1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavcodec/ffv1enc.c
Vittorio Giovara be00ec832c lavc: Deprecate coder_type and its symbols
Most option values are simply unused or ignored and in practice the
majory of codecs only need to check whether to enable rle or not.

Add appropriate codec private options which better expose the allowed
features.

Signed-off-by: Vittorio Giovara <vittorio.giovara@gmail.com>
2015-12-07 11:01:22 -05:00

1130 lines
39 KiB
C

/*
* FFV1 encoder for libavcodec
*
* Copyright (c) 2003-2012 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* FF Video Codec 1 (a lossless codec) encoder
*/
#include "libavutil/attributes.h"
#include "libavutil/avassert.h"
#include "libavutil/pixdesc.h"
#include "libavutil/crc.h"
#include "libavutil/opt.h"
#include "libavutil/imgutils.h"
#include "avcodec.h"
#include "internal.h"
#include "get_bits.h"
#include "put_bits.h"
#include "rangecoder.h"
#include "golomb.h"
#include "mathops.h"
#include "ffv1.h"
static void find_best_state(uint8_t best_state[256][256],
const uint8_t one_state[256])
{
int i, j, k, m;
double l2tab[256];
for (i = 1; i < 256; i++)
l2tab[i] = log2(i / 256.0);
for (i = 0; i < 256; i++) {
double best_len[256];
double p = i / 256.0;
for (j = 0; j < 256; j++)
best_len[j] = 1 << 30;
for (j = FFMAX(i - 10, 1); j < FFMIN(i + 11, 256); j++) {
double occ[256] = { 0 };
double len = 0;
occ[j] = 1.0;
for (k = 0; k < 256; k++) {
double newocc[256] = { 0 };
for (m = 1; m < 256; m++)
if (occ[m]) {
len -= occ[m] * (p * l2tab[m] +
(1 - p) * l2tab[256 - m]);
}
if (len < best_len[k]) {
best_len[k] = len;
best_state[i][k] = j;
}
for (m = 1; m < 256; m++)
if (occ[m]) {
newocc[one_state[m]] += occ[m] * p;
newocc[256 - one_state[256 - m]] += occ[m] * (1 - p);
}
memcpy(occ, newocc, sizeof(occ));
}
}
}
}
static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c,
uint8_t *state, int v,
int is_signed,
uint64_t rc_stat[256][2],
uint64_t rc_stat2[32][2])
{
int i;
#define put_rac(C, S, B) \
do { \
if (rc_stat) { \
rc_stat[*(S)][B]++; \
rc_stat2[(S) - state][B]++; \
} \
put_rac(C, S, B); \
} while (0)
if (v) {
const int a = FFABS(v);
const int e = av_log2(a);
put_rac(c, state + 0, 0);
if (e <= 9) {
for (i = 0; i < e; i++)
put_rac(c, state + 1 + i, 1); // 1..10
put_rac(c, state + 1 + i, 0);
for (i = e - 1; i >= 0; i--)
put_rac(c, state + 22 + i, (a >> i) & 1); // 22..31
if (is_signed)
put_rac(c, state + 11 + e, v < 0); // 11..21
} else {
for (i = 0; i < e; i++)
put_rac(c, state + 1 + FFMIN(i, 9), 1); // 1..10
put_rac(c, state + 1 + 9, 0);
for (i = e - 1; i >= 0; i--)
put_rac(c, state + 22 + FFMIN(i, 9), (a >> i) & 1); // 22..31
if (is_signed)
put_rac(c, state + 11 + 10, v < 0); // 11..21
}
} else {
put_rac(c, state + 0, 1);
}
#undef put_rac
}
static av_noinline void put_symbol(RangeCoder *c, uint8_t *state,
int v, int is_signed)
{
put_symbol_inline(c, state, v, is_signed, NULL, NULL);
}
static inline void put_vlc_symbol(PutBitContext *pb, VlcState *const state,
int v, int bits)
{
int i, k, code;
v = fold(v - state->bias, bits);
i = state->count;
k = 0;
while (i < state->error_sum) { // FIXME: optimize
k++;
i += i;
}
assert(k <= 13);
#if 0 // JPEG LS
if (k == 0 && 2 * state->drift <= -state->count)
code = v ^ (-1);
else
code = v;
#else
code = v ^ ((2 * state->drift + state->count) >> 31);
#endif
ff_dlog(NULL, "v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code,
state->bias, state->error_sum, state->drift, state->count, k);
set_sr_golomb(pb, code, k, 12, bits);
update_vlc_state(state, v);
}
static av_always_inline int encode_line(FFV1Context *s, int w,
int16_t *sample[3],
int plane_index, int bits)
{
PlaneContext *const p = &s->plane[plane_index];
RangeCoder *const c = &s->c;
int x;
int run_index = s->run_index;
int run_count = 0;
int run_mode = 0;
if (s->ac != AC_GOLOMB_RICE) {
if (c->bytestream_end - c->bytestream < w * 20) {
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return AVERROR_INVALIDDATA;
}
} else {
if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < w * 4) {
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return AVERROR_INVALIDDATA;
}
}
for (x = 0; x < w; x++) {
int diff, context;
context = get_context(p, sample[0] + x, sample[1] + x, sample[2] + x);
diff = sample[0][x] - predict(sample[0] + x, sample[1] + x);
if (context < 0) {
context = -context;
diff = -diff;
}
diff = fold(diff, bits);
if (s->ac != AC_GOLOMB_RICE) {
if (s->flags & AV_CODEC_FLAG_PASS1) {
put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat,
s->rc_stat2[p->quant_table_index][context]);
} else {
put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL);
}
} else {
if (context == 0)
run_mode = 1;
if (run_mode) {
if (diff) {
while (run_count >= 1 << ff_log2_run[run_index]) {
run_count -= 1 << ff_log2_run[run_index];
run_index++;
put_bits(&s->pb, 1, 1);
}
put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
if (run_index)
run_index--;
run_count = 0;
run_mode = 0;
if (diff > 0)
diff--;
} else {
run_count++;
}
}
ff_dlog(s->avctx, "count:%d index:%d, mode:%d, x:%d pos:%d\n",
run_count, run_index, run_mode, x,
(int)put_bits_count(&s->pb));
if (run_mode == 0)
put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
}
}
if (run_mode) {
while (run_count >= 1 << ff_log2_run[run_index]) {
run_count -= 1 << ff_log2_run[run_index];
run_index++;
put_bits(&s->pb, 1, 1);
}
if (run_count)
put_bits(&s->pb, 1, 1);
}
s->run_index = run_index;
return 0;
}
static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h,
int stride, int plane_index)
{
int x, y, i;
const int ring_size = s->avctx->context_model ? 3 : 2;
int16_t *sample[3];
s->run_index = 0;
memset(s->sample_buffer, 0, ring_size * (w + 6) * sizeof(*s->sample_buffer));
for (y = 0; y < h; y++) {
for (i = 0; i < ring_size; i++)
sample[i] = s->sample_buffer + (w + 6) * ((h + i - y) % ring_size) + 3;
sample[0][-1] = sample[1][0];
sample[1][w] = sample[1][w - 1];
// { START_TIMER
if (s->bits_per_raw_sample <= 8) {
for (x = 0; x < w; x++)
sample[0][x] = src[x + stride * y];
encode_line(s, w, sample, plane_index, 8);
} else {
if (s->packed_at_lsb) {
for (x = 0; x < w; x++)
sample[0][x] = ((uint16_t *)(src + stride * y))[x];
} else {
for (x = 0; x < w; x++)
sample[0][x] =
((uint16_t *)(src + stride * y))[x] >> (16 - s->bits_per_raw_sample);
}
encode_line(s, w, sample, plane_index, s->bits_per_raw_sample);
}
// STOP_TIMER("encode line") }
}
}
static void encode_rgb_frame(FFV1Context *s, const uint8_t *src[3],
int w, int h, const int stride[3])
{
int x, y, p, i;
const int ring_size = s->avctx->context_model ? 3 : 2;
int16_t *sample[MAX_PLANES][3];
int lbd = s->avctx->bits_per_raw_sample <= 8;
int bits = s->avctx->bits_per_raw_sample > 0
? s->avctx->bits_per_raw_sample
: 8;
int offset = 1 << bits;
s->run_index = 0;
memset(s->sample_buffer, 0, ring_size * MAX_PLANES *
(w + 6) * sizeof(*s->sample_buffer));
for (y = 0; y < h; y++) {
for (i = 0; i < ring_size; i++)
for (p = 0; p < MAX_PLANES; p++)
sample[p][i] = s->sample_buffer + p * ring_size *
(w + 6) +
((h + i - y) % ring_size) * (w + 6) + 3;
for (x = 0; x < w; x++) {
int b, g, r, av_uninit(a);
if (lbd) {
unsigned v = *((const uint32_t *)(src[0] + x * 4 + stride[0] * y));
b = v & 0xFF;
g = (v >> 8) & 0xFF;
r = (v >> 16) & 0xFF;
a = v >> 24;
} else {
b = *((const uint16_t *)(src[0] + x * 2 + stride[0] * y));
g = *((const uint16_t *)(src[1] + x * 2 + stride[1] * y));
r = *((const uint16_t *)(src[2] + x * 2 + stride[2] * y));
}
b -= g;
r -= g;
g += (b + r) >> 2;
b += offset;
r += offset;
sample[0][0][x] = g;
sample[1][0][x] = b;
sample[2][0][x] = r;
sample[3][0][x] = a;
}
for (p = 0; p < 3 + s->transparency; p++) {
sample[p][0][-1] = sample[p][1][0];
sample[p][1][w] = sample[p][1][w - 1];
if (lbd)
encode_line(s, w, sample[p], (p + 1) / 2, 9);
else
encode_line(s, w, sample[p], (p + 1) / 2, bits + 1);
}
}
}
static void write_quant_table(RangeCoder *c, int16_t *quant_table)
{
int last = 0;
int i;
uint8_t state[CONTEXT_SIZE];
memset(state, 128, sizeof(state));
for (i = 1; i < 128; i++)
if (quant_table[i] != quant_table[i - 1]) {
put_symbol(c, state, i - last - 1, 0);
last = i;
}
put_symbol(c, state, i - last - 1, 0);
}
static void write_quant_tables(RangeCoder *c,
int16_t quant_table[MAX_CONTEXT_INPUTS][256])
{
int i;
for (i = 0; i < 5; i++)
write_quant_table(c, quant_table[i]);
}
static void write_header(FFV1Context *f)
{
uint8_t state[CONTEXT_SIZE];
int i, j;
RangeCoder *const c = &f->slice_context[0]->c;
memset(state, 128, sizeof(state));
if (f->version < 2) {
put_symbol(c, state, f->version, 0);
put_symbol(c, state, f->ac, 0);
if (f->ac == AC_RANGE_CUSTOM_TAB) {
for (i = 1; i < 256; i++)
put_symbol(c, state,
f->state_transition[i] - c->one_state[i], 1);
}
put_symbol(c, state, f->colorspace, 0); // YUV cs type
if (f->version > 0)
put_symbol(c, state, f->bits_per_raw_sample, 0);
put_rac(c, state, f->chroma_planes);
put_symbol(c, state, f->chroma_h_shift, 0);
put_symbol(c, state, f->chroma_v_shift, 0);
put_rac(c, state, f->transparency);
write_quant_tables(c, f->quant_table);
} else if (f->version < 3) {
put_symbol(c, state, f->slice_count, 0);
for (i = 0; i < f->slice_count; i++) {
FFV1Context *fs = f->slice_context[i];
put_symbol(c, state,
(fs->slice_x + 1) * f->num_h_slices / f->width, 0);
put_symbol(c, state,
(fs->slice_y + 1) * f->num_v_slices / f->height, 0);
put_symbol(c, state,
(fs->slice_width + 1) * f->num_h_slices / f->width - 1,
0);
put_symbol(c, state,
(fs->slice_height + 1) * f->num_v_slices / f->height - 1,
0);
for (j = 0; j < f->plane_count; j++) {
put_symbol(c, state, f->plane[j].quant_table_index, 0);
av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
}
}
}
}
static int write_extradata(FFV1Context *f)
{
RangeCoder *const c = &f->c;
uint8_t state[CONTEXT_SIZE];
int i, j, k;
uint8_t state2[32][CONTEXT_SIZE];
unsigned v;
memset(state2, 128, sizeof(state2));
memset(state, 128, sizeof(state));
f->avctx->extradata_size = 10000 + 4 +
(11 * 11 * 5 * 5 * 5 + 11 * 11 * 11) * 32;
f->avctx->extradata = av_malloc(f->avctx->extradata_size);
ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
put_symbol(c, state, f->version, 0);
if (f->version > 2) {
if (f->version == 3)
f->minor_version = 2;
put_symbol(c, state, f->minor_version, 0);
}
put_symbol(c, state, f->ac, 0);
if (f->ac == AC_RANGE_CUSTOM_TAB)
for (i = 1; i < 256; i++)
put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
put_symbol(c, state, f->colorspace, 0); // YUV cs type
put_symbol(c, state, f->bits_per_raw_sample, 0);
put_rac(c, state, f->chroma_planes);
put_symbol(c, state, f->chroma_h_shift, 0);
put_symbol(c, state, f->chroma_v_shift, 0);
put_rac(c, state, f->transparency);
put_symbol(c, state, f->num_h_slices - 1, 0);
put_symbol(c, state, f->num_v_slices - 1, 0);
put_symbol(c, state, f->quant_table_count, 0);
for (i = 0; i < f->quant_table_count; i++)
write_quant_tables(c, f->quant_tables[i]);
for (i = 0; i < f->quant_table_count; i++) {
for (j = 0; j < f->context_count[i] * CONTEXT_SIZE; j++)
if (f->initial_states[i] && f->initial_states[i][0][j] != 128)
break;
if (j < f->context_count[i] * CONTEXT_SIZE) {
put_rac(c, state, 1);
for (j = 0; j < f->context_count[i]; j++)
for (k = 0; k < CONTEXT_SIZE; k++) {
int pred = j ? f->initial_states[i][j - 1][k] : 128;
put_symbol(c, state2[k],
(int8_t)(f->initial_states[i][j][k] - pred), 1);
}
} else {
put_rac(c, state, 0);
}
}
if (f->version > 2) {
put_symbol(c, state, f->ec, 0);
}
f->avctx->extradata_size = ff_rac_terminate(c);
v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0,
f->avctx->extradata, f->avctx->extradata_size);
AV_WL32(f->avctx->extradata + f->avctx->extradata_size, v);
f->avctx->extradata_size += 4;
return 0;
}
static int sort_stt(FFV1Context *s, uint8_t stt[256])
{
int i, i2, changed, print = 0;
do {
changed = 0;
for (i = 12; i < 244; i++) {
for (i2 = i + 1; i2 < 245 && i2 < i + 4; i2++) {
#define COST(old, new) \
s->rc_stat[old][0] * -log2((256 - (new)) / 256.0) + \
s->rc_stat[old][1] * -log2((new) / 256.0)
#define COST2(old, new) \
COST(old, new) + COST(256 - (old), 256 - (new))
double size0 = COST2(i, i) + COST2(i2, i2);
double sizeX = COST2(i, i2) + COST2(i2, i);
if (sizeX < size0 && i != 128 && i2 != 128) {
int j;
FFSWAP(int, stt[i], stt[i2]);
FFSWAP(int, s->rc_stat[i][0], s->rc_stat[i2][0]);
FFSWAP(int, s->rc_stat[i][1], s->rc_stat[i2][1]);
if (i != 256 - i2) {
FFSWAP(int, stt[256 - i], stt[256 - i2]);
FFSWAP(int, s->rc_stat[256 - i][0], s->rc_stat[256 - i2][0]);
FFSWAP(int, s->rc_stat[256 - i][1], s->rc_stat[256 - i2][1]);
}
for (j = 1; j < 256; j++) {
if (stt[j] == i)
stt[j] = i2;
else if (stt[j] == i2)
stt[j] = i;
if (i != 256 - i2) {
if (stt[256 - j] == 256 - i)
stt[256 - j] = 256 - i2;
else if (stt[256 - j] == 256 - i2)
stt[256 - j] = 256 - i;
}
}
print = changed = 1;
}
}
}
} while (changed);
return print;
}
static av_cold int init_slices_state(FFV1Context *f)
{
int i, ret;
for (i = 0; i < f->slice_count; i++) {
FFV1Context *fs = f->slice_context[i];
if ((ret = ffv1_init_slice_state(f, fs)) < 0)
return AVERROR(ENOMEM);
}
return 0;
}
static av_cold int ffv1_encode_init(AVCodecContext *avctx)
{
FFV1Context *s = avctx->priv_data;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
int i, j, k, m, ret;
ffv1_common_init(avctx);
s->version = 0;
if ((avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) ||
avctx->slices > 1)
s->version = FFMAX(s->version, 2);
if (avctx->level == 3) {
s->version = 3;
}
if (s->ec < 0) {
s->ec = (s->version >= 3);
}
if (s->version >= 2 &&
avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
av_log(avctx, AV_LOG_ERROR,
"Version %d requested, please set -strict experimental in "
"order to enable it\n",
s->version);
return AVERROR(ENOSYS);
}
#if FF_API_CODER_TYPE
FF_DISABLE_DEPRECATION_WARNINGS
if (avctx->coder_type != -1)
s->ac = avctx->coder_type > 0 ? AC_RANGE_CUSTOM_TAB : AC_GOLOMB_RICE;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
s->plane_count = 3;
switch (avctx->pix_fmt) {
case AV_PIX_FMT_YUV444P9:
case AV_PIX_FMT_YUV422P9:
case AV_PIX_FMT_YUV420P9:
if (!avctx->bits_per_raw_sample)
s->bits_per_raw_sample = 9;
case AV_PIX_FMT_YUV444P10:
case AV_PIX_FMT_YUV420P10:
case AV_PIX_FMT_YUV422P10:
s->packed_at_lsb = 1;
if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
s->bits_per_raw_sample = 10;
case AV_PIX_FMT_GRAY16:
case AV_PIX_FMT_YUV444P16:
case AV_PIX_FMT_YUV422P16:
case AV_PIX_FMT_YUV420P16:
if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) {
s->bits_per_raw_sample = 16;
} else if (!s->bits_per_raw_sample) {
s->bits_per_raw_sample = avctx->bits_per_raw_sample;
}
if (s->bits_per_raw_sample <= 8) {
av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
return AVERROR_INVALIDDATA;
}
if (s->ac == AC_GOLOMB_RICE) {
av_log(avctx, AV_LOG_INFO,
"bits_per_raw_sample > 8, forcing range coder\n");
s->ac = AC_RANGE_CUSTOM_TAB;
}
s->version = FFMAX(s->version, 1);
case AV_PIX_FMT_GRAY8:
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_YUV440P:
case AV_PIX_FMT_YUV422P:
case AV_PIX_FMT_YUV420P:
case AV_PIX_FMT_YUV411P:
case AV_PIX_FMT_YUV410P:
s->chroma_planes = desc->nb_components < 3 ? 0 : 1;
s->colorspace = 0;
break;
case AV_PIX_FMT_YUVA444P:
case AV_PIX_FMT_YUVA422P:
case AV_PIX_FMT_YUVA420P:
s->chroma_planes = 1;
s->colorspace = 0;
s->transparency = 1;
break;
case AV_PIX_FMT_RGB32:
s->colorspace = 1;
s->transparency = 1;
break;
case AV_PIX_FMT_GBRP9:
if (!avctx->bits_per_raw_sample)
s->bits_per_raw_sample = 9;
case AV_PIX_FMT_GBRP10:
if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
s->bits_per_raw_sample = 10;
case AV_PIX_FMT_GBRP16:
if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
s->bits_per_raw_sample = 16;
else if (!s->bits_per_raw_sample)
s->bits_per_raw_sample = avctx->bits_per_raw_sample;
s->colorspace = 1;
s->chroma_planes = 1;
s->version = FFMAX(s->version, 1);
break;
default:
av_log(avctx, AV_LOG_ERROR, "format not supported\n");
return AVERROR_INVALIDDATA;
}
if (s->transparency) {
av_log(
avctx, AV_LOG_WARNING,
"Storing alpha plane, this will require a recent FFV1 decoder to playback!\n");
}
if (avctx->context_model > 1U) {
av_log(avctx, AV_LOG_ERROR,
"Invalid context model %d, valid values are 0 and 1\n",
avctx->context_model);
return AVERROR(EINVAL);
}
if (s->ac == AC_RANGE_CUSTOM_TAB)
for (i = 1; i < 256; i++)
s->state_transition[i] = ffv1_ver2_state[i];
for (i = 0; i < 256; i++) {
s->quant_table_count = 2;
if (s->bits_per_raw_sample <= 8) {
s->quant_tables[0][0][i] = ffv1_quant11[i];
s->quant_tables[0][1][i] = ffv1_quant11[i] * 11;
s->quant_tables[0][2][i] = ffv1_quant11[i] * 11 * 11;
s->quant_tables[1][0][i] = ffv1_quant11[i];
s->quant_tables[1][1][i] = ffv1_quant11[i] * 11;
s->quant_tables[1][2][i] = ffv1_quant5[i] * 11 * 11;
s->quant_tables[1][3][i] = ffv1_quant5[i] * 5 * 11 * 11;
s->quant_tables[1][4][i] = ffv1_quant5[i] * 5 * 5 * 11 * 11;
} else {
s->quant_tables[0][0][i] = ffv1_quant9_10bit[i];
s->quant_tables[0][1][i] = ffv1_quant9_10bit[i] * 11;
s->quant_tables[0][2][i] = ffv1_quant9_10bit[i] * 11 * 11;
s->quant_tables[1][0][i] = ffv1_quant9_10bit[i];
s->quant_tables[1][1][i] = ffv1_quant9_10bit[i] * 11;
s->quant_tables[1][2][i] = ffv1_quant5_10bit[i] * 11 * 11;
s->quant_tables[1][3][i] = ffv1_quant5_10bit[i] * 5 * 11 * 11;
s->quant_tables[1][4][i] = ffv1_quant5_10bit[i] * 5 * 5 * 11 * 11;
}
}
s->context_count[0] = (11 * 11 * 11 + 1) / 2;
s->context_count[1] = (11 * 11 * 5 * 5 * 5 + 1) / 2;
memcpy(s->quant_table, s->quant_tables[avctx->context_model],
sizeof(s->quant_table));
for (i = 0; i < s->plane_count; i++) {
PlaneContext *const p = &s->plane[i];
memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
p->quant_table_index = avctx->context_model;
p->context_count = s->context_count[p->quant_table_index];
}
if ((ret = ffv1_allocate_initial_states(s)) < 0)
return ret;
#if FF_API_CODED_FRAME
FF_DISABLE_DEPRECATION_WARNINGS
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
if (!s->transparency)
s->plane_count = 2;
av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift,
&s->chroma_v_shift);
s->picture_number = 0;
if (avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) {
for (i = 0; i < s->quant_table_count; i++) {
s->rc_stat2[i] = av_mallocz(s->context_count[i] *
sizeof(*s->rc_stat2[i]));
if (!s->rc_stat2[i])
return AVERROR(ENOMEM);
}
}
if (avctx->stats_in) {
char *p = avctx->stats_in;
uint8_t best_state[256][256];
int gob_count = 0;
char *next;
av_assert0(s->version >= 2);
for (;; ) {
for (j = 0; j < 256; j++)
for (i = 0; i < 2; i++) {
s->rc_stat[j][i] = strtol(p, &next, 0);
if (next == p) {
av_log(avctx, AV_LOG_ERROR,
"2Pass file invalid at %d %d [%s]\n", j, i, p);
return AVERROR_INVALIDDATA;
}
p = next;
}
for (i = 0; i < s->quant_table_count; i++)
for (j = 0; j < s->context_count[i]; j++) {
for (k = 0; k < 32; k++)
for (m = 0; m < 2; m++) {
s->rc_stat2[i][j][k][m] = strtol(p, &next, 0);
if (next == p) {
av_log(avctx, AV_LOG_ERROR,
"2Pass file invalid at %d %d %d %d [%s]\n",
i, j, k, m, p);
return AVERROR_INVALIDDATA;
}
p = next;
}
}
gob_count = strtol(p, &next, 0);
if (next == p || gob_count <= 0) {
av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
return AVERROR_INVALIDDATA;
}
p = next;
while (*p == '\n' || *p == ' ')
p++;
if (p[0] == 0)
break;
}
sort_stt(s, s->state_transition);
find_best_state(best_state, s->state_transition);
for (i = 0; i < s->quant_table_count; i++) {
for (j = 0; j < s->context_count[i]; j++)
for (k = 0; k < 32; k++) {
double p = 128;
if (s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1]) {
p = 256.0 * s->rc_stat2[i][j][k][1] /
(s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1]);
}
s->initial_states[i][j][k] =
best_state[av_clip(round(p), 1, 255)][av_clip((s->rc_stat2[i][j][k][0] +
s->rc_stat2[i][j][k][1]) /
gob_count, 0, 255)];
}
}
}
if (s->version > 1) {
for (s->num_v_slices = 2; s->num_v_slices < 9; s->num_v_slices++)
for (s->num_h_slices = s->num_v_slices;
s->num_h_slices < 2 * s->num_v_slices; s->num_h_slices++)
if (avctx->slices == s->num_h_slices * s->num_v_slices &&
avctx->slices <= 64 || !avctx->slices)
goto slices_ok;
av_log(avctx, AV_LOG_ERROR,
"Unsupported number %d of slices requested, please specify a "
"supported number with -slices (ex:4,6,9,12,16, ...)\n",
avctx->slices);
return AVERROR(ENOSYS);
slices_ok:
write_extradata(s);
}
if ((ret = ffv1_init_slice_contexts(s)) < 0)
return ret;
if ((ret = init_slices_state(s)) < 0)
return ret;
#define STATS_OUT_SIZE 1024 * 1024 * 6
if (avctx->flags & AV_CODEC_FLAG_PASS1) {
avctx->stats_out = av_mallocz(STATS_OUT_SIZE);
for (i = 0; i < s->quant_table_count; i++)
for (j = 0; j < s->slice_count; j++) {
FFV1Context *sf = s->slice_context[j];
av_assert0(!sf->rc_stat2[i]);
sf->rc_stat2[i] = av_mallocz(s->context_count[i] *
sizeof(*sf->rc_stat2[i]));
if (!sf->rc_stat2[i])
return AVERROR(ENOMEM);
}
}
return 0;
}
static void encode_slice_header(FFV1Context *f, FFV1Context *fs)
{
RangeCoder *c = &fs->c;
uint8_t state[CONTEXT_SIZE];
int j;
memset(state, 128, sizeof(state));
put_symbol(c, state, (fs->slice_x + 1) * f->num_h_slices / f->width, 0);
put_symbol(c, state, (fs->slice_y + 1) * f->num_v_slices / f->height, 0);
put_symbol(c, state, (fs->slice_width + 1) * f->num_h_slices / f->width - 1,
0);
put_symbol(c, state,
(fs->slice_height + 1) * f->num_v_slices / f->height - 1,
0);
for (j = 0; j < f->plane_count; j++) {
put_symbol(c, state, f->plane[j].quant_table_index, 0);
av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
}
if (!f->frame->interlaced_frame)
put_symbol(c, state, 3, 0);
else
put_symbol(c, state, 1 + !f->frame->top_field_first, 0);
put_symbol(c, state, f->frame->sample_aspect_ratio.num, 0);
put_symbol(c, state, f->frame->sample_aspect_ratio.den, 0);
}
static int encode_slice(AVCodecContext *c, void *arg)
{
FFV1Context *fs = *(void **)arg;
FFV1Context *f = fs->avctx->priv_data;
int width = fs->slice_width;
int height = fs->slice_height;
int x = fs->slice_x;
int y = fs->slice_y;
const AVFrame *const p = f->frame;
const int ps = (av_pix_fmt_desc_get(c->pix_fmt)->flags & AV_PIX_FMT_FLAG_PLANAR)
? (f->bits_per_raw_sample > 8) + 1
: 4;
if (f->key_frame)
ffv1_clear_slice_state(f, fs);
if (f->version > 2) {
encode_slice_header(f, fs);
}
if (fs->ac == AC_GOLOMB_RICE) {
if (f->version > 2)
put_rac(&fs->c, (uint8_t[]) { 129 }, 0);
fs->ac_byte_count = f->version > 2 || (!x && !y) ? ff_rac_terminate( &fs->c) : 0;
init_put_bits(&fs->pb, fs->c.bytestream_start + fs->ac_byte_count,
fs->c.bytestream_end - fs->c.bytestream_start - fs->ac_byte_count);
}
if (f->colorspace == 0) {
const int chroma_width = -((-width) >> f->chroma_h_shift);
const int chroma_height = -((-height) >> f->chroma_v_shift);
const int cx = x >> f->chroma_h_shift;
const int cy = y >> f->chroma_v_shift;
encode_plane(fs, p->data[0] + ps * x + y * p->linesize[0],
width, height, p->linesize[0], 0);
if (f->chroma_planes) {
encode_plane(fs, p->data[1] + ps * cx + cy * p->linesize[1],
chroma_width, chroma_height, p->linesize[1], 1);
encode_plane(fs, p->data[2] + ps * cx + cy * p->linesize[2],
chroma_width, chroma_height, p->linesize[2], 1);
}
if (fs->transparency)
encode_plane(fs, p->data[3] + ps * x + y * p->linesize[3], width,
height, p->linesize[3], 2);
} else {
const uint8_t *planes[3] = { p->data[0] + ps * x + y * p->linesize[0],
p->data[1] + ps * x + y * p->linesize[1],
p->data[2] + ps * x + y * p->linesize[2] };
encode_rgb_frame(fs, planes, width, height, p->linesize);
}
emms_c();
return 0;
}
static int ffv1_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *pict, int *got_packet)
{
FFV1Context *f = avctx->priv_data;
RangeCoder *const c = &f->slice_context[0]->c;
int used_count = 0;
uint8_t keystate = 128;
uint8_t *buf_p;
int i, ret;
f->frame = pict;
if ((ret = ff_alloc_packet(pkt, avctx->width * avctx->height *
((8 * 2 + 1 + 1) * 4) / 8 +
AV_INPUT_BUFFER_MIN_SIZE)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n");
return ret;
}
ff_init_range_encoder(c, pkt->data, pkt->size);
ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
if (avctx->gop_size == 0 || f->picture_number % avctx->gop_size == 0) {
put_rac(c, &keystate, 1);
f->key_frame = 1;
f->gob_count++;
write_header(f);
} else {
put_rac(c, &keystate, 0);
f->key_frame = 0;
}
if (f->ac == AC_RANGE_CUSTOM_TAB) {
int i;
for (i = 1; i < 256; i++) {
c->one_state[i] = f->state_transition[i];
c->zero_state[256 - i] = 256 - c->one_state[i];
}
}
for (i = 1; i < f->slice_count; i++) {
FFV1Context *fs = f->slice_context[i];
uint8_t *start = pkt->data +
(pkt->size - used_count) * (int64_t)i / f->slice_count;
int len = pkt->size / f->slice_count;
ff_init_range_encoder(&fs->c, start, len);
}
avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL,
f->slice_count, sizeof(void *));
buf_p = pkt->data;
for (i = 0; i < f->slice_count; i++) {
FFV1Context *fs = f->slice_context[i];
int bytes;
if (fs->ac != AC_GOLOMB_RICE) {
uint8_t state = 129;
put_rac(&fs->c, &state, 0);
bytes = ff_rac_terminate(&fs->c);
} else {
flush_put_bits(&fs->pb); // FIXME: nicer padding
bytes = fs->ac_byte_count + (put_bits_count(&fs->pb) + 7) / 8;
}
if (i > 0 || f->version > 2) {
av_assert0(bytes < pkt->size / f->slice_count);
memmove(buf_p, fs->c.bytestream_start, bytes);
av_assert0(bytes < (1 << 24));
AV_WB24(buf_p + bytes, bytes);
bytes += 3;
}
if (f->ec) {
unsigned v;
buf_p[bytes++] = 0;
v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, buf_p, bytes);
AV_WL32(buf_p + bytes, v);
bytes += 4;
}
buf_p += bytes;
}
if ((avctx->flags & AV_CODEC_FLAG_PASS1) && (f->picture_number & 31) == 0) {
int j, k, m;
char *p = avctx->stats_out;
char *end = p + STATS_OUT_SIZE;
memset(f->rc_stat, 0, sizeof(f->rc_stat));
for (i = 0; i < f->quant_table_count; i++)
memset(f->rc_stat2[i], 0, f->context_count[i] * sizeof(*f->rc_stat2[i]));
for (j = 0; j < f->slice_count; j++) {
FFV1Context *fs = f->slice_context[j];
for (i = 0; i < 256; i++) {
f->rc_stat[i][0] += fs->rc_stat[i][0];
f->rc_stat[i][1] += fs->rc_stat[i][1];
}
for (i = 0; i < f->quant_table_count; i++) {
for (k = 0; k < f->context_count[i]; k++)
for (m = 0; m < 32; m++) {
f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0];
f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1];
}
}
}
for (j = 0; j < 256; j++) {
snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
f->rc_stat[j][0], f->rc_stat[j][1]);
p += strlen(p);
}
snprintf(p, end - p, "\n");
for (i = 0; i < f->quant_table_count; i++) {
for (j = 0; j < f->context_count[i]; j++)
for (m = 0; m < 32; m++) {
snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
p += strlen(p);
}
}
snprintf(p, end - p, "%d\n", f->gob_count);
} else if (avctx->flags & AV_CODEC_FLAG_PASS1)
avctx->stats_out[0] = '\0';
#if FF_API_CODED_FRAME
FF_DISABLE_DEPRECATION_WARNINGS
avctx->coded_frame->key_frame = f->key_frame;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
f->picture_number++;
pkt->size = buf_p - pkt->data;
pkt->flags |= AV_PKT_FLAG_KEY * f->key_frame;
*got_packet = 1;
return 0;
}
static av_cold int ffv1_encode_close(AVCodecContext *avctx)
{
ffv1_close(avctx);
return 0;
}
#define OFFSET(x) offsetof(FFV1Context, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "slicecrc", "Protect slices with CRCs", OFFSET(ec), AV_OPT_TYPE_INT,
{ .i64 = -1 }, -1, 1, VE },
{ "coder", "Coder type", OFFSET(ac), AV_OPT_TYPE_INT,
{ .i64 = AC_GOLOMB_RICE }, 0, 2, VE, "coder" },
{ "rice", "Golomb rice", 0, AV_OPT_TYPE_CONST,
{ .i64 = AC_GOLOMB_RICE }, INT_MIN, INT_MAX, VE, "coder" },
{ "range_def", "Range with default table", 0, AV_OPT_TYPE_CONST,
{ .i64 = AC_RANGE_DEFAULT_TAB }, INT_MIN, INT_MAX, VE, "coder" },
{ "range_tab", "Range with custom table", 0, AV_OPT_TYPE_CONST,
{ .i64 = AC_RANGE_CUSTOM_TAB }, INT_MIN, INT_MAX, VE, "coder" },
{ NULL }
};
static const AVClass class = {
.class_name = "ffv1 encoder",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
#if FF_API_CODER_TYPE
static const AVCodecDefault ffv1_defaults[] = {
{ "coder", "-1" },
{ NULL },
};
#endif
AVCodec ff_ffv1_encoder = {
.name = "ffv1",
.long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_FFV1,
.priv_data_size = sizeof(FFV1Context),
.init = ffv1_encode_init,
.encode2 = ffv1_encode_frame,
.close = ffv1_encode_close,
.capabilities = AV_CODEC_CAP_SLICE_THREADS,
.pix_fmts = (const enum AVPixelFormat[]) {
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV420P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_RGB32,
AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_GRAY16, AV_PIX_FMT_GRAY8,
AV_PIX_FMT_NONE
},
#if FF_API_CODER_TYPE
.defaults = ffv1_defaults,
#endif
.priv_class = &class,
};