1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/arm/vc1dsp_neon.S
Martin Storsjö d7320ca3ed arm: Avoid using .dn register aliases
clang now (in the upcoming 5.0 version) is capable of building our
arm assembly without relying on gas-preprocessor, although clang/LLVM
doesn't support .dn register aliases.

The VC1 MC assembly was only built and used if the chosen assembler
supported the .dn directives though. This was supported as long as
gas-preprocessor was used.

This means that VC1 decoding got a speed regression on clang 5.0,
unless the user manually chose using gas-preprocessor again.

By avoiding using the .dn register aliases, we can build the VC1 MC
assembly with the latest clang version.

Support for the .dn/.qn directives in clang/LLVM isn't actively planned,
see https://bugs.llvm.org/show_bug.cgi?id=18199.

This partially reverts 896a5bff64.

Signed-off-by: Martin Storsjö <martin@martin.st>
2017-05-15 09:52:18 +03:00

1164 lines
47 KiB
ArmAsm

/*
* VC1 NEON optimisations
*
* Copyright (c) 2010 Rob Clark <rob@ti.com>
* Copyright (c) 2011 Mans Rullgard <mans@mansr.com>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/arm/asm.S"
#include "neon.S"
#include "config.h"
@ Transpose rows into columns of a matrix of 16-bit elements. For 4x4, pass
@ double-word registers, for 8x4, pass quad-word registers.
.macro transpose16 r0, r1, r2, r3
@ At this point:
@ row[0] r0
@ row[1] r1
@ row[2] r2
@ row[3] r3
vtrn.16 \r0, \r1 @ first and second row
vtrn.16 \r2, \r3 @ third and fourth row
vtrn.32 \r0, \r2 @ first and third row
vtrn.32 \r1, \r3 @ second and fourth row
@ At this point, if registers are quad-word:
@ column[0] d0
@ column[1] d2
@ column[2] d4
@ column[3] d6
@ column[4] d1
@ column[5] d3
@ column[6] d5
@ column[7] d7
@ At this point, if registers are double-word:
@ column[0] d0
@ column[1] d1
@ column[2] d2
@ column[3] d3
.endm
@ ff_vc1_inv_trans_{4,8}x{4,8}_neon and overflow: The input values in the file
@ are supposed to be in a specific range as to allow for 16-bit math without
@ causing overflows, but sometimes the input values are just big enough to
@ barely cause overflow in vadd instructions like:
@
@ vadd.i16 q0, q8, q10
@ vshr.s16 q0, q0, #\rshift
@
@ To prevent these borderline cases from overflowing, we just need one more
@ bit of precision, which is accomplished by replacing the sequence above with:
@
@ vhadd.s16 q0, q8, q10
@ vshr.s16 q0, q0, #(\rshift -1)
@
@ This works because vhadd is a single instruction that adds, then shifts to
@ the right once, all before writing the result to the destination register.
@
@ Even with this workaround, there were still some files that caused overflows
@ in ff_vc1_inv_trans_8x8_neon. See the comments in ff_vc1_inv_trans_8x8_neon
@ for the additional workaround.
@ Takes 4 columns of 8 values each and operates on it. Modeled after the first
@ for loop in vc1_inv_trans_4x8_c.
@ Input columns: q0 q1 q2 q3
@ Output columns: q0 q1 q2 q3
@ Trashes: r12 q8 q9 q10 q11 q12 q13
.macro vc1_inv_trans_4x8_helper add rshift
@ Compute temp1, temp2 and setup scalar #17, #22, #10
vadd.i16 q12, q0, q2 @ temp1 = src[0] + src[2]
movw r12, #17
vsub.i16 q13, q0, q2 @ temp2 = src[0] - src[2]
movt r12, #22
vmov.32 d0[0], r12
movw r12, #10
vmov.16 d1[0], r12
vmov.i16 q8, #\add @ t1 will accumulate here
vmov.i16 q9, #\add @ t2 will accumulate here
vmul.i16 q10, q1, d0[1] @ t3 = 22 * (src[1])
vmul.i16 q11, q3, d0[1] @ t4 = 22 * (src[3])
vmla.i16 q8, q12, d0[0] @ t1 = 17 * (temp1) + 4
vmla.i16 q9, q13, d0[0] @ t2 = 17 * (temp2) + 4
vmla.i16 q10, q3, d1[0] @ t3 += 10 * src[3]
vmls.i16 q11, q1, d1[0] @ t4 -= 10 * src[1]
vhadd.s16 q0, q8, q10 @ dst[0] = (t1 + t3) >> 1
vhsub.s16 q3, q8, q10 @ dst[3] = (t1 - t3) >> 1
vhsub.s16 q1, q9, q11 @ dst[1] = (t2 - t4) >> 1
vhadd.s16 q2, q9, q11 @ dst[2] = (t2 + t4) >> 1
@ Halving add/sub above already did one shift
vshr.s16 q0, q0, #(\rshift - 1) @ dst[0] >>= (rshift - 1)
vshr.s16 q3, q3, #(\rshift - 1) @ dst[3] >>= (rshift - 1)
vshr.s16 q1, q1, #(\rshift - 1) @ dst[1] >>= (rshift - 1)
vshr.s16 q2, q2, #(\rshift - 1) @ dst[2] >>= (rshift - 1)
.endm
@ Takes 8 columns of 4 values each and operates on it. Modeled after the second
@ for loop in vc1_inv_trans_4x8_c.
@ Input columns: d0 d2 d4 d6 d1 d3 d5 d7
@ Output columns: d16 d17 d18 d19 d21 d20 d23 d22
@ Trashes all NEON registers (and r12) except for: q4 q5 q6 q7
.macro vc1_inv_trans_8x4_helper add add1beforeshift rshift
@ At this point:
@ src[0] d0 overwritten later
@ src[8] d2
@ src[16] d4 overwritten later
@ src[24] d6
@ src[32] d1 overwritten later
@ src[40] d3
@ src[48] d5 overwritten later
@ src[56] d7
movw r12, #12
vmov.i16 q14, #\add @ t1|t2 will accumulate here
movt r12, #6
vadd.i16 d20, d0, d1 @ temp1 = src[0] + src[32]
vsub.i16 d21, d0, d1 @ temp2 = src[0] - src[32]
vmov.i32 d0[0], r12 @ 16-bit: d0[0] = #12, d0[1] = #6
vshl.i16 q15, q2, #4 @ t3|t4 = 16 * (src[16]|src[48])
vswp d4, d5 @ q2 = src[48]|src[16]
vmla.i16 q14, q10, d0[0] @ t1|t2 = 12 * (temp1|temp2) + 64
movw r12, #15
movt r12, #9
vmov.i32 d0[1], r12 @ 16-bit: d0[2] = #15, d0[3] = #9
vneg.s16 d31, d31 @ t4 = -t4
vmla.i16 q15, q2, d0[1] @ t3|t4 += 6 * (src[48]|src[16])
@ At this point:
@ d0[2] #15
@ d0[3] #9
@ q1 src[8]|src[40]
@ q3 src[24]|src[56]
@ q14 old t1|t2
@ q15 old t3|t4
vshl.i16 q8, q1, #4 @ t1|t2 = 16 * (src[8]|src[40])
vswp d2, d3 @ q1 = src[40]|src[8]
vshl.i16 q12, q3, #4 @ temp3a|temp4a = 16 * src[24]|src[56]
vswp d6, d7 @ q3 = src[56]|src[24]
vshl.i16 q13, q1, #2 @ temp3b|temp4b = 4 * (src[40]|src[8])
vshl.i16 q2, q3, #2 @ temp1|temp2 = 4 * (src[56]|src[24])
vswp d3, d6 @ q1 = src[40]|src[56], q3 = src[8]|src[24]
vsub.i16 q9, q13, q12 @ t3|t4 = - (temp3a|temp4a) + (temp3b|temp4b)
vadd.i16 q8, q8, q2 @ t1|t2 += temp1|temp2
vmul.i16 q12, q3, d0[3] @ temp3|temp4 = 9 * src[8]|src[24]
vmla.i16 q8, q1, d0[3] @ t1|t2 += 9 * (src[40]|src[56])
vswp d6, d7 @ q3 = src[24]|src[8]
vswp d2, d3 @ q1 = src[56]|src[40]
vsub.i16 q11, q14, q15 @ t8|t7 = old t1|t2 - old t3|t4
vadd.i16 q10, q14, q15 @ t5|t6 = old t1|t2 + old t3|t4
.if \add1beforeshift
vmov.i16 q15, #1
.endif
vadd.i16 d18, d18, d24 @ t3 += temp3
vsub.i16 d19, d19, d25 @ t4 -= temp4
vswp d22, d23 @ q11 = t7|t8
vneg.s16 d17, d17 @ t2 = -t2
vmla.i16 q9, q1, d0[2] @ t3|t4 += 15 * src[56]|src[40]
vmla.i16 q8, q3, d0[2] @ t1|t2 += 15 * src[24]|src[8]
@ At this point:
@ t1 d16
@ t2 d17
@ t3 d18
@ t4 d19
@ t5 d20
@ t6 d21
@ t7 d22
@ t8 d23
@ #1 q15
.if \add1beforeshift
vadd.i16 q3, q15, q10 @ line[7,6] = t5|t6 + 1
vadd.i16 q2, q15, q11 @ line[5,4] = t7|t8 + 1
.endif
@ Sometimes this overflows, so to get one additional bit of precision, use
@ a single instruction that both adds and shifts right (halving).
vhadd.s16 q1, q9, q11 @ line[2,3] = (t3|t4 + t7|t8) >> 1
vhadd.s16 q0, q8, q10 @ line[0,1] = (t1|t2 + t5|t6) >> 1
.if \add1beforeshift
vhsub.s16 q2, q2, q9 @ line[5,4] = (t7|t8 - t3|t4 + 1) >> 1
vhsub.s16 q3, q3, q8 @ line[7,6] = (t5|t6 - t1|t2 + 1) >> 1
.else
vhsub.s16 q2, q11, q9 @ line[5,4] = (t7|t8 - t3|t4) >> 1
vhsub.s16 q3, q10, q8 @ line[7,6] = (t5|t6 - t1|t2) >> 1
.endif
vshr.s16 q9, q1, #(\rshift - 1) @ one shift is already done by vhadd/vhsub above
vshr.s16 q8, q0, #(\rshift - 1)
vshr.s16 q10, q2, #(\rshift - 1)
vshr.s16 q11, q3, #(\rshift - 1)
@ At this point:
@ dst[0] d16
@ dst[1] d17
@ dst[2] d18
@ dst[3] d19
@ dst[4] d21
@ dst[5] d20
@ dst[6] d23
@ dst[7] d22
.endm
@ This is modeled after the first and second for loop in vc1_inv_trans_8x8_c.
@ Input columns: q8, q9, q10, q11, q12, q13, q14, q15
@ Output columns: q8, q9, q10, q11, q12, q13, q14, q15
@ Trashes all NEON registers (and r12) except for: q4 q5 q6 q7
.macro vc1_inv_trans_8x8_helper add add1beforeshift rshift
@ This actually computes half of t1, t2, t3, t4, as explained below
@ near `tNhalf`.
vmov.i16 q0, #(6 / 2) @ q0 = #6/2
vshl.i16 q1, q10, #3 @ t3 = 16/2 * src[16]
vshl.i16 q3, q14, #3 @ temp4 = 16/2 * src[48]
vmul.i16 q2, q10, q0 @ t4 = 6/2 * src[16]
vmla.i16 q1, q14, q0 @ t3 += 6/2 * src[48]
@ unused: q0, q10, q14
vmov.i16 q0, #(12 / 2) @ q0 = #12/2
vadd.i16 q10, q8, q12 @ temp1 = src[0] + src[32]
vsub.i16 q14, q8, q12 @ temp2 = src[0] - src[32]
@ unused: q8, q12
vmov.i16 q8, #(\add / 2) @ t1 will accumulate here
vmov.i16 q12, #(\add / 2) @ t2 will accumulate here
movw r12, #15
vsub.i16 q2, q2, q3 @ t4 = 6/2 * src[16] - 16/2 * src[48]
movt r12, #9
@ unused: q3
vmla.i16 q8, q10, q0 @ t1 = 12/2 * temp1 + add
vmla.i16 q12, q14, q0 @ t2 = 12/2 * temp2 + add
vmov.i32 d0[0], r12
@ unused: q3, q10, q14
@ At this point:
@ q0 d0=#15|#9
@ q1 old t3
@ q2 old t4
@ q3
@ q8 old t1
@ q9 src[8]
@ q10
@ q11 src[24]
@ q12 old t2
@ q13 src[40]
@ q14
@ q15 src[56]
@ unused: q3, q10, q14
movw r12, #16
vshl.i16 q3, q9, #4 @ t1 = 16 * src[8]
movt r12, #4
vshl.i16 q10, q9, #2 @ t4 = 4 * src[8]
vmov.i32 d1[0], r12
vmul.i16 q14, q9, d0[0] @ t2 = 15 * src[8]
vmul.i16 q9, q9, d0[1] @ t3 = 9 * src[8]
@ unused: none
vmla.i16 q3, q11, d0[0] @ t1 += 15 * src[24]
vmls.i16 q10, q11, d0[1] @ t4 -= 9 * src[24]
vmls.i16 q14, q11, d1[1] @ t2 -= 4 * src[24]
vmls.i16 q9, q11, d1[0] @ t3 -= 16 * src[24]
@ unused: q11
vmla.i16 q3, q13, d0[1] @ t1 += 9 * src[40]
vmla.i16 q10, q13, d0[0] @ t4 += 15 * src[40]
vmls.i16 q14, q13, d1[0] @ t2 -= 16 * src[40]
vmla.i16 q9, q13, d1[1] @ t3 += 4 * src[40]
@ unused: q11, q13
@ Compute t5, t6, t7, t8 from old t1, t2, t3, t4. Actually, it computes
@ half of t5, t6, t7, t8 since t1, t2, t3, t4 are halved.
vadd.i16 q11, q8, q1 @ t5 = t1 + t3
vsub.i16 q1, q8, q1 @ t8 = t1 - t3
vadd.i16 q13, q12, q2 @ t6 = t2 + t4
vsub.i16 q2, q12, q2 @ t7 = t2 - t4
@ unused: q8, q12
.if \add1beforeshift
vmov.i16 q12, #1
.endif
@ unused: q8
vmla.i16 q3, q15, d1[1] @ t1 += 4 * src[56]
vmls.i16 q14, q15, d0[1] @ t2 -= 9 * src[56]
vmla.i16 q9, q15, d0[0] @ t3 += 15 * src[56]
vmls.i16 q10, q15, d1[0] @ t4 -= 16 * src[56]
@ unused: q0, q8, q15
@ At this point:
@ t1 q3
@ t2 q14
@ t3 q9
@ t4 q10
@ t5half q11
@ t6half q13
@ t7half q2
@ t8half q1
@ #1 q12
@
@ tNhalf is half of the value of tN (as described in vc1_inv_trans_8x8_c).
@ This is done because sometimes files have input that causes tN + tM to
@ overflow. To avoid this overflow, we compute tNhalf, then compute
@ tNhalf + tM (which doesn't overflow), and then we use vhadd to compute
@ (tNhalf + (tNhalf + tM)) >> 1 which does not overflow because it is
@ one instruction.
@ For each pair of tN and tM, do:
@ lineA = t5half + t1
@ if add1beforeshift: t1 -= 1
@ lineA = (t5half + lineA) >> 1
@ lineB = t5half - t1
@ lineB = (t5half + lineB) >> 1
@ lineA >>= rshift - 1
@ lineB >>= rshift - 1
vadd.i16 q8, q11, q3 @ q8 = t5half + t1
.if \add1beforeshift
vsub.i16 q3, q3, q12 @ q3 = t1 - 1
.endif
vadd.i16 q0, q13, q14 @ q0 = t6half + t2
.if \add1beforeshift
vsub.i16 q14, q14, q12 @ q14 = t2 - 1
.endif
vadd.i16 q15, q2, q9 @ q15 = t7half + t3
.if \add1beforeshift
vsub.i16 q9, q9, q12 @ q9 = t3 - 1
.endif
@ unused: none
vhadd.s16 q8, q11, q8 @ q8 = (t5half + t5half + t1) >> 1
vsub.i16 q3, q11, q3 @ q3 = t5half - t1 + 1
vhadd.s16 q0, q13, q0 @ q0 = (t6half + t6half + t2) >> 1
vsub.i16 q14, q13, q14 @ q14 = t6half - t2 + 1
vhadd.s16 q15, q2, q15 @ q15 = (t7half + t7half + t3) >> 1
vsub.i16 q9, q2, q9 @ q9 = t7half - t3 + 1
vhadd.s16 q3, q11, q3 @ q3 = (t5half + t5half - t1 + 1) >> 1
@ unused: q11
vadd.i16 q11, q1, q10 @ q11 = t8half + t4
.if \add1beforeshift
vsub.i16 q10, q10, q12 @ q10 = t4 - 1
.endif
@ unused: q12
vhadd.s16 q14, q13, q14 @ q14 = (t6half + t6half - t2 + 1) >> 1
@ unused: q12, q13
vhadd.s16 q13, q2, q9 @ q9 = (t7half + t7half - t3 + 1) >> 1
@ unused: q12, q2, q9
vsub.i16 q10, q1, q10 @ q10 = t8half - t4 + 1
vhadd.s16 q11, q1, q11 @ q11 = (t8half + t8half + t4) >> 1
vshr.s16 q8, q8, #(\rshift - 1) @ q8 = line[0]
vhadd.s16 q12, q1, q10 @ q12 = (t8half + t8half - t4 + 1) >> 1
vshr.s16 q9, q0, #(\rshift - 1) @ q9 = line[1]
vshr.s16 q10, q15, #(\rshift - 1) @ q10 = line[2]
vshr.s16 q11, q11, #(\rshift - 1) @ q11 = line[3]
vshr.s16 q12, q12, #(\rshift - 1) @ q12 = line[4]
vshr.s16 q13, q13, #(\rshift - 1) @ q13 = line[5]
vshr.s16 q14, q14, #(\rshift - 1) @ q14 = line[6]
vshr.s16 q15, q3, #(\rshift - 1) @ q15 = line[7]
.endm
@ (int16_t *block [r0])
function ff_vc1_inv_trans_8x8_neon, export=1
vld1.64 {q8-q9}, [r0,:128]!
vld1.64 {q10-q11}, [r0,:128]!
vld1.64 {q12-q13}, [r0,:128]!
vld1.64 {q14-q15}, [r0,:128]
sub r0, r0, #(16 * 2 * 3) @ restore r0
@ At this point:
@ src[0] q8
@ src[8] q9
@ src[16] q10
@ src[24] q11
@ src[32] q12
@ src[40] q13
@ src[48] q14
@ src[56] q15
vc1_inv_trans_8x8_helper add=4 add1beforeshift=0 rshift=3
@ Transpose result matrix of 8x8
swap4 d17, d19, d21, d23, d24, d26, d28, d30
transpose16_4x4 q8, q9, q10, q11, q12, q13, q14, q15
vc1_inv_trans_8x8_helper add=64 add1beforeshift=1 rshift=7
vst1.64 {q8-q9}, [r0,:128]!
vst1.64 {q10-q11}, [r0,:128]!
vst1.64 {q12-q13}, [r0,:128]!
vst1.64 {q14-q15}, [r0,:128]
bx lr
endfunc
@ (uint8_t *dest [r0], ptrdiff_t stride [r1], int16_t *block [r2])
function ff_vc1_inv_trans_8x4_neon, export=1
vld1.64 {q0-q1}, [r2,:128]! @ load 8 * 4 * 2 = 64 bytes / 16 bytes per quad = 4 quad registers
vld1.64 {q2-q3}, [r2,:128]
transpose16 q0 q1 q2 q3 @ transpose rows to columns
@ At this point:
@ src[0] d0
@ src[1] d2
@ src[2] d4
@ src[3] d6
@ src[4] d1
@ src[5] d3
@ src[6] d5
@ src[7] d7
vc1_inv_trans_8x4_helper add=4 add1beforeshift=0 rshift=3
@ Move output to more standardized registers
vmov d0, d16
vmov d2, d17
vmov d4, d18
vmov d6, d19
vmov d1, d21
vmov d3, d20
vmov d5, d23
vmov d7, d22
@ At this point:
@ dst[0] d0
@ dst[1] d2
@ dst[2] d4
@ dst[3] d6
@ dst[4] d1
@ dst[5] d3
@ dst[6] d5
@ dst[7] d7
transpose16 q0 q1 q2 q3 @ turn columns into rows
@ At this point:
@ row[0] q0
@ row[1] q1
@ row[2] q2
@ row[3] q3
vc1_inv_trans_4x8_helper add=64 rshift=7
@ At this point:
@ line[0].l d0
@ line[0].h d1
@ line[1].l d2
@ line[1].h d3
@ line[2].l d4
@ line[2].h d5
@ line[3].l d6
@ line[3].h d7
@ unused registers: q12, q13, q14, q15
vld1.64 {d28}, [r0,:64], r1 @ read dest
vld1.64 {d29}, [r0,:64], r1
vld1.64 {d30}, [r0,:64], r1
vld1.64 {d31}, [r0,:64], r1
sub r0, r0, r1, lsl #2 @ restore original r0 value
vaddw.u8 q0, q0, d28 @ line[0] += dest[0]
vaddw.u8 q1, q1, d29 @ line[1] += dest[1]
vaddw.u8 q2, q2, d30 @ line[2] += dest[2]
vaddw.u8 q3, q3, d31 @ line[3] += dest[3]
vqmovun.s16 d0, q0 @ line[0]
vqmovun.s16 d1, q1 @ line[1]
vqmovun.s16 d2, q2 @ line[2]
vqmovun.s16 d3, q3 @ line[3]
vst1.64 {d0}, [r0,:64], r1 @ write dest
vst1.64 {d1}, [r0,:64], r1
vst1.64 {d2}, [r0,:64], r1
vst1.64 {d3}, [r0,:64]
bx lr
endfunc
@ (uint8_t *dest [r0], ptrdiff_t stride [r1], int16_t *block [r2])
function ff_vc1_inv_trans_4x8_neon, export=1
mov r12, #(8 * 2) @ 8 elements per line, each element 2 bytes
vld4.16 {d0[], d2[], d4[], d6[]}, [r2,:64], r12 @ read each column into a q register
vld4.16 {d0[1], d2[1], d4[1], d6[1]}, [r2,:64], r12
vld4.16 {d0[2], d2[2], d4[2], d6[2]}, [r2,:64], r12
vld4.16 {d0[3], d2[3], d4[3], d6[3]}, [r2,:64], r12
vld4.16 {d1[], d3[], d5[], d7[]}, [r2,:64], r12
vld4.16 {d1[1], d3[1], d5[1], d7[1]}, [r2,:64], r12
vld4.16 {d1[2], d3[2], d5[2], d7[2]}, [r2,:64], r12
vld4.16 {d1[3], d3[3], d5[3], d7[3]}, [r2,:64]
vc1_inv_trans_4x8_helper add=4 rshift=3
@ At this point:
@ dst[0] = q0
@ dst[1] = q1
@ dst[2] = q2
@ dst[3] = q3
transpose16 q0 q1 q2 q3 @ Transpose rows (registers) into columns
vc1_inv_trans_8x4_helper add=64 add1beforeshift=1 rshift=7
vld1.32 {d28[]}, [r0,:32], r1 @ read dest
vld1.32 {d28[1]}, [r0,:32], r1
vld1.32 {d29[]}, [r0,:32], r1
vld1.32 {d29[1]}, [r0,:32], r1
vld1.32 {d30[]}, [r0,:32], r1
vld1.32 {d30[0]}, [r0,:32], r1
vld1.32 {d31[]}, [r0,:32], r1
vld1.32 {d31[0]}, [r0,:32], r1
sub r0, r0, r1, lsl #3 @ restore original r0 value
vaddw.u8 q8, q8, d28 @ line[0,1] += dest[0,1]
vaddw.u8 q9, q9, d29 @ line[2,3] += dest[2,3]
vaddw.u8 q10, q10, d30 @ line[5,4] += dest[5,4]
vaddw.u8 q11, q11, d31 @ line[7,6] += dest[7,6]
vqmovun.s16 d16, q8 @ clip(line[0,1])
vqmovun.s16 d18, q9 @ clip(line[2,3])
vqmovun.s16 d20, q10 @ clip(line[5,4])
vqmovun.s16 d22, q11 @ clip(line[7,6])
vst1.32 {d16[0]}, [r0,:32], r1 @ write dest
vst1.32 {d16[1]}, [r0,:32], r1
vst1.32 {d18[0]}, [r0,:32], r1
vst1.32 {d18[1]}, [r0,:32], r1
vst1.32 {d20[1]}, [r0,:32], r1
vst1.32 {d20[0]}, [r0,:32], r1
vst1.32 {d22[1]}, [r0,:32], r1
vst1.32 {d22[0]}, [r0,:32]
bx lr
endfunc
@ Setup constants in registers which are used by vc1_inv_trans_4x4_helper
.macro vc1_inv_trans_4x4_helper_setup
vmov.i16 q13, #17
vmov.i16 q14, #22
vmov.i16 d30, #10 @ only need double-word, not quad-word
.endm
@ This is modeled after the first for loop in vc1_inv_trans_4x4_c.
.macro vc1_inv_trans_4x4_helper add rshift
vmov.i16 q2, #\add @ t1|t2 will accumulate here
vadd.i16 d16, d0, d1 @ temp1 = src[0] + src[2]
vsub.i16 d17, d0, d1 @ temp2 = src[0] - src[2]
vmul.i16 q3, q14, q1 @ t3|t4 = 22 * (src[1]|src[3])
vmla.i16 q2, q13, q8 @ t1|t2 = 17 * (temp1|temp2) + add
vmla.i16 d6, d30, d3 @ t3 += 10 * src[3]
vmls.i16 d7, d30, d2 @ t4 -= 10 * src[1]
vadd.i16 q0, q2, q3 @ dst[0,2] = (t1|t2 + t3|t4)
vsub.i16 q1, q2, q3 @ dst[3,1] = (t1|t2 - t3|t4)
vshr.s16 q0, q0, #\rshift @ dst[0,2] >>= rshift
vshr.s16 q1, q1, #\rshift @ dst[3,1] >>= rshift
.endm
@ (uint8_t *dest [r0], ptrdiff_t stride [r1], int16_t *block [r2])
function ff_vc1_inv_trans_4x4_neon, export=1
mov r12, #(8 * 2) @ 8 elements per line, each element 2 bytes
vld4.16 {d0[], d1[], d2[], d3[]}, [r2,:64], r12 @ read each column into a register
vld4.16 {d0[1], d1[1], d2[1], d3[1]}, [r2,:64], r12
vld4.16 {d0[2], d1[2], d2[2], d3[2]}, [r2,:64], r12
vld4.16 {d0[3], d1[3], d2[3], d3[3]}, [r2,:64]
vswp d1, d2 @ so that we can later access column 1 and column 3 as a single q1 register
vc1_inv_trans_4x4_helper_setup
@ At this point:
@ src[0] = d0
@ src[1] = d2
@ src[2] = d1
@ src[3] = d3
vc1_inv_trans_4x4_helper add=4 rshift=3 @ compute t1, t2, t3, t4 and combine them into dst[0-3]
@ At this point:
@ dst[0] = d0
@ dst[1] = d3
@ dst[2] = d1
@ dst[3] = d2
transpose16 d0 d3 d1 d2 @ Transpose rows (registers) into columns
@ At this point:
@ src[0] = d0
@ src[8] = d3
@ src[16] = d1
@ src[24] = d2
vswp d2, d3 @ so that we can later access column 1 and column 3 in order as a single q1 register
@ At this point:
@ src[0] = d0
@ src[8] = d2
@ src[16] = d1
@ src[24] = d3
vc1_inv_trans_4x4_helper add=64 rshift=7 @ compute t1, t2, t3, t4 and combine them into dst[0-3]
@ At this point:
@ line[0] = d0
@ line[1] = d3
@ line[2] = d1
@ line[3] = d2
vld1.32 {d18[]}, [r0,:32], r1 @ read dest
vld1.32 {d19[]}, [r0,:32], r1
vld1.32 {d18[1]}, [r0,:32], r1
vld1.32 {d19[0]}, [r0,:32], r1
sub r0, r0, r1, lsl #2 @ restore original r0 value
vaddw.u8 q0, q0, d18 @ line[0,2] += dest[0,2]
vaddw.u8 q1, q1, d19 @ line[3,1] += dest[3,1]
vqmovun.s16 d0, q0 @ clip(line[0,2])
vqmovun.s16 d1, q1 @ clip(line[3,1])
vst1.32 {d0[0]}, [r0,:32], r1 @ write dest
vst1.32 {d1[1]}, [r0,:32], r1
vst1.32 {d0[1]}, [r0,:32], r1
vst1.32 {d1[0]}, [r0,:32]
bx lr
endfunc
@ The absolute value of multiplication constants from vc1_mspel_filter and vc1_mspel_{ver,hor}_filter_16bits.
@ The sign is embedded in the code below that carries out the multiplication (mspel_filter{,.16}).
#define MSPEL_MODE_1_MUL_CONSTANTS 4 53 18 3
#define MSPEL_MODE_2_MUL_CONSTANTS 1 9 9 1
#define MSPEL_MODE_3_MUL_CONSTANTS 3 18 53 4
@ These constants are from reading the source code of vc1_mspel_mc and determining the value that
@ is added to `rnd` to result in the variable `r`, and the value of the variable `shift`.
#define MSPEL_MODES_11_ADDSHIFT_CONSTANTS 15 5
#define MSPEL_MODES_12_ADDSHIFT_CONSTANTS 3 3
#define MSPEL_MODES_13_ADDSHIFT_CONSTANTS 15 5
#define MSPEL_MODES_21_ADDSHIFT_CONSTANTS MSPEL_MODES_12_ADDSHIFT_CONSTANTS
#define MSPEL_MODES_22_ADDSHIFT_CONSTANTS 0 1
#define MSPEL_MODES_23_ADDSHIFT_CONSTANTS 3 3
#define MSPEL_MODES_31_ADDSHIFT_CONSTANTS MSPEL_MODES_13_ADDSHIFT_CONSTANTS
#define MSPEL_MODES_32_ADDSHIFT_CONSTANTS MSPEL_MODES_23_ADDSHIFT_CONSTANTS
#define MSPEL_MODES_33_ADDSHIFT_CONSTANTS 15 5
@ The addition and shift constants from vc1_mspel_filter.
#define MSPEL_MODE_1_ADDSHIFT_CONSTANTS 32 6
#define MSPEL_MODE_2_ADDSHIFT_CONSTANTS 8 4
#define MSPEL_MODE_3_ADDSHIFT_CONSTANTS 32 6
@ Setup constants in registers for a subsequent use of mspel_filter{,.16}.
.macro mspel_constants typesize reg_a reg_b reg_c reg_d filter_a filter_b filter_c filter_d reg_add filter_add_register
@ Typesize should be i8 or i16.
@ Only set the register if the value is not 1 and unique
.if \filter_a != 1
vmov.\typesize \reg_a, #\filter_a @ reg_a = filter_a
.endif
vmov.\typesize \reg_b, #\filter_b @ reg_b = filter_b
.if \filter_b != \filter_c
vmov.\typesize \reg_c, #\filter_c @ reg_c = filter_c
.endif
.if \filter_d != 1
vmov.\typesize \reg_d, #\filter_d @ reg_d = filter_d
.endif
@ vdup to double the size of typesize
.ifc \typesize,i8
vdup.16 \reg_add, \filter_add_register @ reg_add = filter_add_register
.else
vdup.32 \reg_add, \filter_add_register @ reg_add = filter_add_register
.endif
.endm
@ After mspel_constants has been used, do the filtering.
.macro mspel_filter acc dest src0 src1 src2 src3 filter_a filter_b filter_c filter_d reg_a reg_b reg_c reg_d reg_add filter_shift narrow=1
.if \filter_a != 1
@ If filter_a != 1, then we need a move and subtract instruction
vmov \acc, \reg_add @ acc = reg_add
vmlsl.u8 \acc, \reg_a, \src0 @ acc -= filter_a * src[-stride]
.else
@ If filter_a is 1, then just subtract without an extra move
vsubw.u8 \acc, \reg_add, \src0 @ acc = reg_add - src[-stride] @ since filter_a == 1
.endif
vmlal.u8 \acc, \reg_b, \src1 @ acc += filter_b * src[0]
.if \filter_b != \filter_c
vmlal.u8 \acc, \reg_c, \src2 @ acc += filter_c * src[stride]
.else
@ If filter_b is the same as filter_c, use the same reg_b register
vmlal.u8 \acc, \reg_b, \src2 @ acc += filter_c * src[stride] @ where filter_c == filter_b
.endif
.if \filter_d != 1
@ If filter_d != 1, then do a multiply accumulate
vmlsl.u8 \acc, \reg_d, \src3 @ acc -= filter_d * src[stride * 2]
.else
@ If filter_d is 1, then just do a subtract
vsubw.u8 \acc, \acc, \src3 @ acc -= src[stride * 2] @ since filter_d == 1
.endif
.if \narrow
vqshrun.s16 \dest, \acc, #\filter_shift @ dest = clip_uint8(acc >> filter_shift)
.else
vshr.s16 \dest, \acc, #\filter_shift @ dest = acc >> filter_shift
.endif
.endm
@ This is similar to mspel_filter, but the input is 16-bit instead of 8-bit and narrow=0 is not supported.
.macro mspel_filter.16 acc0 acc1 acc0_0 acc0_1 dest src0 src1 src2 src3 src4 src5 src6 src7 filter_a filter_b filter_c filter_d reg_a reg_b reg_c reg_d reg_add filter_shift
.if \filter_a != 1
vmov \acc0, \reg_add
vmov \acc1, \reg_add
vmlsl.s16 \acc0, \reg_a, \src0
vmlsl.s16 \acc1, \reg_a, \src1
.else
vsubw.s16 \acc0, \reg_add, \src0
vsubw.s16 \acc1, \reg_add, \src1
.endif
vmlal.s16 \acc0, \reg_b, \src2
vmlal.s16 \acc1, \reg_b, \src3
.if \filter_b != \filter_c
vmlal.s16 \acc0, \reg_c, \src4
vmlal.s16 \acc1, \reg_c, \src5
.else
vmlal.s16 \acc0, \reg_b, \src4
vmlal.s16 \acc1, \reg_b, \src5
.endif
.if \filter_d != 1
vmlsl.s16 \acc0, \reg_d, \src6
vmlsl.s16 \acc1, \reg_d, \src7
.else
vsubw.s16 \acc0, \acc0, \src6
vsubw.s16 \acc1, \acc1, \src7
.endif
@ Use acc0_0 and acc0_1 as temp space
vqshrun.s32 \acc0_0, \acc0, #\filter_shift @ Shift and narrow with saturation from s32 to u16
vqshrun.s32 \acc0_1, \acc1, #\filter_shift
vqmovn.u16 \dest, \acc0 @ Narrow with saturation from u16 to u8
.endm
@ Register usage for put_vc1_mspel_mc functions. Registers marked 'hv' are only used in put_vc1_mspel_mc_hv.
@
@ r0 adjusted dst
@ r1 adjusted src
@ r2 stride
@ r3 adjusted rnd
@ r4 [hv] tmp
@ r11 [hv] sp saved
@ r12 loop counter
@ d0 src[-stride]
@ d1 src[0]
@ d2 src[stride]
@ d3 src[stride * 2]
@ q0 [hv] src[-stride]
@ q1 [hv] src[0]
@ q2 [hv] src[stride]
@ q3 [hv] src[stride * 2]
@ d21 often result from mspel_filter
@ q11 accumulator 0
@ q12 [hv] accumulator 1
@ q13 accumulator initial value
@ d28 filter_a
@ d29 filter_b
@ d30 filter_c
@ d31 filter_d
@ (uint8_t *dst [r0], const uint8_t *src [r1], ptrdiff_t stride [r2], int rnd [r3])
.macro put_vc1_mspel_mc_hv hmode vmode filter_h_a filter_h_b filter_h_c filter_h_d filter_v_a filter_v_b filter_v_c filter_v_d filter_add filter_shift
function ff_put_vc1_mspel_mc\hmode\()\vmode\()_neon, export=1
push {r4, r11, lr}
mov r11, sp @ r11 = stack pointer before realignmnet
A bic sp, sp, #15 @ sp = round down to multiple of 16 bytes
T bic r4, r11, #15
T mov sp, r4
sub sp, sp, #(8*2*16) @ make space for 8 rows * 2 byte per element * 16 elements per row (to fit 11 actual elements per row)
mov r4, sp @ r4 = int16_t tmp[8 * 16]
sub r1, r1, #1 @ src -= 1
.if \filter_add != 0
add r3, r3, #\filter_add @ r3 = filter_add + rnd
.endif
mov r12, #8 @ loop counter
sub r1, r1, r2 @ r1 = &src[-stride] @ slide back
@ Do vertical filtering from src into tmp
mspel_constants i8 d28 d29 d30 d31 \filter_v_a \filter_v_b \filter_v_c \filter_v_d q13 r3
vld1.64 {d0,d1}, [r1], r2
vld1.64 {d2,d3}, [r1], r2
vld1.64 {d4,d5}, [r1], r2
1:
subs r12, r12, #4
vld1.64 {d6,d7}, [r1], r2
mspel_filter q11 q11 d0 d2 d4 d6 \filter_v_a \filter_v_b \filter_v_c \filter_v_d d28 d29 d30 d31 q13 \filter_shift narrow=0
mspel_filter q12 q12 d1 d3 d5 d7 \filter_v_a \filter_v_b \filter_v_c \filter_v_d d28 d29 d30 d31 q13 \filter_shift narrow=0
vst1.64 {q11,q12}, [r4,:128]! @ store and increment
vld1.64 {d0,d1}, [r1], r2
mspel_filter q11 q11 d2 d4 d6 d0 \filter_v_a \filter_v_b \filter_v_c \filter_v_d d28 d29 d30 d31 q13 \filter_shift narrow=0
mspel_filter q12 q12 d3 d5 d7 d1 \filter_v_a \filter_v_b \filter_v_c \filter_v_d d28 d29 d30 d31 q13 \filter_shift narrow=0
vst1.64 {q11,q12}, [r4,:128]! @ store and increment
vld1.64 {d2,d3}, [r1], r2
mspel_filter q11 q11 d4 d6 d0 d2 \filter_v_a \filter_v_b \filter_v_c \filter_v_d d28 d29 d30 d31 q13 \filter_shift narrow=0
mspel_filter q12 q12 d5 d7 d1 d3 \filter_v_a \filter_v_b \filter_v_c \filter_v_d d28 d29 d30 d31 q13 \filter_shift narrow=0
vst1.64 {q11,q12}, [r4,:128]! @ store and increment
vld1.64 {d4,d5}, [r1], r2
mspel_filter q11 q11 d6 d0 d2 d4 \filter_v_a \filter_v_b \filter_v_c \filter_v_d d28 d29 d30 d31 q13 \filter_shift narrow=0
mspel_filter q12 q12 d7 d1 d3 d5 \filter_v_a \filter_v_b \filter_v_c \filter_v_d d28 d29 d30 d31 q13 \filter_shift narrow=0
vst1.64 {q11,q12}, [r4,:128]! @ store and increment
bne 1b
rsb r3, r3, #(64 + \filter_add) @ r3 = (64 + filter_add) - r3
mov r12, #8 @ loop counter
mov r4, sp @ r4 = tmp
@ Do horizontal filtering from temp to dst
mspel_constants i16 d28 d29 d30 d31 \filter_h_a \filter_h_b \filter_h_c \filter_h_d q13 r3
2:
subs r12, r12, #1
vld1.64 {q0,q1}, [r4,:128]! @ read one line of tmp
vext.16 q2, q0, q1, #2
vext.16 q3, q0, q1, #3
vext.16 q1, q0, q1, #1 @ do last because it writes to q1 which is read by the other vext instructions
mspel_filter.16 q11 q12 d22 d23 d21 d0 d1 d2 d3 d4 d5 d6 d7 \filter_h_a \filter_h_b \filter_h_c \filter_h_d d28 d29 d30 d31 q13 7
vst1.64 {d21}, [r0,:64], r2 @ store and increment dst
bne 2b
mov sp, r11
pop {r4, r11, pc}
endfunc
.endm
@ Use C preprocessor and assembler macros to expand to functions for horizontal and vertical filtering.
#define PUT_VC1_MSPEL_MC_HV(hmode, vmode) \
put_vc1_mspel_mc_hv hmode vmode \
MSPEL_MODE_ ## hmode ## _MUL_CONSTANTS \
MSPEL_MODE_ ## vmode ## _MUL_CONSTANTS \
MSPEL_MODES_ ## hmode ## vmode ## _ADDSHIFT_CONSTANTS
PUT_VC1_MSPEL_MC_HV(1, 1)
PUT_VC1_MSPEL_MC_HV(1, 2)
PUT_VC1_MSPEL_MC_HV(1, 3)
PUT_VC1_MSPEL_MC_HV(2, 1)
PUT_VC1_MSPEL_MC_HV(2, 2)
PUT_VC1_MSPEL_MC_HV(2, 3)
PUT_VC1_MSPEL_MC_HV(3, 1)
PUT_VC1_MSPEL_MC_HV(3, 2)
PUT_VC1_MSPEL_MC_HV(3, 3)
#undef PUT_VC1_MSPEL_MC_HV
.macro put_vc1_mspel_mc_h_only hmode filter_a filter_b filter_c filter_d filter_add filter_shift
function ff_put_vc1_mspel_mc\hmode\()0_neon, export=1
rsb r3, r3, #\filter_add @ r3 = filter_add - r = filter_add - rnd
mov r12, #8 @ loop counter
sub r1, r1, #1 @ slide back, using immediate
mspel_constants i8 d28 d29 d30 d31 \filter_a \filter_b \filter_c \filter_d q13 r3
1:
subs r12, r12, #1
vld1.64 {d0,d1}, [r1], r2 @ read 16 bytes even though we only need 11, also src += stride
vext.8 d2, d0, d1, #2
vext.8 d3, d0, d1, #3
vext.8 d1, d0, d1, #1 @ do last because it writes to d1 which is read by the other vext instructions
mspel_filter q11 d21 d0 d1 d2 d3 \filter_a \filter_b \filter_c \filter_d d28 d29 d30 d31 q13 \filter_shift
vst1.64 {d21}, [r0,:64], r2 @ store and increment dst
bne 1b
bx lr
endfunc
.endm
@ Use C preprocessor and assembler macros to expand to functions for horizontal only filtering.
#define PUT_VC1_MSPEL_MC_H_ONLY(hmode) \
put_vc1_mspel_mc_h_only hmode MSPEL_MODE_ ## hmode ## _MUL_CONSTANTS MSPEL_MODE_ ## hmode ## _ADDSHIFT_CONSTANTS
PUT_VC1_MSPEL_MC_H_ONLY(1)
PUT_VC1_MSPEL_MC_H_ONLY(2)
PUT_VC1_MSPEL_MC_H_ONLY(3)
#undef PUT_VC1_MSPEL_MC_H_ONLY
@ (uint8_t *dst [r0], const uint8_t *src [r1], ptrdiff_t stride [r2], int rnd [r3])
.macro put_vc1_mspel_mc_v_only vmode filter_a filter_b filter_c filter_d filter_add filter_shift
function ff_put_vc1_mspel_mc0\vmode\()_neon, export=1
add r3, r3, #\filter_add - 1 @ r3 = filter_add - r = filter_add - (1 - rnd) = filter_add - 1 + rnd
mov r12, #8 @ loop counter
sub r1, r1, r2 @ r1 = &src[-stride] @ slide back
mspel_constants i8 d28 d29 d30 d31 \filter_a \filter_b \filter_c \filter_d q13 r3
vld1.64 {d0}, [r1], r2 @ d0 = src[-stride]
vld1.64 {d1}, [r1], r2 @ d1 = src[0]
vld1.64 {d2}, [r1], r2 @ d2 = src[stride]
1:
subs r12, r12, #4
vld1.64 {d3}, [r1], r2 @ d3 = src[stride * 2]
mspel_filter q11 d21 d0 d1 d2 d3 \filter_a \filter_b \filter_c \filter_d d28 d29 d30 d31 q13 \filter_shift
vst1.64 {d21}, [r0,:64], r2 @ store and increment dst
vld1.64 {d0}, [r1], r2 @ d0 = next line
mspel_filter q11 d21 d1 d2 d3 d0 \filter_a \filter_b \filter_c \filter_d d28 d29 d30 d31 q13 \filter_shift
vst1.64 {d21}, [r0,:64], r2 @ store and increment dst
vld1.64 {d1}, [r1], r2 @ d1 = next line
mspel_filter q11 d21 d2 d3 d0 d1 \filter_a \filter_b \filter_c \filter_d d28 d29 d30 d31 q13 \filter_shift
vst1.64 {d21}, [r0,:64], r2 @ store and increment dst
vld1.64 {d2}, [r1], r2 @ d2 = next line
mspel_filter q11 d21 d3 d0 d1 d2 \filter_a \filter_b \filter_c \filter_d d28 d29 d30 d31 q13 \filter_shift
vst1.64 {d21}, [r0,:64], r2 @ store and increment dst
bne 1b
bx lr
endfunc
.endm
@ Use C preprocessor and assembler macros to expand to functions for vertical only filtering.
#define PUT_VC1_MSPEL_MC_V_ONLY(vmode) \
put_vc1_mspel_mc_v_only vmode MSPEL_MODE_ ## vmode ## _MUL_CONSTANTS MSPEL_MODE_ ## vmode ## _ADDSHIFT_CONSTANTS
PUT_VC1_MSPEL_MC_V_ONLY(1)
PUT_VC1_MSPEL_MC_V_ONLY(2)
PUT_VC1_MSPEL_MC_V_ONLY(3)
#undef PUT_VC1_MSPEL_MC_V_ONLY
function ff_put_pixels8x8_neon, export=1
vld1.64 {d0}, [r1], r2
vld1.64 {d1}, [r1], r2
vld1.64 {d2}, [r1], r2
vld1.64 {d3}, [r1], r2
vld1.64 {d4}, [r1], r2
vld1.64 {d5}, [r1], r2
vld1.64 {d6}, [r1], r2
vld1.64 {d7}, [r1]
vst1.64 {d0}, [r0,:64], r2
vst1.64 {d1}, [r0,:64], r2
vst1.64 {d2}, [r0,:64], r2
vst1.64 {d3}, [r0,:64], r2
vst1.64 {d4}, [r0,:64], r2
vst1.64 {d5}, [r0,:64], r2
vst1.64 {d6}, [r0,:64], r2
vst1.64 {d7}, [r0,:64]
bx lr
endfunc
function ff_vc1_inv_trans_8x8_dc_neon, export=1
ldrsh r2, [r2] @ int dc = block[0];
vld1.64 {d0}, [r0,:64], r1
vld1.64 {d1}, [r0,:64], r1
vld1.64 {d4}, [r0,:64], r1
vld1.64 {d5}, [r0,:64], r1
add r2, r2, r2, lsl #1 @ dc = (3 * dc + 1) >> 1;
vld1.64 {d6}, [r0,:64], r1
add r2, r2, #1
vld1.64 {d7}, [r0,:64], r1
vld1.64 {d16}, [r0,:64], r1
vld1.64 {d17}, [r0,:64], r1
asr r2, r2, #1
sub r0, r0, r1, lsl #3 @ restore r0 to original value
add r2, r2, r2, lsl #1 @ dc = (3 * dc + 16) >> 5;
add r2, r2, #16
asr r2, r2, #5
vdup.16 q1, r2 @ dc
vaddw.u8 q9, q1, d0
vaddw.u8 q10, q1, d1
vaddw.u8 q11, q1, d4
vaddw.u8 q12, q1, d5
vqmovun.s16 d0, q9
vqmovun.s16 d1, q10
vqmovun.s16 d4, q11
vst1.64 {d0}, [r0,:64], r1
vqmovun.s16 d5, q12
vst1.64 {d1}, [r0,:64], r1
vaddw.u8 q13, q1, d6
vst1.64 {d4}, [r0,:64], r1
vaddw.u8 q14, q1, d7
vst1.64 {d5}, [r0,:64], r1
vaddw.u8 q15, q1, d16
vaddw.u8 q1, q1, d17 @ this destroys q1
vqmovun.s16 d6, q13
vqmovun.s16 d7, q14
vqmovun.s16 d16, q15
vqmovun.s16 d17, q1
vst1.64 {d6}, [r0,:64], r1
vst1.64 {d7}, [r0,:64], r1
vst1.64 {d16}, [r0,:64], r1
vst1.64 {d17}, [r0,:64]
bx lr
endfunc
function ff_vc1_inv_trans_8x4_dc_neon, export=1
ldrsh r2, [r2] @ int dc = block[0];
vld1.64 {d0}, [r0,:64], r1
vld1.64 {d1}, [r0,:64], r1
vld1.64 {d4}, [r0,:64], r1
vld1.64 {d5}, [r0,:64], r1
add r2, r2, r2, lsl #1 @ dc = ( 3 * dc + 1) >> 1;
sub r0, r0, r1, lsl #2 @ restore r0 to original value
add r2, r2, #1
asr r2, r2, #1
add r2, r2, r2, lsl #4 @ dc = (17 * dc + 64) >> 7;
add r2, r2, #64
asr r2, r2, #7
vdup.16 q1, r2 @ dc
vaddw.u8 q3, q1, d0
vaddw.u8 q8, q1, d1
vaddw.u8 q9, q1, d4
vaddw.u8 q10, q1, d5
vqmovun.s16 d0, q3
vqmovun.s16 d1, q8
vqmovun.s16 d4, q9
vst1.64 {d0}, [r0,:64], r1
vqmovun.s16 d5, q10
vst1.64 {d1}, [r0,:64], r1
vst1.64 {d4}, [r0,:64], r1
vst1.64 {d5}, [r0,:64]
bx lr
endfunc
function ff_vc1_inv_trans_4x8_dc_neon, export=1
ldrsh r2, [r2] @ int dc = block[0];
vld1.32 {d0[]}, [r0,:32], r1
vld1.32 {d1[]}, [r0,:32], r1
vld1.32 {d0[1]}, [r0,:32], r1
vld1.32 {d1[1]}, [r0,:32], r1
add r2, r2, r2, lsl #4 @ dc = (17 * dc + 4) >> 3;
vld1.32 {d4[]}, [r0,:32], r1
add r2, r2, #4
vld1.32 {d5[]}, [r0,:32], r1
vld1.32 {d4[1]}, [r0,:32], r1
asr r2, r2, #3
vld1.32 {d5[1]}, [r0,:32], r1
add r2, r2, r2, lsl #1 @ dc = (12 * dc + 64) >> 7;
sub r0, r0, r1, lsl #3 @ restore r0 to original value
lsl r2, r2, #2
add r2, r2, #64
asr r2, r2, #7
vdup.16 q1, r2 @ dc
vaddw.u8 q3, q1, d0
vaddw.u8 q8, q1, d1
vaddw.u8 q9, q1, d4
vaddw.u8 q10, q1, d5
vqmovun.s16 d0, q3
vst1.32 {d0[0]}, [r0,:32], r1
vqmovun.s16 d1, q8
vst1.32 {d1[0]}, [r0,:32], r1
vqmovun.s16 d4, q9
vst1.32 {d0[1]}, [r0,:32], r1
vqmovun.s16 d5, q10
vst1.32 {d1[1]}, [r0,:32], r1
vst1.32 {d4[0]}, [r0,:32], r1
vst1.32 {d5[0]}, [r0,:32], r1
vst1.32 {d4[1]}, [r0,:32], r1
vst1.32 {d5[1]}, [r0,:32]
bx lr
endfunc
function ff_vc1_inv_trans_4x4_dc_neon, export=1
ldrsh r2, [r2] @ int dc = block[0];
vld1.32 {d0[]}, [r0,:32], r1
vld1.32 {d1[]}, [r0,:32], r1
vld1.32 {d0[1]}, [r0,:32], r1
vld1.32 {d1[1]}, [r0,:32], r1
add r2, r2, r2, lsl #4 @ dc = (17 * dc + 4) >> 3;
sub r0, r0, r1, lsl #2 @ restore r0 to original value
add r2, r2, #4
asr r2, r2, #3
add r2, r2, r2, lsl #4 @ dc = (17 * dc + 64) >> 7;
add r2, r2, #64
asr r2, r2, #7
vdup.16 q1, r2 @ dc
vaddw.u8 q2, q1, d0
vaddw.u8 q3, q1, d1
vqmovun.s16 d0, q2
vst1.32 {d0[0]}, [r0,:32], r1
vqmovun.s16 d1, q3
vst1.32 {d1[0]}, [r0,:32], r1
vst1.32 {d0[1]}, [r0,:32], r1
vst1.32 {d1[1]}, [r0,:32]
bx lr
endfunc