_frame->buf[0]) {
av_frame_move_ref(data, s->output_frame);
*got_output = 1;
}
return avpkt->size;
}
static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
{
int ret = ff_thread_ref_frame(&dst->tf, &src->tf);
if (ret < 0)
return ret;
dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
if (!dst->tab_mvf_buf)
goto fail;
dst->tab_mvf = src->tab_mvf;
dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
if (!dst->rpl_tab_buf)
goto fail;
dst->rpl_tab = src->rpl_tab;
dst->rpl_buf = av_buffer_ref(src->rpl_buf);
if (!dst->rpl_buf)
goto fail;
dst->poc = src->poc;
dst->ctb_count = src->ctb_count;
dst->window = src->window;
dst->flags = src->flags;
dst->sequence = src->sequence;
return 0;
fail:
ff_hevc_unref_frame(s, dst, ~0);
return AVERROR(ENOMEM);
}
static av_cold int hevc_decode_free(AVCodecContext *avctx)
{
HEVCContext *s = avctx->priv_data;
int i;
pic_arrays_free(s);
av_freep(&s->md5_ctx);
av_frame_free(&s->tmp_frame);
av_frame_free(&s->output_frame);
for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
ff_hevc_unref_frame(s, &s->DPB[i], ~0);
av_frame_free(&s->DPB[i].frame);
}
for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++)
av_buffer_unref(&s->vps_list[i]);
for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++)
av_buffer_unref(&s->sps_list[i]);
for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++)
av_buffer_unref(&s->pps_list[i]);
for (i = 0; i < s->nals_allocated; i++)
av_freep(&s->nals[i].rbsp_buffer);
av_freep(&s->nals);
s->nals_allocated = 0;
return 0;
}
static av_cold int hevc_init_context(AVCodecContext *avctx)
{
HEVCContext *s = avctx->priv_data;
int i;
s->avctx = avctx;
s->tmp_frame = av_frame_alloc();
if (!s->tmp_frame)
goto fail;
s->output_frame = av_frame_alloc();
if (!s->output_frame)
goto fail;
for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
s->DPB[i].frame = av_frame_alloc();
if (!s->DPB[i].frame)
goto fail;
s->DPB[i].tf.f = s->DPB[i].frame;
}
s->max_ra = INT_MAX;
s->md5_ctx = av_md5_alloc();
if (!s->md5_ctx)
goto fail;
ff_bswapdsp_init(&s->bdsp);
s->context_initialized = 1;
return 0;
fail:
hevc_decode_free(avctx);
return AVERROR(ENOMEM);
}
static int hevc_update_thread_context(AVCodecContext *dst,
const AVCodecContext *src)
{
HEVCContext *s = dst->priv_data;
HEVCContext *s0 = src->priv_data;
int i, ret;
if (!s->context_initialized) {
ret = hevc_init_context(dst);
if (ret < 0)
return ret;
}
for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
ff_hevc_unref_frame(s, &s->DPB[i], ~0);
if (s0->DPB[i].frame->buf[0]) {
ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
if (ret < 0)
return ret;
}
}
for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) {
av_buffer_unref(&s->vps_list[i]);
if (s0->vps_list[i]) {
s->vps_list[i] = av_buffer_ref(s0->vps_list[i]);
if (!s->vps_list[i])
return AVERROR(ENOMEM);
}
}
for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) {
av_buffer_unref(&s->sps_list[i]);
if (s0->sps_list[i]) {
s->sps_list[i] = av_buffer_ref(s0->sps_list[i]);
if (!s->sps_list[i])
return AVERROR(ENOMEM);
}
}
for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) {
av_buffer_unref(&s->pps_list[i]);
if (s0->pps_list[i]) {
s->pps_list[i] = av_buffer_ref(s0->pps_list[i]);
if (!s->pps_list[i])
return AVERROR(ENOMEM);
}
}
if (s->sps != s0->sps)
ret = set_sps(s, s0->sps);
s->seq_decode = s0->seq_decode;
s->seq_output = s0->seq_output;
s->pocTid0 = s0->pocTid0;
s->max_ra = s0->max_ra;
s->is_nalff = s0->is_nalff;
s->nal_length_size = s0->nal_length_size;
if (s0->eos) {
s->seq_decode = (s->seq_decode + 1) & 0xff;
s->max_ra = INT_MAX;
}
return 0;
}
static int hevc_decode_extradata(HEVCContext *s)
{
AVCodecContext *avctx = s->avctx;
GetByteContext gb;
int ret;
bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
if (avctx->extradata_size > 3 &&
(avctx->extradata[0] || avctx->extradata[1] ||
avctx->extradata[2] > 1)) {
/* It seems the extradata is encoded as hvcC format.
* Temporarily, we support configurationVersion==0 until 14496-15 3rd
* is finalized. When finalized, configurationVersion will be 1 and we
* can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
int i, j, num_arrays, nal_len_size;
s->is_nalff = 1;
bytestream2_skip(&gb, 21);
nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
num_arrays = bytestream2_get_byte(&gb);
/* nal units in the hvcC always have length coded with 2 bytes,
* so put a fake nal_length_size = 2 while parsing them */
s->nal_length_size = 2;
/* Decode nal units from hvcC. */
for (i = 0; i < num_arrays; i++) {
int type = bytestream2_get_byte(&gb) & 0x3f;
int cnt = bytestream2_get_be16(&gb);
for (j = 0; j < cnt; j++) {
// +2 for the nal size field
int nalsize = bytestream2_peek_be16(&gb) + 2;
if (bytestream2_get_bytes_left(&gb) < nalsize) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid NAL unit size in extradata.\n");
return AVERROR_INVALIDDATA;
}
ret = decode_nal_units(s, gb.buffer, nalsize);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR,
"Decoding nal unit %d %d from hvcC failed\n",
type, i);
return ret;
}
bytestream2_skip(&gb, nalsize);
}
}
/* Now store right nal length size, that will be used to parse
* all other nals */
s->nal_length_size = nal_len_size;
} else {
s->is_nalff = 0;
ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size);
if (ret < 0)
return ret;
}
return 0;
}
static av_cold int hevc_decode_init(AVCodecContext *avctx)
{
HEVCContext *s = avctx->priv_data;
int ret;
ff_init_cabac_states();
avctx->internal->allocate_progress = 1;
ret = hevc_init_context(avctx);
if (ret < 0)
return ret;
if (avctx->extradata_size > 0 && avctx->extradata) {
ret = hevc_decode_extradata(s);
if (ret < 0) {
hevc_decode_free(avctx);
return ret;
}
}
return 0;
}
static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
{
HEVCContext *s = avctx->priv_data;
int ret;
memset(s, 0, sizeof(*s));
ret = hevc_init_context(avctx);
if (ret < 0)
return ret;
return 0;
}
static void hevc_decode_flush(AVCodecContext *avctx)
{
HEVCContext *s = avctx->priv_data;
ff_hevc_flush_dpb(s);
s->max_ra = INT_MAX;
}
#define OFFSET(x) offsetof(HEVCContext, x)
#define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
static const AVProfile profiles[] = {
{ FF_PROFILE_HEVC_MAIN, "Main" },
{ FF_PROFILE_HEVC_MAIN_10, "Main 10" },
{ FF_PROFILE_HEVC_MAIN_STILL_PICTURE, "Main Still Picture" },
{ FF_PROFILE_UNKNOWN },
};
static const AVOption options[] = {
{ "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
{ NULL },
};
static const AVClass hevc_decoder_class = {
.class_name = "HEVC decoder",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
AVCodec ff_hevc_decoder = {
.name = "hevc",
.long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_HEVC,
.priv_data_size = sizeof(HEVCContext),
.priv_class = &hevc_decoder_class,
.init = hevc_decode_init,
.close = hevc_decode_free,
.decode = hevc_decode_frame,
.flush = hevc_decode_flush,
.update_thread_context = hevc_update_thread_context,
.init_thread_copy = hevc_init_thread_copy,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
CODEC_CAP_FRAME_THREADS,
.profiles = NULL_IF_CONFIG_SMALL(profiles),
};