mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-08 13:22:53 +02:00
28ba1027ec
* shariman/wmall: Do not try to read residue if ave_mean <= 1 Move some variable declarations to comply with C90 Cosmetics: fix some whitespace errors Support 24-bit decoding wmall: remove ;; Conflicts: libavcodec/wmalosslessdec.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
1570 lines
57 KiB
C
1570 lines
57 KiB
C
/*
|
|
* Wmall compatible decoder
|
|
* Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
|
|
* Copyright (c) 2008 - 2011 Sascha Sommer, Benjamin Larsson
|
|
* Copyright (c) 2011 Andreas Öman
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief wmall decoder implementation
|
|
* Wmall is an MDCT based codec comparable to wma standard or AAC.
|
|
* The decoding therefore consists of the following steps:
|
|
* - bitstream decoding
|
|
* - reconstruction of per-channel data
|
|
* - rescaling and inverse quantization
|
|
* - IMDCT
|
|
* - windowing and overlapp-add
|
|
*
|
|
* The compressed wmall bitstream is split into individual packets.
|
|
* Every such packet contains one or more wma frames.
|
|
* The compressed frames may have a variable length and frames may
|
|
* cross packet boundaries.
|
|
* Common to all wmall frames is the number of samples that are stored in
|
|
* a frame.
|
|
* The number of samples and a few other decode flags are stored
|
|
* as extradata that has to be passed to the decoder.
|
|
*
|
|
* The wmall frames themselves are again split into a variable number of
|
|
* subframes. Every subframe contains the data for 2^N time domain samples
|
|
* where N varies between 7 and 12.
|
|
*
|
|
* Example wmall bitstream (in samples):
|
|
*
|
|
* || packet 0 || packet 1 || packet 2 packets
|
|
* ---------------------------------------------------
|
|
* || frame 0 || frame 1 || frame 2 || frames
|
|
* ---------------------------------------------------
|
|
* || | | || | | | || || subframes of channel 0
|
|
* ---------------------------------------------------
|
|
* || | | || | | | || || subframes of channel 1
|
|
* ---------------------------------------------------
|
|
*
|
|
* The frame layouts for the individual channels of a wma frame does not need
|
|
* to be the same.
|
|
*
|
|
* However, if the offsets and lengths of several subframes of a frame are the
|
|
* same, the subframes of the channels can be grouped.
|
|
* Every group may then use special coding techniques like M/S stereo coding
|
|
* to improve the compression ratio. These channel transformations do not
|
|
* need to be applied to a whole subframe. Instead, they can also work on
|
|
* individual scale factor bands (see below).
|
|
* The coefficients that carry the audio signal in the frequency domain
|
|
* are transmitted as huffman-coded vectors with 4, 2 and 1 elements.
|
|
* In addition to that, the encoder can switch to a runlevel coding scheme
|
|
* by transmitting subframe_length / 128 zero coefficients.
|
|
*
|
|
* Before the audio signal can be converted to the time domain, the
|
|
* coefficients have to be rescaled and inverse quantized.
|
|
* A subframe is therefore split into several scale factor bands that get
|
|
* scaled individually.
|
|
* Scale factors are submitted for every frame but they might be shared
|
|
* between the subframes of a channel. Scale factors are initially DPCM-coded.
|
|
* Once scale factors are shared, the differences are transmitted as runlevel
|
|
* codes.
|
|
* Every subframe length and offset combination in the frame layout shares a
|
|
* common quantization factor that can be adjusted for every channel by a
|
|
* modifier.
|
|
* After the inverse quantization, the coefficients get processed by an IMDCT.
|
|
* The resulting values are then windowed with a sine window and the first half
|
|
* of the values are added to the second half of the output from the previous
|
|
* subframe in order to reconstruct the output samples.
|
|
*/
|
|
|
|
#include "avcodec.h"
|
|
#include "internal.h"
|
|
#include "get_bits.h"
|
|
#include "put_bits.h"
|
|
#include "dsputil.h"
|
|
#include "wma.h"
|
|
|
|
/** current decoder limitations */
|
|
#define WMALL_MAX_CHANNELS 8 ///< max number of handled channels
|
|
#define MAX_SUBFRAMES 32 ///< max number of subframes per channel
|
|
#define MAX_BANDS 29 ///< max number of scale factor bands
|
|
#define MAX_FRAMESIZE 32768 ///< maximum compressed frame size
|
|
|
|
#define WMALL_BLOCK_MIN_BITS 6 ///< log2 of min block size
|
|
#define WMALL_BLOCK_MAX_BITS 12 ///< log2 of max block size
|
|
#define WMALL_BLOCK_MAX_SIZE (1 << WMALL_BLOCK_MAX_BITS) ///< maximum block size
|
|
#define WMALL_BLOCK_SIZES (WMALL_BLOCK_MAX_BITS - WMALL_BLOCK_MIN_BITS + 1) ///< possible block sizes
|
|
|
|
|
|
#define VLCBITS 9
|
|
#define SCALEVLCBITS 8
|
|
#define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS)
|
|
#define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS)
|
|
#define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS)
|
|
#define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS)
|
|
#define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS)
|
|
|
|
static float sin64[33]; ///< sinus table for decorrelation
|
|
|
|
/**
|
|
* @brief frame specific decoder context for a single channel
|
|
*/
|
|
typedef struct {
|
|
int16_t prev_block_len; ///< length of the previous block
|
|
uint8_t transmit_coefs;
|
|
uint8_t num_subframes;
|
|
uint16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples
|
|
uint16_t subframe_offset[MAX_SUBFRAMES]; ///< subframe positions in the current frame
|
|
uint8_t cur_subframe; ///< current subframe number
|
|
uint16_t decoded_samples; ///< number of already processed samples
|
|
uint8_t grouped; ///< channel is part of a group
|
|
int quant_step; ///< quantization step for the current subframe
|
|
int8_t reuse_sf; ///< share scale factors between subframes
|
|
int8_t scale_factor_step; ///< scaling step for the current subframe
|
|
int max_scale_factor; ///< maximum scale factor for the current subframe
|
|
int saved_scale_factors[2][MAX_BANDS]; ///< resampled and (previously) transmitted scale factor values
|
|
int8_t scale_factor_idx; ///< index for the transmitted scale factor values (used for resampling)
|
|
int* scale_factors; ///< pointer to the scale factor values used for decoding
|
|
uint8_t table_idx; ///< index in sf_offsets for the scale factor reference block
|
|
float* coeffs; ///< pointer to the subframe decode buffer
|
|
uint16_t num_vec_coeffs; ///< number of vector coded coefficients
|
|
DECLARE_ALIGNED(16, float, out)[WMALL_BLOCK_MAX_SIZE + WMALL_BLOCK_MAX_SIZE / 2]; ///< output buffer
|
|
int transient_counter; ///< number of transient samples from the beginning of transient zone
|
|
} WmallChannelCtx;
|
|
|
|
/**
|
|
* @brief channel group for channel transformations
|
|
*/
|
|
typedef struct {
|
|
uint8_t num_channels; ///< number of channels in the group
|
|
int8_t transform; ///< transform on / off
|
|
int8_t transform_band[MAX_BANDS]; ///< controls if the transform is enabled for a certain band
|
|
float decorrelation_matrix[WMALL_MAX_CHANNELS*WMALL_MAX_CHANNELS];
|
|
float* channel_data[WMALL_MAX_CHANNELS]; ///< transformation coefficients
|
|
} WmallChannelGrp;
|
|
|
|
/**
|
|
* @brief main decoder context
|
|
*/
|
|
typedef struct WmallDecodeCtx {
|
|
/* generic decoder variables */
|
|
AVCodecContext* avctx; ///< codec context for av_log
|
|
DSPContext dsp; ///< accelerated DSP functions
|
|
uint8_t frame_data[MAX_FRAMESIZE +
|
|
FF_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data
|
|
PutBitContext pb; ///< context for filling the frame_data buffer
|
|
FFTContext mdct_ctx[WMALL_BLOCK_SIZES]; ///< MDCT context per block size
|
|
DECLARE_ALIGNED(16, float, tmp)[WMALL_BLOCK_MAX_SIZE]; ///< IMDCT output buffer
|
|
float* windows[WMALL_BLOCK_SIZES]; ///< windows for the different block sizes
|
|
|
|
/* frame size dependent frame information (set during initialization) */
|
|
uint32_t decode_flags; ///< used compression features
|
|
uint8_t len_prefix; ///< frame is prefixed with its length
|
|
uint8_t dynamic_range_compression; ///< frame contains DRC data
|
|
uint8_t bits_per_sample; ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
|
|
uint16_t samples_per_frame; ///< number of samples to output
|
|
uint16_t log2_frame_size;
|
|
int8_t num_channels; ///< number of channels in the stream (same as AVCodecContext.num_channels)
|
|
int8_t lfe_channel; ///< lfe channel index
|
|
uint8_t max_num_subframes;
|
|
uint8_t subframe_len_bits; ///< number of bits used for the subframe length
|
|
uint8_t max_subframe_len_bit; ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
|
|
uint16_t min_samples_per_subframe;
|
|
int8_t num_sfb[WMALL_BLOCK_SIZES]; ///< scale factor bands per block size
|
|
int16_t sfb_offsets[WMALL_BLOCK_SIZES][MAX_BANDS]; ///< scale factor band offsets (multiples of 4)
|
|
int8_t sf_offsets[WMALL_BLOCK_SIZES][WMALL_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix
|
|
int16_t subwoofer_cutoffs[WMALL_BLOCK_SIZES]; ///< subwoofer cutoff values
|
|
|
|
/* packet decode state */
|
|
GetBitContext pgb; ///< bitstream reader context for the packet
|
|
int next_packet_start; ///< start offset of the next wma packet in the demuxer packet
|
|
uint8_t packet_offset; ///< frame offset in the packet
|
|
uint8_t packet_sequence_number; ///< current packet number
|
|
int num_saved_bits; ///< saved number of bits
|
|
int frame_offset; ///< frame offset in the bit reservoir
|
|
int subframe_offset; ///< subframe offset in the bit reservoir
|
|
uint8_t packet_loss; ///< set in case of bitstream error
|
|
uint8_t packet_done; ///< set when a packet is fully decoded
|
|
|
|
/* frame decode state */
|
|
uint32_t frame_num; ///< current frame number (not used for decoding)
|
|
GetBitContext gb; ///< bitstream reader context
|
|
int buf_bit_size; ///< buffer size in bits
|
|
int16_t* samples_16; ///< current samplebuffer pointer (16-bit)
|
|
int16_t* samples_16_end; ///< maximum samplebuffer pointer
|
|
int *samples_32; ///< current samplebuffer pointer (24-bit)
|
|
int *samples_32_end; ///< maximum samplebuffer pointer
|
|
uint8_t drc_gain; ///< gain for the DRC tool
|
|
int8_t skip_frame; ///< skip output step
|
|
int8_t parsed_all_subframes; ///< all subframes decoded?
|
|
|
|
/* subframe/block decode state */
|
|
int16_t subframe_len; ///< current subframe length
|
|
int8_t channels_for_cur_subframe; ///< number of channels that contain the subframe
|
|
int8_t channel_indexes_for_cur_subframe[WMALL_MAX_CHANNELS];
|
|
int8_t num_bands; ///< number of scale factor bands
|
|
int8_t transmit_num_vec_coeffs; ///< number of vector coded coefficients is part of the bitstream
|
|
int16_t* cur_sfb_offsets; ///< sfb offsets for the current block
|
|
uint8_t table_idx; ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables
|
|
int8_t esc_len; ///< length of escaped coefficients
|
|
|
|
uint8_t num_chgroups; ///< number of channel groups
|
|
WmallChannelGrp chgroup[WMALL_MAX_CHANNELS]; ///< channel group information
|
|
|
|
WmallChannelCtx channel[WMALL_MAX_CHANNELS]; ///< per channel data
|
|
|
|
// WMA lossless
|
|
|
|
uint8_t do_arith_coding;
|
|
uint8_t do_ac_filter;
|
|
uint8_t do_inter_ch_decorr;
|
|
uint8_t do_mclms;
|
|
uint8_t do_lpc;
|
|
|
|
int8_t acfilter_order;
|
|
int8_t acfilter_scaling;
|
|
int64_t acfilter_coeffs[16];
|
|
int acfilter_prevvalues[2][16];
|
|
|
|
int8_t mclms_order;
|
|
int8_t mclms_scaling;
|
|
int16_t mclms_coeffs[128];
|
|
int16_t mclms_coeffs_cur[4];
|
|
int mclms_prevvalues[64]; // FIXME: should be 32-bit / 16-bit depending on bit-depth
|
|
int16_t mclms_updates[64];
|
|
int mclms_recent;
|
|
|
|
int movave_scaling;
|
|
int quant_stepsize;
|
|
|
|
struct {
|
|
int order;
|
|
int scaling;
|
|
int coefsend;
|
|
int bitsend;
|
|
int16_t coefs[256];
|
|
int lms_prevvalues[512]; // FIXME: see above
|
|
int16_t lms_updates[512]; // and here too
|
|
int recent;
|
|
} cdlms[2][9]; /* XXX: Here, 2 is the max. no. of channels allowed,
|
|
9 is the maximum no. of filters per channel.
|
|
Question is, why 2 if WMALL_MAX_CHANNELS == 8 */
|
|
|
|
|
|
int cdlms_ttl[2];
|
|
|
|
int bV3RTM;
|
|
|
|
int is_channel_coded[2]; // XXX: same question as above applies here too (and below)
|
|
int update_speed[2];
|
|
|
|
int transient[2];
|
|
int transient_pos[2];
|
|
int seekable_tile;
|
|
|
|
int ave_sum[2];
|
|
|
|
int channel_residues[2][2048];
|
|
|
|
|
|
int lpc_coefs[2][40];
|
|
int lpc_order;
|
|
int lpc_scaling;
|
|
int lpc_intbits;
|
|
|
|
int channel_coeffs[2][2048]; // FIXME: should be 32-bit / 16-bit depending on bit-depth
|
|
|
|
} WmallDecodeCtx;
|
|
|
|
|
|
#undef dprintf
|
|
#define dprintf(pctx, ...) av_log(pctx, AV_LOG_DEBUG, __VA_ARGS__)
|
|
|
|
|
|
static int num_logged_tiles = 0;
|
|
static int num_logged_subframes = 0;
|
|
static int num_lms_update_call = 0;
|
|
|
|
/**
|
|
*@brief helper function to print the most important members of the context
|
|
*@param s context
|
|
*/
|
|
static void av_cold dump_context(WmallDecodeCtx *s)
|
|
{
|
|
#define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b);
|
|
#define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %x\n", a, b);
|
|
|
|
PRINT("ed sample bit depth", s->bits_per_sample);
|
|
PRINT_HEX("ed decode flags", s->decode_flags);
|
|
PRINT("samples per frame", s->samples_per_frame);
|
|
PRINT("log2 frame size", s->log2_frame_size);
|
|
PRINT("max num subframes", s->max_num_subframes);
|
|
PRINT("len prefix", s->len_prefix);
|
|
PRINT("num channels", s->num_channels);
|
|
}
|
|
|
|
static void dump_int_buffer(uint8_t *buffer, int size, int length, int delimiter)
|
|
{
|
|
int i;
|
|
|
|
for (i=0 ; i<length ; i++) {
|
|
if (!(i%delimiter))
|
|
av_log(0, 0, "\n[%d] ", i);
|
|
av_log(0, 0, "%d, ", *(int16_t *)(buffer + i * size));
|
|
}
|
|
av_log(0, 0, "\n");
|
|
}
|
|
|
|
/**
|
|
*@brief Uninitialize the decoder and free all resources.
|
|
*@param avctx codec context
|
|
*@return 0 on success, < 0 otherwise
|
|
*/
|
|
static av_cold int decode_end(AVCodecContext *avctx)
|
|
{
|
|
WmallDecodeCtx *s = avctx->priv_data;
|
|
int i;
|
|
|
|
for (i = 0; i < WMALL_BLOCK_SIZES; i++)
|
|
ff_mdct_end(&s->mdct_ctx[i]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
*@brief Initialize the decoder.
|
|
*@param avctx codec context
|
|
*@return 0 on success, -1 otherwise
|
|
*/
|
|
static av_cold int decode_init(AVCodecContext *avctx)
|
|
{
|
|
WmallDecodeCtx *s = avctx->priv_data;
|
|
uint8_t *edata_ptr = avctx->extradata;
|
|
unsigned int channel_mask;
|
|
int i;
|
|
int log2_max_num_subframes;
|
|
int num_possible_block_sizes;
|
|
|
|
s->avctx = avctx;
|
|
dsputil_init(&s->dsp, avctx);
|
|
init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
|
|
|
|
if (avctx->extradata_size >= 18) {
|
|
s->decode_flags = AV_RL16(edata_ptr+14);
|
|
channel_mask = AV_RL32(edata_ptr+2);
|
|
s->bits_per_sample = AV_RL16(edata_ptr);
|
|
if (s->bits_per_sample == 16)
|
|
avctx->sample_fmt = AV_SAMPLE_FMT_S16;
|
|
else if (s->bits_per_sample == 24)
|
|
avctx->sample_fmt = AV_SAMPLE_FMT_S32;
|
|
else {
|
|
av_log(avctx, AV_LOG_ERROR, "Unknown bit-depth: %d\n",
|
|
s->bits_per_sample);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
/** dump the extradata */
|
|
for (i = 0; i < avctx->extradata_size; i++)
|
|
dprintf(avctx, "[%x] ", avctx->extradata[i]);
|
|
dprintf(avctx, "\n");
|
|
|
|
} else {
|
|
av_log_ask_for_sample(avctx, "Unknown extradata size\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
/** generic init */
|
|
s->log2_frame_size = av_log2(avctx->block_align) + 4;
|
|
|
|
/** frame info */
|
|
s->skip_frame = 1; /* skip first frame */
|
|
s->packet_loss = 1;
|
|
s->len_prefix = (s->decode_flags & 0x40);
|
|
|
|
/** get frame len */
|
|
s->samples_per_frame = 1 << ff_wma_get_frame_len_bits(avctx->sample_rate,
|
|
3, s->decode_flags);
|
|
|
|
/** init previous block len */
|
|
for (i = 0; i < avctx->channels; i++)
|
|
s->channel[i].prev_block_len = s->samples_per_frame;
|
|
|
|
/** subframe info */
|
|
log2_max_num_subframes = ((s->decode_flags & 0x38) >> 3);
|
|
s->max_num_subframes = 1 << log2_max_num_subframes;
|
|
s->max_subframe_len_bit = 0;
|
|
s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1;
|
|
|
|
num_possible_block_sizes = log2_max_num_subframes + 1;
|
|
s->min_samples_per_subframe = s->samples_per_frame / s->max_num_subframes;
|
|
s->dynamic_range_compression = (s->decode_flags & 0x80);
|
|
|
|
s->bV3RTM = s->decode_flags & 0x100;
|
|
|
|
if (s->max_num_subframes > MAX_SUBFRAMES) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %i\n",
|
|
s->max_num_subframes);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
s->num_channels = avctx->channels;
|
|
|
|
/** extract lfe channel position */
|
|
s->lfe_channel = -1;
|
|
|
|
if (channel_mask & 8) {
|
|
unsigned int mask;
|
|
for (mask = 1; mask < 16; mask <<= 1) {
|
|
if (channel_mask & mask)
|
|
++s->lfe_channel;
|
|
}
|
|
}
|
|
|
|
if (s->num_channels < 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n", s->num_channels);
|
|
return AVERROR_INVALIDDATA;
|
|
} else if (s->num_channels > WMALL_MAX_CHANNELS) {
|
|
av_log_ask_for_sample(avctx, "unsupported number of channels\n");
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
avctx->channel_layout = channel_mask;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
*@brief Decode the subframe length.
|
|
*@param s context
|
|
*@param offset sample offset in the frame
|
|
*@return decoded subframe length on success, < 0 in case of an error
|
|
*/
|
|
static int decode_subframe_length(WmallDecodeCtx *s, int offset)
|
|
{
|
|
int frame_len_ratio;
|
|
int subframe_len, len;
|
|
|
|
/** no need to read from the bitstream when only one length is possible */
|
|
if (offset == s->samples_per_frame - s->min_samples_per_subframe)
|
|
return s->min_samples_per_subframe;
|
|
|
|
len = av_log2(s->max_num_subframes - 1) + 1;
|
|
frame_len_ratio = get_bits(&s->gb, len);
|
|
|
|
subframe_len = s->min_samples_per_subframe * (frame_len_ratio + 1);
|
|
|
|
/** sanity check the length */
|
|
if (subframe_len < s->min_samples_per_subframe ||
|
|
subframe_len > s->samples_per_frame) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n",
|
|
subframe_len);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
return subframe_len;
|
|
}
|
|
|
|
/**
|
|
*@brief Decode how the data in the frame is split into subframes.
|
|
* Every WMA frame contains the encoded data for a fixed number of
|
|
* samples per channel. The data for every channel might be split
|
|
* into several subframes. This function will reconstruct the list of
|
|
* subframes for every channel.
|
|
*
|
|
* If the subframes are not evenly split, the algorithm estimates the
|
|
* channels with the lowest number of total samples.
|
|
* Afterwards, for each of these channels a bit is read from the
|
|
* bitstream that indicates if the channel contains a subframe with the
|
|
* next subframe size that is going to be read from the bitstream or not.
|
|
* If a channel contains such a subframe, the subframe size gets added to
|
|
* the channel's subframe list.
|
|
* The algorithm repeats these steps until the frame is properly divided
|
|
* between the individual channels.
|
|
*
|
|
*@param s context
|
|
*@return 0 on success, < 0 in case of an error
|
|
*/
|
|
static int decode_tilehdr(WmallDecodeCtx *s)
|
|
{
|
|
uint16_t num_samples[WMALL_MAX_CHANNELS]; /**< sum of samples for all currently known subframes of a channel */
|
|
uint8_t contains_subframe[WMALL_MAX_CHANNELS]; /**< flag indicating if a channel contains the current subframe */
|
|
int channels_for_cur_subframe = s->num_channels; /**< number of channels that contain the current subframe */
|
|
int fixed_channel_layout = 0; /**< flag indicating that all channels use the same subfra2me offsets and sizes */
|
|
int min_channel_len = 0; /**< smallest sum of samples (channels with this length will be processed first) */
|
|
int c;
|
|
|
|
/* Should never consume more than 3073 bits (256 iterations for the
|
|
* while loop when always the minimum amount of 128 samples is substracted
|
|
* from missing samples in the 8 channel case).
|
|
* 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4)
|
|
*/
|
|
|
|
/** reset tiling information */
|
|
for (c = 0; c < s->num_channels; c++)
|
|
s->channel[c].num_subframes = 0;
|
|
|
|
memset(num_samples, 0, sizeof(num_samples));
|
|
|
|
if (s->max_num_subframes == 1 || get_bits1(&s->gb))
|
|
fixed_channel_layout = 1;
|
|
|
|
/** loop until the frame data is split between the subframes */
|
|
do {
|
|
int subframe_len;
|
|
|
|
/** check which channels contain the subframe */
|
|
for (c = 0; c < s->num_channels; c++) {
|
|
if (num_samples[c] == min_channel_len) {
|
|
if (fixed_channel_layout || channels_for_cur_subframe == 1 ||
|
|
(min_channel_len == s->samples_per_frame - s->min_samples_per_subframe)) {
|
|
contains_subframe[c] = 1;
|
|
} else {
|
|
contains_subframe[c] = get_bits1(&s->gb);
|
|
}
|
|
} else
|
|
contains_subframe[c] = 0;
|
|
}
|
|
|
|
/** get subframe length, subframe_len == 0 is not allowed */
|
|
if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0)
|
|
return AVERROR_INVALIDDATA;
|
|
/** add subframes to the individual channels and find new min_channel_len */
|
|
min_channel_len += subframe_len;
|
|
for (c = 0; c < s->num_channels; c++) {
|
|
WmallChannelCtx* chan = &s->channel[c];
|
|
|
|
if (contains_subframe[c]) {
|
|
if (chan->num_subframes >= MAX_SUBFRAMES) {
|
|
av_log(s->avctx, AV_LOG_ERROR,
|
|
"broken frame: num subframes > 31\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
chan->subframe_len[chan->num_subframes] = subframe_len;
|
|
num_samples[c] += subframe_len;
|
|
++chan->num_subframes;
|
|
if (num_samples[c] > s->samples_per_frame) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "broken frame: "
|
|
"channel len(%d) > samples_per_frame(%d)\n",
|
|
num_samples[c], s->samples_per_frame);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
} else if (num_samples[c] <= min_channel_len) {
|
|
if (num_samples[c] < min_channel_len) {
|
|
channels_for_cur_subframe = 0;
|
|
min_channel_len = num_samples[c];
|
|
}
|
|
++channels_for_cur_subframe;
|
|
}
|
|
}
|
|
} while (min_channel_len < s->samples_per_frame);
|
|
|
|
for (c = 0; c < s->num_channels; c++) {
|
|
int i;
|
|
int offset = 0;
|
|
for (i = 0; i < s->channel[c].num_subframes; i++) {
|
|
s->channel[c].subframe_offset[i] = offset;
|
|
offset += s->channel[c].subframe_len[i];
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int my_log2(unsigned int i)
|
|
{
|
|
unsigned int iLog2 = 0;
|
|
while ((i >> iLog2) > 1)
|
|
iLog2++;
|
|
return iLog2;
|
|
}
|
|
|
|
|
|
/**
|
|
*
|
|
*/
|
|
static void decode_ac_filter(WmallDecodeCtx *s)
|
|
{
|
|
int i;
|
|
s->acfilter_order = get_bits(&s->gb, 4) + 1;
|
|
s->acfilter_scaling = get_bits(&s->gb, 4);
|
|
|
|
for(i = 0; i < s->acfilter_order; i++) {
|
|
s->acfilter_coeffs[i] = get_bits(&s->gb, s->acfilter_scaling) + 1;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
*
|
|
*/
|
|
static void decode_mclms(WmallDecodeCtx *s)
|
|
{
|
|
s->mclms_order = (get_bits(&s->gb, 4) + 1) * 2;
|
|
s->mclms_scaling = get_bits(&s->gb, 4);
|
|
if(get_bits1(&s->gb)) {
|
|
// mclms_send_coef
|
|
int i;
|
|
int send_coef_bits;
|
|
int cbits = av_log2(s->mclms_scaling + 1);
|
|
assert(cbits == my_log2(s->mclms_scaling + 1));
|
|
if(1 << cbits < s->mclms_scaling + 1)
|
|
cbits++;
|
|
|
|
send_coef_bits = (cbits ? get_bits(&s->gb, cbits) : 0) + 2;
|
|
|
|
for(i = 0; i < s->mclms_order * s->num_channels * s->num_channels; i++) {
|
|
s->mclms_coeffs[i] = get_bits(&s->gb, send_coef_bits);
|
|
}
|
|
|
|
for(i = 0; i < s->num_channels; i++) {
|
|
int c;
|
|
for(c = 0; c < i; c++) {
|
|
s->mclms_coeffs_cur[i * s->num_channels + c] = get_bits(&s->gb, send_coef_bits);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
*
|
|
*/
|
|
static void decode_cdlms(WmallDecodeCtx *s)
|
|
{
|
|
int c, i;
|
|
int cdlms_send_coef = get_bits1(&s->gb);
|
|
|
|
for(c = 0; c < s->num_channels; c++) {
|
|
s->cdlms_ttl[c] = get_bits(&s->gb, 3) + 1;
|
|
for(i = 0; i < s->cdlms_ttl[c]; i++) {
|
|
s->cdlms[c][i].order = (get_bits(&s->gb, 7) + 1) * 8;
|
|
}
|
|
|
|
for(i = 0; i < s->cdlms_ttl[c]; i++) {
|
|
s->cdlms[c][i].scaling = get_bits(&s->gb, 4);
|
|
}
|
|
|
|
if(cdlms_send_coef) {
|
|
for(i = 0; i < s->cdlms_ttl[c]; i++) {
|
|
int cbits, shift_l, shift_r, j;
|
|
cbits = av_log2(s->cdlms[c][i].order);
|
|
if(1 << cbits < s->cdlms[c][i].order)
|
|
cbits++;
|
|
s->cdlms[c][i].coefsend = get_bits(&s->gb, cbits) + 1;
|
|
|
|
cbits = av_log2(s->cdlms[c][i].scaling + 1);
|
|
if(1 << cbits < s->cdlms[c][i].scaling + 1)
|
|
cbits++;
|
|
|
|
s->cdlms[c][i].bitsend = get_bits(&s->gb, cbits) + 2;
|
|
shift_l = 32 - s->cdlms[c][i].bitsend;
|
|
shift_r = 32 - 2 - s->cdlms[c][i].scaling;
|
|
for(j = 0; j < s->cdlms[c][i].coefsend; j++) {
|
|
s->cdlms[c][i].coefs[j] =
|
|
(get_bits(&s->gb, s->cdlms[c][i].bitsend) << shift_l) >> shift_r;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
*
|
|
*/
|
|
static int decode_channel_residues(WmallDecodeCtx *s, int ch, int tile_size)
|
|
{
|
|
int i = 0;
|
|
unsigned int ave_mean;
|
|
s->transient[ch] = get_bits1(&s->gb);
|
|
if(s->transient[ch]) {
|
|
s->transient_pos[ch] = get_bits(&s->gb, av_log2(tile_size));
|
|
if (s->transient_pos[ch])
|
|
s->transient[ch] = 0;
|
|
s->channel[ch].transient_counter =
|
|
FFMAX(s->channel[ch].transient_counter, s->samples_per_frame / 2);
|
|
} else if (s->channel[ch].transient_counter)
|
|
s->transient[ch] = 1;
|
|
|
|
if(s->seekable_tile) {
|
|
ave_mean = get_bits(&s->gb, s->bits_per_sample);
|
|
s->ave_sum[ch] = ave_mean << (s->movave_scaling + 1);
|
|
// s->ave_sum[ch] *= 2;
|
|
}
|
|
|
|
if(s->seekable_tile) {
|
|
if(s->do_inter_ch_decorr)
|
|
s->channel_residues[ch][0] = get_sbits(&s->gb, s->bits_per_sample + 1);
|
|
else
|
|
s->channel_residues[ch][0] = get_sbits(&s->gb, s->bits_per_sample);
|
|
i++;
|
|
}
|
|
//av_log(0, 0, "%8d: ", num_logged_tiles++);
|
|
for(; i < tile_size; i++) {
|
|
int quo = 0, rem, rem_bits, residue;
|
|
while(get_bits1(&s->gb))
|
|
quo++;
|
|
if(quo >= 32)
|
|
quo += get_bits_long(&s->gb, get_bits(&s->gb, 5) + 1);
|
|
|
|
ave_mean = (s->ave_sum[ch] + (1 << s->movave_scaling)) >> (s->movave_scaling + 1);
|
|
if (ave_mean <= 1)
|
|
residue = quo;
|
|
else
|
|
{
|
|
rem_bits = av_ceil_log2(ave_mean);
|
|
rem = rem_bits ? get_bits(&s->gb, rem_bits) : 0;
|
|
residue = (quo << rem_bits) + rem;
|
|
}
|
|
|
|
s->ave_sum[ch] = residue + s->ave_sum[ch] - (s->ave_sum[ch] >> s->movave_scaling);
|
|
|
|
if(residue & 1)
|
|
residue = -(residue >> 1) - 1;
|
|
else
|
|
residue = residue >> 1;
|
|
s->channel_residues[ch][i] = residue;
|
|
}
|
|
//dump_int_buffer(s->channel_residues[ch], 4, tile_size, 16);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
*
|
|
*/
|
|
static void
|
|
decode_lpc(WmallDecodeCtx *s)
|
|
{
|
|
int ch, i, cbits;
|
|
s->lpc_order = get_bits(&s->gb, 5) + 1;
|
|
s->lpc_scaling = get_bits(&s->gb, 4);
|
|
s->lpc_intbits = get_bits(&s->gb, 3) + 1;
|
|
cbits = s->lpc_scaling + s->lpc_intbits;
|
|
for(ch = 0; ch < s->num_channels; ch++) {
|
|
for(i = 0; i < s->lpc_order; i++) {
|
|
s->lpc_coefs[ch][i] = get_sbits(&s->gb, cbits);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void clear_codec_buffers(WmallDecodeCtx *s)
|
|
{
|
|
int ich, ilms;
|
|
|
|
memset(s->acfilter_coeffs , 0, 16 * sizeof(int));
|
|
memset(s->acfilter_prevvalues, 0, 16 * 2 * sizeof(int)); // may be wrong
|
|
memset(s->lpc_coefs , 0, 40 * 2 * sizeof(int));
|
|
|
|
memset(s->mclms_coeffs , 0, 128 * sizeof(int16_t));
|
|
memset(s->mclms_coeffs_cur, 0, 4 * sizeof(int16_t));
|
|
memset(s->mclms_prevvalues, 0, 64 * sizeof(int));
|
|
memset(s->mclms_updates , 0, 64 * sizeof(int16_t));
|
|
|
|
for (ich = 0; ich < s->num_channels; ich++) {
|
|
for (ilms = 0; ilms < s->cdlms_ttl[ich]; ilms++) {
|
|
memset(s->cdlms[ich][ilms].coefs , 0, 256 * sizeof(int16_t));
|
|
memset(s->cdlms[ich][ilms].lms_prevvalues, 0, 512 * sizeof(int));
|
|
memset(s->cdlms[ich][ilms].lms_updates , 0, 512 * sizeof(int16_t));
|
|
}
|
|
s->ave_sum[ich] = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
*@brief Resets filter parameters and transient area at new seekable tile
|
|
*/
|
|
static void reset_codec(WmallDecodeCtx *s)
|
|
{
|
|
int ich, ilms;
|
|
s->mclms_recent = s->mclms_order * s->num_channels;
|
|
for (ich = 0; ich < s->num_channels; ich++) {
|
|
for (ilms = 0; ilms < s->cdlms_ttl[ich]; ilms++)
|
|
s->cdlms[ich][ilms].recent = s->cdlms[ich][ilms].order;
|
|
/* first sample of a seekable subframe is considered as the starting of
|
|
a transient area which is samples_per_frame samples long */
|
|
s->channel[ich].transient_counter = s->samples_per_frame;
|
|
s->transient[ich] = 1;
|
|
s->transient_pos[ich] = 0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void mclms_update(WmallDecodeCtx *s, int icoef, int *pred)
|
|
{
|
|
int i, j, ich;
|
|
int pred_error;
|
|
int order = s->mclms_order;
|
|
int num_channels = s->num_channels;
|
|
int range = 1 << (s->bits_per_sample - 1);
|
|
//int bps = s->bits_per_sample > 16 ? 4 : 2; // bytes per sample
|
|
|
|
for (ich = 0; ich < num_channels; ich++) {
|
|
pred_error = s->channel_residues[ich][icoef] - pred[ich];
|
|
if (pred_error > 0) {
|
|
for (i = 0; i < order * num_channels; i++)
|
|
s->mclms_coeffs[i + ich * order * num_channels] +=
|
|
s->mclms_updates[s->mclms_recent + i];
|
|
for (j = 0; j < ich; j++) {
|
|
if (s->channel_residues[j][icoef] > 0)
|
|
s->mclms_coeffs_cur[ich * num_channels + j] += 1;
|
|
else if (s->channel_residues[j][icoef] < 0)
|
|
s->mclms_coeffs_cur[ich * num_channels + j] -= 1;
|
|
}
|
|
} else if (pred_error < 0) {
|
|
for (i = 0; i < order * num_channels; i++)
|
|
s->mclms_coeffs[i + ich * order * num_channels] -=
|
|
s->mclms_updates[s->mclms_recent + i];
|
|
for (j = 0; j < ich; j++) {
|
|
if (s->channel_residues[j][icoef] > 0)
|
|
s->mclms_coeffs_cur[ich * num_channels + j] -= 1;
|
|
else if (s->channel_residues[j][icoef] < 0)
|
|
s->mclms_coeffs_cur[ich * num_channels + j] += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (ich = num_channels - 1; ich >= 0; ich--) {
|
|
s->mclms_recent--;
|
|
s->mclms_prevvalues[s->mclms_recent] = s->channel_residues[ich][icoef];
|
|
if (s->channel_residues[ich][icoef] > range - 1)
|
|
s->mclms_prevvalues[s->mclms_recent] = range - 1;
|
|
else if (s->channel_residues[ich][icoef] < -range)
|
|
s->mclms_prevvalues[s->mclms_recent] = -range;
|
|
|
|
s->mclms_updates[s->mclms_recent] = 0;
|
|
if (s->channel_residues[ich][icoef] > 0)
|
|
s->mclms_updates[s->mclms_recent] = 1;
|
|
else if (s->channel_residues[ich][icoef] < 0)
|
|
s->mclms_updates[s->mclms_recent] = -1;
|
|
}
|
|
|
|
if (s->mclms_recent == 0) {
|
|
memcpy(&s->mclms_prevvalues[order * num_channels],
|
|
s->mclms_prevvalues,
|
|
4 * order * num_channels);
|
|
memcpy(&s->mclms_updates[order * num_channels],
|
|
s->mclms_updates,
|
|
2 * order * num_channels);
|
|
s->mclms_recent = num_channels * order;
|
|
}
|
|
}
|
|
|
|
static void mclms_predict(WmallDecodeCtx *s, int icoef, int *pred)
|
|
{
|
|
int ich, i;
|
|
int order = s->mclms_order;
|
|
int num_channels = s->num_channels;
|
|
|
|
for (ich = 0; ich < num_channels; ich++) {
|
|
if (!s->is_channel_coded[ich])
|
|
continue;
|
|
pred[ich] = 0;
|
|
for (i = 0; i < order * num_channels; i++)
|
|
pred[ich] += s->mclms_prevvalues[i + s->mclms_recent] *
|
|
s->mclms_coeffs[i + order * num_channels * ich];
|
|
for (i = 0; i < ich; i++)
|
|
pred[ich] += s->channel_residues[i][icoef] *
|
|
s->mclms_coeffs_cur[i + num_channels * ich];
|
|
pred[ich] += 1 << s->mclms_scaling - 1;
|
|
pred[ich] >>= s->mclms_scaling;
|
|
s->channel_residues[ich][icoef] += pred[ich];
|
|
}
|
|
}
|
|
|
|
static void revert_mclms(WmallDecodeCtx *s, int tile_size)
|
|
{
|
|
int icoef, pred[s->num_channels];
|
|
for (icoef = 0; icoef < tile_size; icoef++) {
|
|
mclms_predict(s, icoef, pred);
|
|
mclms_update(s, icoef, pred);
|
|
}
|
|
}
|
|
|
|
static int lms_predict(WmallDecodeCtx *s, int ich, int ilms)
|
|
{
|
|
int pred = 0;
|
|
int icoef;
|
|
int recent = s->cdlms[ich][ilms].recent;
|
|
|
|
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++)
|
|
pred += s->cdlms[ich][ilms].coefs[icoef] *
|
|
s->cdlms[ich][ilms].lms_prevvalues[icoef + recent];
|
|
|
|
//pred += (1 << (s->cdlms[ich][ilms].scaling - 1));
|
|
/* XXX: Table 29 has:
|
|
iPred >= cdlms[iCh][ilms].scaling;
|
|
seems to me like a missing > */
|
|
//pred >>= s->cdlms[ich][ilms].scaling;
|
|
return pred;
|
|
}
|
|
|
|
static void lms_update(WmallDecodeCtx *s, int ich, int ilms, int input, int residue)
|
|
{
|
|
int icoef;
|
|
int recent = s->cdlms[ich][ilms].recent;
|
|
int range = 1 << s->bits_per_sample - 1;
|
|
//int bps = s->bits_per_sample > 16 ? 4 : 2; // bytes per sample
|
|
|
|
if (residue < 0) {
|
|
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++)
|
|
s->cdlms[ich][ilms].coefs[icoef] -=
|
|
s->cdlms[ich][ilms].lms_updates[icoef + recent];
|
|
} else if (residue > 0) {
|
|
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++)
|
|
s->cdlms[ich][ilms].coefs[icoef] +=
|
|
s->cdlms[ich][ilms].lms_updates[icoef + recent]; /* spec mistakenly
|
|
dropped the recent */
|
|
}
|
|
|
|
if (recent)
|
|
recent--;
|
|
else {
|
|
/* XXX: This memcpy()s will probably fail if a fixed 32-bit buffer is used.
|
|
follow kshishkov's suggestion of using a union. */
|
|
memcpy(&s->cdlms[ich][ilms].lms_prevvalues[s->cdlms[ich][ilms].order],
|
|
s->cdlms[ich][ilms].lms_prevvalues,
|
|
4 * s->cdlms[ich][ilms].order);
|
|
memcpy(&s->cdlms[ich][ilms].lms_updates[s->cdlms[ich][ilms].order],
|
|
s->cdlms[ich][ilms].lms_updates,
|
|
2 * s->cdlms[ich][ilms].order);
|
|
recent = s->cdlms[ich][ilms].order - 1;
|
|
}
|
|
|
|
s->cdlms[ich][ilms].lms_prevvalues[recent] = av_clip(input, -range, range - 1);
|
|
if (!input)
|
|
s->cdlms[ich][ilms].lms_updates[recent] = 0;
|
|
else if (input < 0)
|
|
s->cdlms[ich][ilms].lms_updates[recent] = -s->update_speed[ich];
|
|
else
|
|
s->cdlms[ich][ilms].lms_updates[recent] = s->update_speed[ich];
|
|
|
|
/* XXX: spec says:
|
|
cdlms[iCh][ilms].updates[iRecent + cdlms[iCh][ilms].order >> 4] >>= 2;
|
|
lms_updates[iCh][ilms][iRecent + cdlms[iCh][ilms].order >> 3] >>= 1;
|
|
|
|
Questions is - are cdlms[iCh][ilms].updates[] and lms_updates[][][] two
|
|
seperate buffers? Here I've assumed that the two are same which makes
|
|
more sense to me.
|
|
*/
|
|
s->cdlms[ich][ilms].lms_updates[recent + (s->cdlms[ich][ilms].order >> 4)] >>= 2;
|
|
s->cdlms[ich][ilms].lms_updates[recent + (s->cdlms[ich][ilms].order >> 3)] >>= 1;
|
|
s->cdlms[ich][ilms].recent = recent;
|
|
}
|
|
|
|
static void use_high_update_speed(WmallDecodeCtx *s, int ich)
|
|
{
|
|
int ilms, recent, icoef;
|
|
for (ilms = s->cdlms_ttl[ich] - 1; ilms >= 0; ilms--) {
|
|
recent = s->cdlms[ich][ilms].recent;
|
|
if (s->update_speed[ich] == 16)
|
|
continue;
|
|
if (s->bV3RTM) {
|
|
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++)
|
|
s->cdlms[ich][ilms].lms_updates[icoef + recent] *= 2;
|
|
} else {
|
|
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++)
|
|
s->cdlms[ich][ilms].lms_updates[icoef] *= 2;
|
|
}
|
|
}
|
|
s->update_speed[ich] = 16;
|
|
}
|
|
|
|
static void use_normal_update_speed(WmallDecodeCtx *s, int ich)
|
|
{
|
|
int ilms, recent, icoef;
|
|
for (ilms = s->cdlms_ttl[ich] - 1; ilms >= 0; ilms--) {
|
|
recent = s->cdlms[ich][ilms].recent;
|
|
if (s->update_speed[ich] == 8)
|
|
continue;
|
|
if (s->bV3RTM) {
|
|
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++)
|
|
s->cdlms[ich][ilms].lms_updates[icoef + recent] /= 2;
|
|
} else {
|
|
for (icoef = 0; icoef < s->cdlms[ich][ilms].order; icoef++)
|
|
s->cdlms[ich][ilms].lms_updates[icoef] /= 2;
|
|
}
|
|
}
|
|
s->update_speed[ich] = 8;
|
|
}
|
|
|
|
static void revert_cdlms(WmallDecodeCtx *s, int ch, int coef_begin, int coef_end)
|
|
{
|
|
int icoef;
|
|
int pred;
|
|
int ilms, num_lms;
|
|
int residue, input;
|
|
|
|
num_lms = s->cdlms_ttl[ch];
|
|
for (ilms = num_lms - 1; ilms >= 0; ilms--) {
|
|
//s->cdlms[ch][ilms].recent = s->cdlms[ch][ilms].order;
|
|
for (icoef = coef_begin; icoef < coef_end; icoef++) {
|
|
pred = 1 << (s->cdlms[ch][ilms].scaling - 1);
|
|
residue = s->channel_residues[ch][icoef];
|
|
pred += lms_predict(s, ch, ilms);
|
|
input = residue + (pred >> s->cdlms[ch][ilms].scaling);
|
|
lms_update(s, ch, ilms, input, residue);
|
|
s->channel_residues[ch][icoef] = input;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void revert_inter_ch_decorr(WmallDecodeCtx *s, int tile_size)
|
|
{
|
|
int icoef;
|
|
if (s->num_channels != 2)
|
|
return;
|
|
else {
|
|
for (icoef = 0; icoef < tile_size; icoef++) {
|
|
s->channel_residues[0][icoef] -= s->channel_residues[1][icoef] >> 1;
|
|
s->channel_residues[1][icoef] += s->channel_residues[0][icoef];
|
|
}
|
|
}
|
|
}
|
|
|
|
static void revert_acfilter(WmallDecodeCtx *s, int tile_size)
|
|
{
|
|
int ich, icoef;
|
|
int pred;
|
|
int i, j;
|
|
int64_t *filter_coeffs = s->acfilter_coeffs;
|
|
int scaling = s->acfilter_scaling;
|
|
int order = s->acfilter_order;
|
|
|
|
for (ich = 0; ich < s->num_channels; ich++) {
|
|
int *prevvalues = s->acfilter_prevvalues[ich];
|
|
for (i = 0; i < order; i++) {
|
|
pred = 0;
|
|
for (j = 0; j < order; j++) {
|
|
if (i <= j)
|
|
pred += filter_coeffs[j] * prevvalues[j - i];
|
|
else
|
|
pred += s->channel_residues[ich][i - j - 1] * filter_coeffs[j];
|
|
}
|
|
pred >>= scaling;
|
|
s->channel_residues[ich][i] += pred;
|
|
}
|
|
for (i = order; i < tile_size; i++) {
|
|
pred = 0;
|
|
for (j = 0; j < order; j++)
|
|
pred += s->channel_residues[ich][i - j - 1] * filter_coeffs[j];
|
|
pred >>= scaling;
|
|
s->channel_residues[ich][i] += pred;
|
|
}
|
|
for (j = 0; j < order; j++)
|
|
prevvalues[j] = s->channel_residues[ich][tile_size - j - 1];
|
|
}
|
|
}
|
|
|
|
/**
|
|
*@brief Decode a single subframe (block).
|
|
*@param s codec context
|
|
*@return 0 on success, < 0 when decoding failed
|
|
*/
|
|
static int decode_subframe(WmallDecodeCtx *s)
|
|
{
|
|
int offset = s->samples_per_frame;
|
|
int subframe_len = s->samples_per_frame;
|
|
int i, j;
|
|
int total_samples = s->samples_per_frame * s->num_channels;
|
|
int rawpcm_tile;
|
|
int padding_zeroes;
|
|
|
|
s->subframe_offset = get_bits_count(&s->gb);
|
|
|
|
/** reset channel context and find the next block offset and size
|
|
== the next block of the channel with the smallest number of
|
|
decoded samples
|
|
*/
|
|
for (i = 0; i < s->num_channels; i++) {
|
|
s->channel[i].grouped = 0;
|
|
if (offset > s->channel[i].decoded_samples) {
|
|
offset = s->channel[i].decoded_samples;
|
|
subframe_len =
|
|
s->channel[i].subframe_len[s->channel[i].cur_subframe];
|
|
}
|
|
}
|
|
|
|
/** get a list of all channels that contain the estimated block */
|
|
s->channels_for_cur_subframe = 0;
|
|
for (i = 0; i < s->num_channels; i++) {
|
|
const int cur_subframe = s->channel[i].cur_subframe;
|
|
/** substract already processed samples */
|
|
total_samples -= s->channel[i].decoded_samples;
|
|
|
|
/** and count if there are multiple subframes that match our profile */
|
|
if (offset == s->channel[i].decoded_samples &&
|
|
subframe_len == s->channel[i].subframe_len[cur_subframe]) {
|
|
total_samples -= s->channel[i].subframe_len[cur_subframe];
|
|
s->channel[i].decoded_samples +=
|
|
s->channel[i].subframe_len[cur_subframe];
|
|
s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i;
|
|
++s->channels_for_cur_subframe;
|
|
}
|
|
}
|
|
|
|
/** check if the frame will be complete after processing the
|
|
estimated block */
|
|
if (!total_samples)
|
|
s->parsed_all_subframes = 1;
|
|
|
|
|
|
s->seekable_tile = get_bits1(&s->gb);
|
|
if(s->seekable_tile) {
|
|
clear_codec_buffers(s);
|
|
|
|
s->do_arith_coding = get_bits1(&s->gb);
|
|
if(s->do_arith_coding) {
|
|
dprintf(s->avctx, "do_arith_coding == 1");
|
|
abort();
|
|
}
|
|
s->do_ac_filter = get_bits1(&s->gb);
|
|
s->do_inter_ch_decorr = get_bits1(&s->gb);
|
|
s->do_mclms = get_bits1(&s->gb);
|
|
|
|
if(s->do_ac_filter)
|
|
decode_ac_filter(s);
|
|
|
|
if(s->do_mclms)
|
|
decode_mclms(s);
|
|
|
|
decode_cdlms(s);
|
|
s->movave_scaling = get_bits(&s->gb, 3);
|
|
s->quant_stepsize = get_bits(&s->gb, 8) + 1;
|
|
|
|
reset_codec(s);
|
|
}
|
|
|
|
rawpcm_tile = get_bits1(&s->gb);
|
|
|
|
for(i = 0; i < s->num_channels; i++) {
|
|
s->is_channel_coded[i] = 1;
|
|
}
|
|
|
|
if(!rawpcm_tile) {
|
|
|
|
for(i = 0; i < s->num_channels; i++) {
|
|
s->is_channel_coded[i] = get_bits1(&s->gb);
|
|
}
|
|
|
|
if(s->bV3RTM) {
|
|
// LPC
|
|
s->do_lpc = get_bits1(&s->gb);
|
|
if(s->do_lpc) {
|
|
decode_lpc(s);
|
|
}
|
|
} else {
|
|
s->do_lpc = 0;
|
|
}
|
|
}
|
|
|
|
|
|
if(get_bits1(&s->gb)) {
|
|
padding_zeroes = get_bits(&s->gb, 5);
|
|
} else {
|
|
padding_zeroes = 0;
|
|
}
|
|
|
|
if(rawpcm_tile) {
|
|
|
|
int bits = s->bits_per_sample - padding_zeroes;
|
|
dprintf(s->avctx, "RAWPCM %d bits per sample. total %d bits, remain=%d\n", bits,
|
|
bits * s->num_channels * subframe_len, get_bits_count(&s->gb));
|
|
for(i = 0; i < s->num_channels; i++) {
|
|
for(j = 0; j < subframe_len; j++) {
|
|
s->channel_coeffs[i][j] = get_sbits(&s->gb, bits);
|
|
// dprintf(s->avctx, "PCM[%d][%d] = 0x%04x\n", i, j, s->channel_coeffs[i][j]);
|
|
}
|
|
}
|
|
} else {
|
|
for(i = 0; i < s->num_channels; i++)
|
|
if(s->is_channel_coded[i]) {
|
|
decode_channel_residues(s, i, subframe_len);
|
|
if (s->seekable_tile)
|
|
use_high_update_speed(s, i);
|
|
else
|
|
use_normal_update_speed(s, i);
|
|
revert_cdlms(s, i, 0, subframe_len);
|
|
}
|
|
}
|
|
if (s->do_mclms)
|
|
revert_mclms(s, subframe_len);
|
|
if (s->do_inter_ch_decorr)
|
|
revert_inter_ch_decorr(s, subframe_len);
|
|
if(s->do_ac_filter)
|
|
revert_acfilter(s, subframe_len);
|
|
|
|
/* Dequantize */
|
|
if (s->quant_stepsize != 1)
|
|
for (i = 0; i < s->num_channels; i++)
|
|
for (j = 0; j < subframe_len; j++)
|
|
s->channel_residues[i][j] *= s->quant_stepsize;
|
|
|
|
// Write to proper output buffer depending on bit-depth
|
|
for (i = 0; i < subframe_len; i++)
|
|
for (j = 0; j < s->num_channels; j++) {
|
|
if (s->bits_per_sample == 16)
|
|
*s->samples_16++ = (int16_t) s->channel_residues[j][i];
|
|
else
|
|
*s->samples_32++ = s->channel_residues[j][i];
|
|
}
|
|
|
|
/** handled one subframe */
|
|
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) {
|
|
int c = s->channel_indexes_for_cur_subframe[i];
|
|
if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
++s->channel[c].cur_subframe;
|
|
}
|
|
num_logged_subframes++;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
*@brief Decode one WMA frame.
|
|
*@param s codec context
|
|
*@return 0 if the trailer bit indicates that this is the last frame,
|
|
* 1 if there are additional frames
|
|
*/
|
|
static int decode_frame(WmallDecodeCtx *s)
|
|
{
|
|
GetBitContext* gb = &s->gb;
|
|
int more_frames = 0;
|
|
int len = 0;
|
|
int i;
|
|
int buffer_len;
|
|
|
|
/** check for potential output buffer overflow */
|
|
if (s->bits_per_sample == 16)
|
|
buffer_len = s->samples_16_end - s->samples_16;
|
|
else
|
|
buffer_len = s->samples_32_end - s->samples_32;
|
|
if (s->num_channels * s->samples_per_frame > buffer_len) {
|
|
/** return an error if no frame could be decoded at all */
|
|
av_log(s->avctx, AV_LOG_ERROR,
|
|
"not enough space for the output samples\n");
|
|
s->packet_loss = 1;
|
|
return 0;
|
|
}
|
|
|
|
/** get frame length */
|
|
if (s->len_prefix)
|
|
len = get_bits(gb, s->log2_frame_size);
|
|
|
|
/** decode tile information */
|
|
if (decode_tilehdr(s)) {
|
|
s->packet_loss = 1;
|
|
return 0;
|
|
}
|
|
|
|
/** read drc info */
|
|
if (s->dynamic_range_compression) {
|
|
s->drc_gain = get_bits(gb, 8);
|
|
}
|
|
|
|
/** no idea what these are for, might be the number of samples
|
|
that need to be skipped at the beginning or end of a stream */
|
|
if (get_bits1(gb)) {
|
|
int skip;
|
|
|
|
/** usually true for the first frame */
|
|
if (get_bits1(gb)) {
|
|
skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
|
|
dprintf(s->avctx, "start skip: %i\n", skip);
|
|
}
|
|
|
|
/** sometimes true for the last frame */
|
|
if (get_bits1(gb)) {
|
|
skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
|
|
dprintf(s->avctx, "end skip: %i\n", skip);
|
|
}
|
|
|
|
}
|
|
|
|
/** reset subframe states */
|
|
s->parsed_all_subframes = 0;
|
|
for (i = 0; i < s->num_channels; i++) {
|
|
s->channel[i].decoded_samples = 0;
|
|
s->channel[i].cur_subframe = 0;
|
|
s->channel[i].reuse_sf = 0;
|
|
}
|
|
|
|
/** decode all subframes */
|
|
while (!s->parsed_all_subframes) {
|
|
if (decode_subframe(s) < 0) {
|
|
s->packet_loss = 1;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
dprintf(s->avctx, "Frame done\n");
|
|
|
|
if (s->skip_frame) {
|
|
s->skip_frame = 0;
|
|
}
|
|
|
|
if (s->len_prefix) {
|
|
if (len != (get_bits_count(gb) - s->frame_offset) + 2) {
|
|
/** FIXME: not sure if this is always an error */
|
|
av_log(s->avctx, AV_LOG_ERROR,
|
|
"frame[%i] would have to skip %i bits\n", s->frame_num,
|
|
len - (get_bits_count(gb) - s->frame_offset) - 1);
|
|
s->packet_loss = 1;
|
|
return 0;
|
|
}
|
|
|
|
/** skip the rest of the frame data */
|
|
skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1);
|
|
} else {
|
|
/*
|
|
while (get_bits_count(gb) < s->num_saved_bits && get_bits1(gb) == 0) {
|
|
dprintf(s->avctx, "skip1\n");
|
|
}
|
|
*/
|
|
}
|
|
|
|
/** decode trailer bit */
|
|
more_frames = get_bits1(gb);
|
|
++s->frame_num;
|
|
return more_frames;
|
|
}
|
|
|
|
/**
|
|
*@brief Calculate remaining input buffer length.
|
|
*@param s codec context
|
|
*@param gb bitstream reader context
|
|
*@return remaining size in bits
|
|
*/
|
|
static int remaining_bits(WmallDecodeCtx *s, GetBitContext *gb)
|
|
{
|
|
return s->buf_bit_size - get_bits_count(gb);
|
|
}
|
|
|
|
/**
|
|
*@brief Fill the bit reservoir with a (partial) frame.
|
|
*@param s codec context
|
|
*@param gb bitstream reader context
|
|
*@param len length of the partial frame
|
|
*@param append decides wether to reset the buffer or not
|
|
*/
|
|
static void save_bits(WmallDecodeCtx *s, GetBitContext* gb, int len,
|
|
int append)
|
|
{
|
|
int buflen;
|
|
|
|
/** when the frame data does not need to be concatenated, the input buffer
|
|
is resetted and additional bits from the previous frame are copyed
|
|
and skipped later so that a fast byte copy is possible */
|
|
|
|
if (!append) {
|
|
s->frame_offset = get_bits_count(gb) & 7;
|
|
s->num_saved_bits = s->frame_offset;
|
|
init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
|
|
}
|
|
|
|
buflen = (s->num_saved_bits + len + 8) >> 3;
|
|
|
|
if (len <= 0 || buflen > MAX_FRAMESIZE) {
|
|
av_log_ask_for_sample(s->avctx, "input buffer too small\n");
|
|
s->packet_loss = 1;
|
|
return;
|
|
}
|
|
|
|
s->num_saved_bits += len;
|
|
if (!append) {
|
|
avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3),
|
|
s->num_saved_bits);
|
|
} else {
|
|
int align = 8 - (get_bits_count(gb) & 7);
|
|
align = FFMIN(align, len);
|
|
put_bits(&s->pb, align, get_bits(gb, align));
|
|
len -= align;
|
|
avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len);
|
|
}
|
|
skip_bits_long(gb, len);
|
|
|
|
{
|
|
PutBitContext tmp = s->pb;
|
|
flush_put_bits(&tmp);
|
|
}
|
|
|
|
init_get_bits(&s->gb, s->frame_data, s->num_saved_bits);
|
|
skip_bits(&s->gb, s->frame_offset);
|
|
}
|
|
|
|
/**
|
|
*@brief Decode a single WMA packet.
|
|
*@param avctx codec context
|
|
*@param data the output buffer
|
|
*@param data_size number of bytes that were written to the output buffer
|
|
*@param avpkt input packet
|
|
*@return number of bytes that were read from the input buffer
|
|
*/
|
|
static int decode_packet(AVCodecContext *avctx,
|
|
void *data, int *data_size, AVPacket* avpkt)
|
|
{
|
|
WmallDecodeCtx *s = avctx->priv_data;
|
|
GetBitContext* gb = &s->pgb;
|
|
const uint8_t* buf = avpkt->data;
|
|
int buf_size = avpkt->size;
|
|
int num_bits_prev_frame;
|
|
int packet_sequence_number;
|
|
int seekable_frame_in_packet;
|
|
int spliced_packet;
|
|
|
|
if (s->bits_per_sample == 16) {
|
|
s->samples_16 = (int16_t *) data;
|
|
s->samples_16_end = (int16_t *) ((int8_t*)data + *data_size);
|
|
} else {
|
|
s->samples_32 = (void *) data;
|
|
s->samples_32_end = (void *) ((int8_t*)data + *data_size);
|
|
}
|
|
*data_size = 0;
|
|
|
|
if (s->packet_done || s->packet_loss) {
|
|
int seekable_frame_in_packet, spliced_packet;
|
|
s->packet_done = 0;
|
|
|
|
/** sanity check for the buffer length */
|
|
if (buf_size < avctx->block_align)
|
|
return 0;
|
|
|
|
s->next_packet_start = buf_size - avctx->block_align;
|
|
buf_size = avctx->block_align;
|
|
s->buf_bit_size = buf_size << 3;
|
|
|
|
/** parse packet header */
|
|
init_get_bits(gb, buf, s->buf_bit_size);
|
|
packet_sequence_number = get_bits(gb, 4);
|
|
seekable_frame_in_packet = get_bits1(gb);
|
|
spliced_packet = get_bits1(gb);
|
|
|
|
/** get number of bits that need to be added to the previous frame */
|
|
num_bits_prev_frame = get_bits(gb, s->log2_frame_size);
|
|
|
|
/** check for packet loss */
|
|
if (!s->packet_loss &&
|
|
((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) {
|
|
s->packet_loss = 1;
|
|
av_log(avctx, AV_LOG_ERROR, "Packet loss detected! seq %x vs %x\n",
|
|
s->packet_sequence_number, packet_sequence_number);
|
|
}
|
|
s->packet_sequence_number = packet_sequence_number;
|
|
|
|
if (num_bits_prev_frame > 0) {
|
|
int remaining_packet_bits = s->buf_bit_size - get_bits_count(gb);
|
|
if (num_bits_prev_frame >= remaining_packet_bits) {
|
|
num_bits_prev_frame = remaining_packet_bits;
|
|
s->packet_done = 1;
|
|
}
|
|
|
|
/** append the previous frame data to the remaining data from the
|
|
previous packet to create a full frame */
|
|
save_bits(s, gb, num_bits_prev_frame, 1);
|
|
|
|
/** decode the cross packet frame if it is valid */
|
|
if (!s->packet_loss)
|
|
decode_frame(s);
|
|
} else if (s->num_saved_bits - s->frame_offset) {
|
|
dprintf(avctx, "ignoring %x previously saved bits\n",
|
|
s->num_saved_bits - s->frame_offset);
|
|
}
|
|
|
|
if (s->packet_loss) {
|
|
/** reset number of saved bits so that the decoder
|
|
does not start to decode incomplete frames in the
|
|
s->len_prefix == 0 case */
|
|
s->num_saved_bits = 0;
|
|
s->packet_loss = 0;
|
|
}
|
|
|
|
} else {
|
|
int frame_size;
|
|
|
|
s->buf_bit_size = (avpkt->size - s->next_packet_start) << 3;
|
|
init_get_bits(gb, avpkt->data, s->buf_bit_size);
|
|
skip_bits(gb, s->packet_offset);
|
|
|
|
if (s->len_prefix && remaining_bits(s, gb) > s->log2_frame_size &&
|
|
(frame_size = show_bits(gb, s->log2_frame_size)) &&
|
|
frame_size <= remaining_bits(s, gb)) {
|
|
save_bits(s, gb, frame_size, 0);
|
|
s->packet_done = !decode_frame(s);
|
|
} else if (!s->len_prefix
|
|
&& s->num_saved_bits > get_bits_count(&s->gb)) {
|
|
/** when the frames do not have a length prefix, we don't know
|
|
the compressed length of the individual frames
|
|
however, we know what part of a new packet belongs to the
|
|
previous frame
|
|
therefore we save the incoming packet first, then we append
|
|
the "previous frame" data from the next packet so that
|
|
we get a buffer that only contains full frames */
|
|
s->packet_done = !decode_frame(s);
|
|
} else {
|
|
s->packet_done = 1;
|
|
}
|
|
}
|
|
|
|
if (s->packet_done && !s->packet_loss &&
|
|
remaining_bits(s, gb) > 0) {
|
|
/** save the rest of the data so that it can be decoded
|
|
with the next packet */
|
|
save_bits(s, gb, remaining_bits(s, gb), 0);
|
|
}
|
|
|
|
if (s->bits_per_sample == 16)
|
|
*data_size = (int8_t *)s->samples_16 - (int8_t *)data;
|
|
else
|
|
*data_size = (int8_t *)s->samples_32 - (int8_t *)data;
|
|
s->packet_offset = get_bits_count(gb) & 7;
|
|
|
|
return (s->packet_loss) ? AVERROR_INVALIDDATA : get_bits_count(gb) >> 3;
|
|
}
|
|
|
|
/**
|
|
*@brief Clear decoder buffers (for seeking).
|
|
*@param avctx codec context
|
|
*/
|
|
static void flush(AVCodecContext *avctx)
|
|
{
|
|
WmallDecodeCtx *s = avctx->priv_data;
|
|
int i;
|
|
/** reset output buffer as a part of it is used during the windowing of a
|
|
new frame */
|
|
for (i = 0; i < s->num_channels; i++)
|
|
memset(s->channel[i].out, 0, s->samples_per_frame *
|
|
sizeof(*s->channel[i].out));
|
|
s->packet_loss = 1;
|
|
}
|
|
|
|
|
|
/**
|
|
*@brief wmall decoder
|
|
*/
|
|
AVCodec ff_wmalossless_decoder = {
|
|
.name = "wmalossless",
|
|
.type = AVMEDIA_TYPE_AUDIO,
|
|
.id = CODEC_ID_WMALOSSLESS,
|
|
.priv_data_size = sizeof(WmallDecodeCtx),
|
|
.init = decode_init,
|
|
.close = decode_end,
|
|
.decode = decode_packet,
|
|
.flush = flush,
|
|
.capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_EXPERIMENTAL,
|
|
.long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Lossless"),
|
|
};
|