mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-11-26 19:01:44 +02:00
7a4b8817fe
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
611 lines
18 KiB
C
611 lines
18 KiB
C
/*
|
|
* Texture block decompression
|
|
* Copyright (C) 2009 Benjamin Dobell, Glass Echidna
|
|
* Copyright (C) 2012 Matthäus G. "Anteru" Chajdas (http://anteru.net)
|
|
* Copyright (C) 2015 Vittorio Giovara <vittorio.giovara@gmail.com>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include "libavutil/attributes.h"
|
|
#include "libavutil/common.h"
|
|
#include "libavutil/intreadwrite.h"
|
|
|
|
#include "texturedsp.h"
|
|
|
|
#define RGBA(r, g, b, a) ((r) | ((g) << 8) | ((b) << 16) | ((a) << 24))
|
|
|
|
static av_always_inline void extract_color(uint32_t colors[4],
|
|
uint16_t color0,
|
|
uint16_t color1,
|
|
int dxtn, int alpha)
|
|
{
|
|
int tmp;
|
|
uint8_t r0, g0, b0, r1, g1, b1;
|
|
uint8_t a = dxtn ? 0 : 255;
|
|
|
|
tmp = (color0 >> 11) * 255 + 16;
|
|
r0 = (uint8_t) ((tmp / 32 + tmp) / 32);
|
|
tmp = ((color0 & 0x07E0) >> 5) * 255 + 32;
|
|
g0 = (uint8_t) ((tmp / 64 + tmp) / 64);
|
|
tmp = (color0 & 0x001F) * 255 + 16;
|
|
b0 = (uint8_t) ((tmp / 32 + tmp) / 32);
|
|
|
|
tmp = (color1 >> 11) * 255 + 16;
|
|
r1 = (uint8_t) ((tmp / 32 + tmp) / 32);
|
|
tmp = ((color1 & 0x07E0) >> 5) * 255 + 32;
|
|
g1 = (uint8_t) ((tmp / 64 + tmp) / 64);
|
|
tmp = (color1 & 0x001F) * 255 + 16;
|
|
b1 = (uint8_t) ((tmp / 32 + tmp) / 32);
|
|
|
|
if (dxtn || color0 > color1) {
|
|
colors[0] = RGBA(r0, g0, b0, a);
|
|
colors[1] = RGBA(r1, g1, b1, a);
|
|
colors[2] = RGBA((2 * r0 + r1) / 3,
|
|
(2 * g0 + g1) / 3,
|
|
(2 * b0 + b1) / 3,
|
|
a);
|
|
colors[3] = RGBA((2 * r1 + r0) / 3,
|
|
(2 * g1 + g0) / 3,
|
|
(2 * b1 + b0) / 3,
|
|
a);
|
|
} else {
|
|
colors[0] = RGBA(r0, g0, b0, a);
|
|
colors[1] = RGBA(r1, g1, b1, a);
|
|
colors[2] = RGBA((r0 + r1) / 2,
|
|
(g0 + g1) / 2,
|
|
(b0 + b1) / 2,
|
|
a);
|
|
colors[3] = RGBA(0, 0, 0, alpha);
|
|
}
|
|
}
|
|
|
|
static inline void dxt1_block_internal(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *block, uint8_t alpha)
|
|
{
|
|
int x, y;
|
|
uint32_t colors[4];
|
|
uint16_t color0 = AV_RL16(block + 0);
|
|
uint16_t color1 = AV_RL16(block + 2);
|
|
uint32_t code = AV_RL32(block + 4);
|
|
|
|
extract_color(colors, color0, color1, 0, alpha);
|
|
|
|
for (y = 0; y < 4; y++) {
|
|
for (x = 0; x < 4; x++) {
|
|
uint32_t pixel = colors[code & 3];
|
|
code >>= 2;
|
|
AV_WL32(dst + x * 4, pixel);
|
|
}
|
|
dst += stride;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decompress one block of a DXT1 texture and store the resulting
|
|
* RGBA pixels in 'dst'. Alpha component is fully opaque.
|
|
*
|
|
* @param dst output buffer.
|
|
* @param stride scanline in bytes.
|
|
* @param block block to decompress.
|
|
* @return how much texture data has been consumed.
|
|
*/
|
|
static int dxt1_block(uint8_t *dst, ptrdiff_t stride, const uint8_t *block)
|
|
{
|
|
dxt1_block_internal(dst, stride, block, 255);
|
|
|
|
return 8;
|
|
}
|
|
|
|
/**
|
|
* Decompress one block of a DXT1 with 1-bit alpha texture and store
|
|
* the resulting RGBA pixels in 'dst'. Alpha is either fully opaque or
|
|
* fully transparent.
|
|
*
|
|
* @param dst output buffer.
|
|
* @param stride scanline in bytes.
|
|
* @param block block to decompress.
|
|
* @return how much texture data has been consumed.
|
|
*/
|
|
static int dxt1a_block(uint8_t *dst, ptrdiff_t stride, const uint8_t *block)
|
|
{
|
|
dxt1_block_internal(dst, stride, block, 0);
|
|
|
|
return 8;
|
|
}
|
|
|
|
static inline void dxt3_block_internal(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *block)
|
|
{
|
|
int x, y;
|
|
uint32_t colors[4];
|
|
uint16_t color0 = AV_RL16(block + 8);
|
|
uint16_t color1 = AV_RL16(block + 10);
|
|
uint32_t code = AV_RL32(block + 12);
|
|
|
|
extract_color(colors, color0, color1, 1, 0);
|
|
|
|
for (y = 0; y < 4; y++) {
|
|
const uint16_t alpha_code = AV_RL16(block + 2 * y);
|
|
uint8_t alpha_values[4];
|
|
|
|
alpha_values[0] = ((alpha_code >> 0) & 0x0F) * 17;
|
|
alpha_values[1] = ((alpha_code >> 4) & 0x0F) * 17;
|
|
alpha_values[2] = ((alpha_code >> 8) & 0x0F) * 17;
|
|
alpha_values[3] = ((alpha_code >> 12) & 0x0F) * 17;
|
|
|
|
for (x = 0; x < 4; x++) {
|
|
uint8_t alpha = alpha_values[x];
|
|
uint32_t pixel = colors[code & 3] | (alpha << 24);
|
|
code >>= 2;
|
|
|
|
AV_WL32(dst + x * 4, pixel);
|
|
}
|
|
dst += stride;
|
|
}
|
|
}
|
|
|
|
/** Convert a premultiplied alpha pixel to a straigth alpha pixel. */
|
|
static av_always_inline void premult2straight(uint8_t *src)
|
|
{
|
|
int r = src[0];
|
|
int g = src[1];
|
|
int b = src[2];
|
|
int a = src[3]; /* unchanged */
|
|
|
|
src[0] = (uint8_t) r * a / 255;
|
|
src[1] = (uint8_t) g * a / 255;
|
|
src[2] = (uint8_t) b * a / 255;
|
|
}
|
|
|
|
/**
|
|
* Decompress one block of a DXT2 texture and store the resulting
|
|
* RGBA pixels in 'dst'.
|
|
*
|
|
* @param dst output buffer.
|
|
* @param stride scanline in bytes.
|
|
* @param block block to decompress.
|
|
* @return how much texture data has been consumed.
|
|
*/
|
|
static int dxt2_block(uint8_t *dst, ptrdiff_t stride, const uint8_t *block)
|
|
{
|
|
int x, y;
|
|
|
|
dxt3_block_internal(dst, stride, block);
|
|
|
|
/* This format is DXT3, but returns premultiplied alpha. It needs to be
|
|
* converted because it's what lavc outputs (and swscale expects). */
|
|
for (y = 0; y < 4; y++)
|
|
for (x = 0; x < 4; x++)
|
|
premult2straight(dst + x * 4 + y * stride);
|
|
|
|
return 16;
|
|
}
|
|
|
|
/**
|
|
* Decompress one block of a DXT3 texture and store the resulting
|
|
* RGBA pixels in 'dst'.
|
|
*
|
|
* @param dst output buffer.
|
|
* @param stride scanline in bytes.
|
|
* @param block block to decompress.
|
|
* @return how much texture data has been consumed.
|
|
*/
|
|
static int dxt3_block(uint8_t *dst, ptrdiff_t stride, const uint8_t *block)
|
|
{
|
|
dxt3_block_internal(dst, stride, block);
|
|
|
|
return 16;
|
|
}
|
|
|
|
/**
|
|
* Decompress a BC 16x3 index block stored as
|
|
* h g f e
|
|
* d c b a
|
|
* p o n m
|
|
* l k j i
|
|
*
|
|
* Bits packed as
|
|
* | h | g | f | e | d | c | b | a | // Entry
|
|
* |765 432 107 654 321 076 543 210| // Bit
|
|
* |0000000000111111111112222222222| // Byte
|
|
*
|
|
* into 16 8-bit indices.
|
|
*/
|
|
static void decompress_indices(uint8_t *dst, const uint8_t *src)
|
|
{
|
|
int block, i;
|
|
|
|
for (block = 0; block < 2; block++) {
|
|
int tmp = AV_RL24(src);
|
|
|
|
/* Unpack 8x3 bit from last 3 byte block */
|
|
for (i = 0; i < 8; i++)
|
|
dst[i] = (tmp >> (i * 3)) & 0x7;
|
|
|
|
src += 3;
|
|
dst += 8;
|
|
}
|
|
}
|
|
|
|
static inline void dxt5_block_internal(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *block)
|
|
{
|
|
int x, y;
|
|
uint32_t colors[4];
|
|
uint8_t alpha_indices[16];
|
|
uint16_t color0 = AV_RL16(block + 8);
|
|
uint16_t color1 = AV_RL16(block + 10);
|
|
uint32_t code = AV_RL32(block + 12);
|
|
uint8_t alpha0 = *(block);
|
|
uint8_t alpha1 = *(block + 1);
|
|
|
|
decompress_indices(alpha_indices, block + 2);
|
|
|
|
extract_color(colors, color0, color1, 1, 0);
|
|
|
|
for (y = 0; y < 4; y++) {
|
|
for (x = 0; x < 4; x++) {
|
|
int alpha_code = alpha_indices[x + y * 4];
|
|
uint32_t pixel;
|
|
uint8_t alpha;
|
|
|
|
if (alpha_code == 0) {
|
|
alpha = alpha0;
|
|
} else if (alpha_code == 1) {
|
|
alpha = alpha1;
|
|
} else {
|
|
if (alpha0 > alpha1) {
|
|
alpha = (uint8_t) (((8 - alpha_code) * alpha0 +
|
|
(alpha_code - 1) * alpha1) / 7);
|
|
} else {
|
|
if (alpha_code == 6) {
|
|
alpha = 0;
|
|
} else if (alpha_code == 7) {
|
|
alpha = 255;
|
|
} else {
|
|
alpha = (uint8_t) (((6 - alpha_code) * alpha0 +
|
|
(alpha_code - 1) * alpha1) / 5);
|
|
}
|
|
}
|
|
}
|
|
pixel = colors[code & 3] | (alpha << 24);
|
|
code >>= 2;
|
|
AV_WL32(dst + x * 4, pixel);
|
|
}
|
|
dst += stride;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decompress one block of a DXT4 texture and store the resulting
|
|
* RGBA pixels in 'dst'.
|
|
*
|
|
* @param dst output buffer.
|
|
* @param stride scanline in bytes.
|
|
* @param block block to decompress.
|
|
* @return how much texture data has been consumed.
|
|
*/
|
|
static int dxt4_block(uint8_t *dst, ptrdiff_t stride, const uint8_t *block)
|
|
{
|
|
int x, y;
|
|
|
|
dxt5_block_internal(dst, stride, block);
|
|
|
|
/* This format is DXT5, but returns premultiplied alpha. It needs to be
|
|
* converted because it's what lavc outputs (and swscale expects). */
|
|
for (y = 0; y < 4; y++)
|
|
for (x = 0; x < 4; x++)
|
|
premult2straight(dst + x * 4 + y * stride);
|
|
|
|
return 16;
|
|
}
|
|
|
|
/**
|
|
* Decompress one block of a DXT5 texture and store the resulting
|
|
* RGBA pixels in 'dst'.
|
|
*
|
|
* @param dst output buffer.
|
|
* @param stride scanline in bytes.
|
|
* @param block block to decompress.
|
|
* @return how much texture data has been consumed.
|
|
*/
|
|
static int dxt5_block(uint8_t *dst, ptrdiff_t stride, const uint8_t *block)
|
|
{
|
|
dxt5_block_internal(dst, stride, block);
|
|
|
|
return 16;
|
|
}
|
|
|
|
/**
|
|
* Convert a YCoCg buffer to RGBA.
|
|
*
|
|
* @param src input buffer.
|
|
* @param scaled variant with scaled chroma components and opaque alpha.
|
|
*/
|
|
static av_always_inline void ycocg2rgba(uint8_t *src, int scaled)
|
|
{
|
|
int r = src[0];
|
|
int g = src[1];
|
|
int b = src[2];
|
|
int a = src[3];
|
|
|
|
int s = scaled ? (b >> 3) + 1 : 1;
|
|
int y = a;
|
|
int co = (r - 128) / s;
|
|
int cg = (g - 128) / s;
|
|
|
|
src[0] = av_clip_uint8(y + co - cg);
|
|
src[1] = av_clip_uint8(y + cg);
|
|
src[2] = av_clip_uint8(y - co - cg);
|
|
src[3] = scaled ? 255 : b;
|
|
}
|
|
|
|
/**
|
|
* Decompress one block of a DXT5 texture with classic YCoCg and store
|
|
* the resulting RGBA pixels in 'dst'. Alpha component is fully opaque.
|
|
*
|
|
* @param dst output buffer.
|
|
* @param stride scanline in bytes.
|
|
* @param block block to decompress.
|
|
* @return how much texture data has been consumed.
|
|
*/
|
|
static int dxt5y_block(uint8_t *dst, ptrdiff_t stride, const uint8_t *block)
|
|
{
|
|
int x, y;
|
|
|
|
/* This format is basically DXT5, with luma stored in alpha.
|
|
* Run a normal decompress and then reorder the components. */
|
|
dxt5_block_internal(dst, stride, block);
|
|
|
|
for (y = 0; y < 4; y++)
|
|
for (x = 0; x < 4; x++)
|
|
ycocg2rgba(dst + x * 4 + y * stride, 0);
|
|
|
|
return 16;
|
|
}
|
|
|
|
/**
|
|
* Decompress one block of a DXT5 texture with scaled YCoCg and store
|
|
* the resulting RGBA pixels in 'dst'. Alpha component is fully opaque.
|
|
*
|
|
* @param dst output buffer.
|
|
* @param stride scanline in bytes.
|
|
* @param block block to decompress.
|
|
* @return how much texture data has been consumed.
|
|
*/
|
|
static int dxt5ys_block(uint8_t *dst, ptrdiff_t stride, const uint8_t *block)
|
|
{
|
|
int x, y;
|
|
|
|
/* This format is basically DXT5, with luma stored in alpha.
|
|
* Run a normal decompress and then reorder the components. */
|
|
dxt5_block_internal(dst, stride, block);
|
|
|
|
for (y = 0; y < 4; y++)
|
|
for (x = 0; x < 4; x++)
|
|
ycocg2rgba(dst + x * 4 + y * stride, 1);
|
|
|
|
return 16;
|
|
}
|
|
|
|
static inline void rgtc_block_internal(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *block,
|
|
const int *color_tab)
|
|
{
|
|
uint8_t indices[16];
|
|
int x, y;
|
|
|
|
decompress_indices(indices, block + 2);
|
|
|
|
/* Only one or two channels are stored at most, since it only used to
|
|
* compress specular (black and white) or normal (red and green) maps.
|
|
* Although the standard says to zero out unused components, many
|
|
* implementations fill all of them with the same value. */
|
|
for (y = 0; y < 4; y++) {
|
|
for (x = 0; x < 4; x++) {
|
|
int i = indices[x + y * 4];
|
|
/* Interval expansion from [-1 1] or [0 1] to [0 255]. */
|
|
int c = color_tab[i];
|
|
uint32_t pixel = RGBA(c, c, c, 255);
|
|
AV_WL32(dst + x * 4 + y * stride, pixel);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void rgtc1_block_internal(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *block, int sign)
|
|
{
|
|
int color_table[8];
|
|
int r0, r1;
|
|
|
|
if (sign) {
|
|
/* signed data is in [-128 127] so just offset it to unsigned
|
|
* and it can be treated exactly the same */
|
|
r0 = ((int8_t) block[0]) + 128;
|
|
r1 = ((int8_t) block[1]) + 128;
|
|
} else {
|
|
r0 = block[0];
|
|
r1 = block[1];
|
|
}
|
|
|
|
color_table[0] = r0;
|
|
color_table[1] = r1;
|
|
|
|
if (r0 > r1) {
|
|
/* 6 interpolated color values */
|
|
color_table[2] = (6 * r0 + 1 * r1) / 7; // bit code 010
|
|
color_table[3] = (5 * r0 + 2 * r1) / 7; // bit code 011
|
|
color_table[4] = (4 * r0 + 3 * r1) / 7; // bit code 100
|
|
color_table[5] = (3 * r0 + 4 * r1) / 7; // bit code 101
|
|
color_table[6] = (2 * r0 + 5 * r1) / 7; // bit code 110
|
|
color_table[7] = (1 * r0 + 6 * r1) / 7; // bit code 111
|
|
} else {
|
|
/* 4 interpolated color values */
|
|
color_table[2] = (4 * r0 + 1 * r1) / 5; // bit code 010
|
|
color_table[3] = (3 * r0 + 2 * r1) / 5; // bit code 011
|
|
color_table[4] = (2 * r0 + 3 * r1) / 5; // bit code 100
|
|
color_table[5] = (1 * r0 + 4 * r1) / 5; // bit code 101
|
|
color_table[6] = 0; /* min range */ // bit code 110
|
|
color_table[7] = 255; /* max range */ // bit code 111
|
|
}
|
|
|
|
rgtc_block_internal(dst, stride, block, color_table);
|
|
}
|
|
|
|
/**
|
|
* Decompress one block of a RGRC1 texture with signed components
|
|
* and store the resulting RGBA pixels in 'dst'.
|
|
*
|
|
* @param dst output buffer.
|
|
* @param stride scanline in bytes.
|
|
* @param block block to decompress.
|
|
* @return how much texture data has been consumed.
|
|
*/
|
|
static int rgtc1s_block(uint8_t *dst, ptrdiff_t stride, const uint8_t *block)
|
|
{
|
|
rgtc1_block_internal(dst, stride, block, 1);
|
|
|
|
return 8;
|
|
}
|
|
|
|
/**
|
|
* Decompress one block of a RGRC1 texture with unsigned components
|
|
* and store the resulting RGBA pixels in 'dst'.
|
|
*
|
|
* @param dst output buffer.
|
|
* @param stride scanline in bytes.
|
|
* @param block block to decompress.
|
|
* @return how much texture data has been consumed.
|
|
*/
|
|
static int rgtc1u_block(uint8_t *dst, ptrdiff_t stride, const uint8_t *block)
|
|
{
|
|
rgtc1_block_internal(dst, stride, block, 0);
|
|
|
|
return 8;
|
|
}
|
|
|
|
static inline void rgtc2_block_internal(uint8_t *dst, ptrdiff_t stride,
|
|
const uint8_t *block, int sign)
|
|
{
|
|
/* 4x4 block containing 4 component pixels. */
|
|
uint8_t c0[4 * 4 * 4];
|
|
uint8_t c1[4 * 4 * 4];
|
|
int x, y;
|
|
|
|
/* Decompress the two channels separately and interleave them afterwards. */
|
|
rgtc1_block_internal(c0, 16, block, sign);
|
|
rgtc1_block_internal(c1, 16, block + 8, sign);
|
|
|
|
/* B is rebuilt exactly like a normal map. */
|
|
for (y = 0; y < 4; y++) {
|
|
for (x = 0; x < 4; x++) {
|
|
uint8_t *p = dst + x * 4 + y * stride;
|
|
int r = c0[x * 4 + y * 16];
|
|
int g = c1[x * 4 + y * 16];
|
|
int b = 127;
|
|
|
|
int d = (255 * 255 - r * r - g * g) / 2;
|
|
if (d > 0)
|
|
b = rint(sqrtf(d));
|
|
|
|
p[0] = r;
|
|
p[1] = g;
|
|
p[2] = b;
|
|
p[3] = 255;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decompress one block of a RGRC2 texture with signed components
|
|
* and store the resulting RGBA pixels in 'dst'. Alpha is fully opaque.
|
|
*
|
|
* @param dst output buffer.
|
|
* @param stride scanline in bytes.
|
|
* @param block block to decompress.
|
|
* @return how much texture data has been consumed.
|
|
*/
|
|
static int rgtc2s_block(uint8_t *dst, ptrdiff_t stride, const uint8_t *block)
|
|
{
|
|
rgtc2_block_internal(dst, stride, block, 1);
|
|
|
|
return 16;
|
|
}
|
|
|
|
/**
|
|
* Decompress one block of a RGRC2 texture with unsigned components
|
|
* and store the resulting RGBA pixels in 'dst'. Alpha is fully opaque.
|
|
*
|
|
* @param dst output buffer.
|
|
* @param stride scanline in bytes.
|
|
* @param block block to decompress.
|
|
* @return how much texture data has been consumed.
|
|
*/
|
|
static int rgtc2u_block(uint8_t *dst, ptrdiff_t stride, const uint8_t *block)
|
|
{
|
|
rgtc2_block_internal(dst, stride, block, 0);
|
|
|
|
return 16;
|
|
}
|
|
|
|
/**
|
|
* Decompress one block of a 3Dc texture with unsigned components
|
|
* and store the resulting RGBA pixels in 'dst'. Alpha is fully opaque.
|
|
*
|
|
* @param dst output buffer.
|
|
* @param stride scanline in bytes.
|
|
* @param block block to decompress.
|
|
* @return how much texture data has been consumed.
|
|
*/
|
|
static int dxn3dc_block(uint8_t *dst, ptrdiff_t stride, const uint8_t *block)
|
|
{
|
|
int x, y;
|
|
rgtc2_block_internal(dst, stride, block, 0);
|
|
|
|
/* This is the 3Dc variant of RGTC2, with swapped R and G. */
|
|
for (y = 0; y < 4; y++) {
|
|
for (x = 0; x < 4; x++) {
|
|
uint8_t *p = dst + x * 4 + y * stride;
|
|
FFSWAP(uint8_t, p[0], p[1]);
|
|
}
|
|
}
|
|
|
|
return 16;
|
|
}
|
|
|
|
av_cold void ff_texturedsp_init(TextureDSPContext *c)
|
|
{
|
|
c->dxt1_block = dxt1_block;
|
|
c->dxt1a_block = dxt1a_block;
|
|
c->dxt2_block = dxt2_block;
|
|
c->dxt3_block = dxt3_block;
|
|
c->dxt4_block = dxt4_block;
|
|
c->dxt5_block = dxt5_block;
|
|
c->dxt5y_block = dxt5y_block;
|
|
c->dxt5ys_block = dxt5ys_block;
|
|
c->rgtc1s_block = rgtc1s_block;
|
|
c->rgtc1u_block = rgtc1u_block;
|
|
c->rgtc2s_block = rgtc2s_block;
|
|
c->rgtc2u_block = rgtc2u_block;
|
|
c->dxn3dc_block = dxn3dc_block;
|
|
}
|