1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavcodec/iff.c
ami_stuff 86b6e49d92 iff: check for pbm tag
more robust

Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
2012-03-12 05:09:37 +01:00

689 lines
27 KiB
C

/*
* IFF PBM/ILBM bitmap decoder
* Copyright (c) 2010 Peter Ross <pross@xvid.org>
* Copyright (c) 2010 Sebastian Vater <cdgs.basty@googlemail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* IFF PBM/ILBM bitmap decoder
*/
#include "libavutil/imgutils.h"
#include "bytestream.h"
#include "avcodec.h"
#include "get_bits.h"
// TODO: masking bits
typedef enum {
MASK_NONE,
MASK_HAS_MASK,
MASK_HAS_TRANSPARENT_COLOR,
MASK_LASSO
} mask_type;
typedef struct {
AVFrame frame;
int planesize;
uint8_t * planebuf;
uint8_t * ham_buf; ///< temporary buffer for planar to chunky conversation
uint32_t *ham_palbuf; ///< HAM decode table
uint32_t *mask_buf; ///< temporary buffer for palette indices
uint32_t *mask_palbuf; ///< masking palette table
unsigned compression; ///< delta compression method used
unsigned bpp; ///< bits per plane to decode (differs from bits_per_coded_sample if HAM)
unsigned ham; ///< 0 if non-HAM or number of hold bits (6 for bpp > 6, 4 otherwise)
unsigned flags; ///< 1 for EHB, 0 is no extra half darkening
unsigned transparency; ///< TODO: transparency color index in palette
unsigned masking; ///< TODO: masking method used
int init; // 1 if buffer and palette data already initialized, 0 otherwise
} IffContext;
#define LUT8_PART(plane, v) \
AV_LE2NE64C(UINT64_C(0x0000000)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1000000)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0010000)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1010000)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0000100)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1000100)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0010100)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1010100)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0000001)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1000001)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0010001)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1010001)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0000101)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1000101)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0010101)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1010101)<<32 | v) << plane
#define LUT8(plane) { \
LUT8_PART(plane, 0x0000000), \
LUT8_PART(plane, 0x1000000), \
LUT8_PART(plane, 0x0010000), \
LUT8_PART(plane, 0x1010000), \
LUT8_PART(plane, 0x0000100), \
LUT8_PART(plane, 0x1000100), \
LUT8_PART(plane, 0x0010100), \
LUT8_PART(plane, 0x1010100), \
LUT8_PART(plane, 0x0000001), \
LUT8_PART(plane, 0x1000001), \
LUT8_PART(plane, 0x0010001), \
LUT8_PART(plane, 0x1010001), \
LUT8_PART(plane, 0x0000101), \
LUT8_PART(plane, 0x1000101), \
LUT8_PART(plane, 0x0010101), \
LUT8_PART(plane, 0x1010101), \
}
// 8 planes * 8-bit mask
static const uint64_t plane8_lut[8][256] = {
LUT8(0), LUT8(1), LUT8(2), LUT8(3),
LUT8(4), LUT8(5), LUT8(6), LUT8(7),
};
#define LUT32(plane) { \
0, 0, 0, 0, \
0, 0, 0, 1 << plane, \
0, 0, 1 << plane, 0, \
0, 0, 1 << plane, 1 << plane, \
0, 1 << plane, 0, 0, \
0, 1 << plane, 0, 1 << plane, \
0, 1 << plane, 1 << plane, 0, \
0, 1 << plane, 1 << plane, 1 << plane, \
1 << plane, 0, 0, 0, \
1 << plane, 0, 0, 1 << plane, \
1 << plane, 0, 1 << plane, 0, \
1 << plane, 0, 1 << plane, 1 << plane, \
1 << plane, 1 << plane, 0, 0, \
1 << plane, 1 << plane, 0, 1 << plane, \
1 << plane, 1 << plane, 1 << plane, 0, \
1 << plane, 1 << plane, 1 << plane, 1 << plane, \
}
// 32 planes * 4-bit mask * 4 lookup tables each
static const uint32_t plane32_lut[32][16*4] = {
LUT32( 0), LUT32( 1), LUT32( 2), LUT32( 3),
LUT32( 4), LUT32( 5), LUT32( 6), LUT32( 7),
LUT32( 8), LUT32( 9), LUT32(10), LUT32(11),
LUT32(12), LUT32(13), LUT32(14), LUT32(15),
LUT32(16), LUT32(17), LUT32(18), LUT32(19),
LUT32(20), LUT32(21), LUT32(22), LUT32(23),
LUT32(24), LUT32(25), LUT32(26), LUT32(27),
LUT32(28), LUT32(29), LUT32(30), LUT32(31),
};
// Gray to RGB, required for palette table of grayscale images with bpp < 8
static av_always_inline uint32_t gray2rgb(const uint32_t x) {
return x << 16 | x << 8 | x;
}
/**
* Convert CMAP buffer (stored in extradata) to lavc palette format
*/
static int ff_cmap_read_palette(AVCodecContext *avctx, uint32_t *pal)
{
IffContext *s = avctx->priv_data;
int count, i;
const uint8_t *const palette = avctx->extradata + AV_RB16(avctx->extradata);
int palette_size = avctx->extradata_size - AV_RB16(avctx->extradata);
if (avctx->bits_per_coded_sample > 8) {
av_log(avctx, AV_LOG_ERROR, "bit_per_coded_sample > 8 not supported\n");
return AVERROR_INVALIDDATA;
}
count = 1 << avctx->bits_per_coded_sample;
// If extradata is smaller than actually needed, fill the remaining with black.
count = FFMIN(palette_size / 3, count);
if (count) {
for (i=0; i < count; i++) {
pal[i] = 0xFF000000 | AV_RB24(palette + i*3);
}
if (s->flags && count >= 32) { // EHB
for (i = 0; i < 32; i++)
pal[i + 32] = 0xFF000000 | (AV_RB24(palette + i*3) & 0xFEFEFE) >> 1;
count = FFMAX(count, 64);
}
} else { // Create gray-scale color palette for bps < 8
count = 1 << avctx->bits_per_coded_sample;
for (i=0; i < count; i++) {
pal[i] = 0xFF000000 | gray2rgb((i * 255) >> avctx->bits_per_coded_sample);
}
}
if (s->masking == MASK_HAS_MASK) {
memcpy(pal + (1 << avctx->bits_per_coded_sample), pal, count * 4);
for (i = 0; i < count; i++)
pal[i] &= 0xFFFFFF;
} else if (s->masking == MASK_HAS_TRANSPARENT_COLOR &&
s->transparency < 1 << avctx->bits_per_coded_sample)
pal[s->transparency] &= 0xFFFFFF;
return 0;
}
/**
* Extracts the IFF extra context and updates internal
* decoder structures.
*
* @param avctx the AVCodecContext where to extract extra context to
* @param avpkt the AVPacket to extract extra context from or NULL to use avctx
* @return 0 in case of success, a negative error code otherwise
*/
static int extract_header(AVCodecContext *const avctx,
const AVPacket *const avpkt) {
const uint8_t *buf;
unsigned buf_size;
IffContext *s = avctx->priv_data;
int palette_size = avctx->extradata_size - AV_RB16(avctx->extradata);
if (avpkt) {
int image_size;
if (avpkt->size < 2)
return AVERROR_INVALIDDATA;
image_size = avpkt->size - AV_RB16(avpkt->data);
buf = avpkt->data;
buf_size = bytestream_get_be16(&buf);
if (buf_size <= 1 || image_size <= 1) {
av_log(avctx, AV_LOG_ERROR,
"Invalid image size received: %u -> image data offset: %d\n",
buf_size, image_size);
return AVERROR_INVALIDDATA;
}
} else {
if (avctx->extradata_size < 2)
return AVERROR_INVALIDDATA;
buf = avctx->extradata;
buf_size = bytestream_get_be16(&buf);
if (buf_size <= 1 || palette_size < 0) {
av_log(avctx, AV_LOG_ERROR,
"Invalid palette size received: %u -> palette data offset: %d\n",
buf_size, palette_size);
return AVERROR_INVALIDDATA;
}
}
if (buf_size > 8) {
s->compression = bytestream_get_byte(&buf);
s->bpp = bytestream_get_byte(&buf);
s->ham = bytestream_get_byte(&buf);
s->flags = bytestream_get_byte(&buf);
s->transparency = bytestream_get_be16(&buf);
s->masking = bytestream_get_byte(&buf);
if (s->masking == MASK_HAS_MASK) {
if (s->bpp >= 8) {
avctx->pix_fmt = PIX_FMT_RGB32;
av_freep(&s->mask_buf);
av_freep(&s->mask_palbuf);
s->mask_buf = av_malloc((s->planesize * 32) + FF_INPUT_BUFFER_PADDING_SIZE);
if (!s->mask_buf)
return AVERROR(ENOMEM);
s->mask_palbuf = av_malloc((2 << s->bpp) * sizeof(uint32_t) + FF_INPUT_BUFFER_PADDING_SIZE);
if (!s->mask_palbuf) {
av_freep(&s->mask_buf);
return AVERROR(ENOMEM);
}
}
s->bpp++;
} else if (s->masking != MASK_NONE && s->masking != MASK_HAS_TRANSPARENT_COLOR) {
av_log(avctx, AV_LOG_ERROR, "Masking not supported\n");
return AVERROR_PATCHWELCOME;
}
if (!s->bpp || s->bpp > 32) {
av_log(avctx, AV_LOG_ERROR, "Invalid number of bitplanes: %u\n", s->bpp);
return AVERROR_INVALIDDATA;
} else if (s->ham >= 8) {
av_log(avctx, AV_LOG_ERROR, "Invalid number of hold bits for HAM: %u\n", s->ham);
return AVERROR_INVALIDDATA;
}
av_freep(&s->ham_buf);
av_freep(&s->ham_palbuf);
if (s->ham) {
int i, count = FFMIN(palette_size / 3, 1 << s->ham);
int ham_count;
const uint8_t *const palette = avctx->extradata + AV_RB16(avctx->extradata);
s->ham_buf = av_malloc((s->planesize * 8) + FF_INPUT_BUFFER_PADDING_SIZE);
if (!s->ham_buf)
return AVERROR(ENOMEM);
ham_count = 8 * (1 << s->ham);
s->ham_palbuf = av_malloc((ham_count << !!(s->masking == MASK_HAS_MASK)) * sizeof (uint32_t) + FF_INPUT_BUFFER_PADDING_SIZE);
if (!s->ham_palbuf) {
av_freep(&s->ham_buf);
return AVERROR(ENOMEM);
}
if (count) { // HAM with color palette attached
// prefill with black and palette and set HAM take direct value mask to zero
memset(s->ham_palbuf, 0, (1 << s->ham) * 2 * sizeof (uint32_t));
for (i=0; i < count; i++) {
s->ham_palbuf[i*2+1] = AV_RL24(palette + i*3);
}
count = 1 << s->ham;
} else { // HAM with grayscale color palette
count = 1 << s->ham;
for (i=0; i < count; i++) {
s->ham_palbuf[i*2] = 0; // take direct color value from palette
s->ham_palbuf[i*2+1] = av_le2ne32(gray2rgb((i * 255) >> s->ham));
}
}
for (i=0; i < count; i++) {
uint32_t tmp = i << (8 - s->ham);
tmp |= tmp >> s->ham;
s->ham_palbuf[(i+count)*2] = 0x00FFFF; // just modify blue color component
s->ham_palbuf[(i+count*2)*2] = 0xFFFF00; // just modify red color component
s->ham_palbuf[(i+count*3)*2] = 0xFF00FF; // just modify green color component
s->ham_palbuf[(i+count)*2+1] = tmp << 16;
s->ham_palbuf[(i+count*2)*2+1] = tmp;
s->ham_palbuf[(i+count*3)*2+1] = tmp << 8;
}
if (s->masking == MASK_HAS_MASK) {
for (i = 0; i < ham_count; i++)
s->ham_palbuf[(1 << s->bpp) + i] = s->ham_palbuf[i] | 0xFF000000;
}
}
}
return 0;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
IffContext *s = avctx->priv_data;
int err;
if (avctx->bits_per_coded_sample <= 8) {
int palette_size = avctx->extradata_size - AV_RB16(avctx->extradata);
avctx->pix_fmt = (avctx->bits_per_coded_sample < 8) ||
(avctx->extradata_size >= 2 && palette_size) ? PIX_FMT_PAL8 : PIX_FMT_GRAY8;
} else if (avctx->bits_per_coded_sample <= 32) {
if (avctx->codec_tag != MKTAG('D','E','E','P'))
avctx->pix_fmt = PIX_FMT_BGR32;
} else {
return AVERROR_INVALIDDATA;
}
if ((err = av_image_check_size(avctx->width, avctx->height, 0, avctx)))
return err;
s->planesize = FFALIGN(avctx->width, 16) >> 3; // Align plane size in bits to word-boundary
s->planebuf = av_malloc(s->planesize + FF_INPUT_BUFFER_PADDING_SIZE);
if (!s->planebuf)
return AVERROR(ENOMEM);
s->bpp = avctx->bits_per_coded_sample;
avcodec_get_frame_defaults(&s->frame);
if ((err = extract_header(avctx, NULL)) < 0)
return err;
s->frame.reference = 3;
return 0;
}
/**
* Decode interleaved plane buffer up to 8bpp
* @param dst Destination buffer
* @param buf Source buffer
* @param buf_size
* @param plane plane number to decode as
*/
static void decodeplane8(uint8_t *dst, const uint8_t *buf, int buf_size, int plane)
{
const uint64_t *lut = plane8_lut[plane];
do {
uint64_t v = AV_RN64A(dst) | lut[*buf++];
AV_WN64A(dst, v);
dst += 8;
} while (--buf_size);
}
/**
* Decode interleaved plane buffer up to 24bpp
* @param dst Destination buffer
* @param buf Source buffer
* @param buf_size
* @param plane plane number to decode as
*/
static void decodeplane32(uint32_t *dst, const uint8_t *buf, int buf_size, int plane)
{
const uint32_t *lut = plane32_lut[plane];
do {
unsigned mask = (*buf >> 2) & ~3;
dst[0] |= lut[mask++];
dst[1] |= lut[mask++];
dst[2] |= lut[mask++];
dst[3] |= lut[mask];
mask = (*buf++ << 2) & 0x3F;
dst[4] |= lut[mask++];
dst[5] |= lut[mask++];
dst[6] |= lut[mask++];
dst[7] |= lut[mask];
dst += 8;
} while (--buf_size);
}
#define DECODE_HAM_PLANE32(x) \
first = buf[x] << 1; \
second = buf[(x)+1] << 1; \
delta &= pal[first++]; \
delta |= pal[first]; \
dst[x] = delta; \
delta &= pal[second++]; \
delta |= pal[second]; \
dst[(x)+1] = delta
/**
* Converts one line of HAM6/8-encoded chunky buffer to 24bpp.
*
* @param dst the destination 24bpp buffer
* @param buf the source 8bpp chunky buffer
* @param pal the HAM decode table
* @param buf_size the plane size in bytes
*/
static void decode_ham_plane32(uint32_t *dst, const uint8_t *buf,
const uint32_t *const pal, unsigned buf_size)
{
uint32_t delta = 0;
do {
uint32_t first, second;
DECODE_HAM_PLANE32(0);
DECODE_HAM_PLANE32(2);
DECODE_HAM_PLANE32(4);
DECODE_HAM_PLANE32(6);
buf += 8;
dst += 8;
} while (--buf_size);
}
static void lookup_pal_indicies(uint32_t *dst, const uint32_t *buf,
const uint32_t *const pal, unsigned width)
{
do {
*dst++ = pal[*buf++];
} while (--width);
}
/**
* Decode one complete byterun1 encoded line.
*
* @param dst the destination buffer where to store decompressed bitstream
* @param dst_size the destination plane size in bytes
* @param buf the source byterun1 compressed bitstream
* @param buf_end the EOF of source byterun1 compressed bitstream
* @return number of consumed bytes in byterun1 compressed bitstream
*/
static int decode_byterun(uint8_t *dst, int dst_size,
const uint8_t *buf, const uint8_t *const buf_end) {
const uint8_t *const buf_start = buf;
unsigned x;
for (x = 0; x < dst_size && buf < buf_end;) {
unsigned length;
const int8_t value = *buf++;
if (value >= 0) {
length = value + 1;
memcpy(dst + x, buf, FFMIN3(length, dst_size - x, buf_end - buf));
buf += length;
} else if (value > -128) {
length = -value + 1;
memset(dst + x, *buf++, FFMIN(length, dst_size - x));
} else { // noop
continue;
}
x += length;
}
return buf - buf_start;
}
static int decode_frame_ilbm(AVCodecContext *avctx,
void *data, int *data_size,
AVPacket *avpkt)
{
IffContext *s = avctx->priv_data;
const uint8_t *buf = avpkt->size >= 2 ? avpkt->data + AV_RB16(avpkt->data) : NULL;
const int buf_size = avpkt->size >= 2 ? avpkt->size - AV_RB16(avpkt->data) : 0;
const uint8_t *buf_end = buf+buf_size;
int y, plane, res;
if ((res = extract_header(avctx, avpkt)) < 0)
return res;
if (s->init) {
if ((res = avctx->reget_buffer(avctx, &s->frame)) < 0) {
av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
return res;
}
} else if ((res = avctx->get_buffer(avctx, &s->frame)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return res;
} else if (avctx->bits_per_coded_sample <= 8 && avctx->pix_fmt != PIX_FMT_GRAY8) {
if ((res = ff_cmap_read_palette(avctx, (uint32_t*)s->frame.data[1])) < 0)
return res;
}
s->init = 1;
if (avctx->codec_tag == MKTAG('A','C','B','M')) {
if (avctx->pix_fmt == PIX_FMT_PAL8 || avctx->pix_fmt == PIX_FMT_GRAY8) {
memset(s->frame.data[0], 0, avctx->height * s->frame.linesize[0]);
for (plane = 0; plane < s->bpp; plane++) {
for(y = 0; y < avctx->height && buf < buf_end; y++ ) {
uint8_t *row = &s->frame.data[0][ y*s->frame.linesize[0] ];
decodeplane8(row, buf, FFMIN(s->planesize, buf_end - buf), plane);
buf += s->planesize;
}
}
} else if (s->ham) { // HAM to PIX_FMT_BGR32
memset(s->frame.data[0], 0, avctx->height * s->frame.linesize[0]);
for(y = 0; y < avctx->height; y++) {
uint8_t *row = &s->frame.data[0][y * s->frame.linesize[0]];
memset(s->ham_buf, 0, s->planesize * 8);
for (plane = 0; plane < s->bpp; plane++) {
const uint8_t * start = buf + (plane * avctx->height + y) * s->planesize;
if (start >= buf_end)
break;
decodeplane8(s->ham_buf, start, FFMIN(s->planesize, buf_end - start), plane);
}
decode_ham_plane32((uint32_t *) row, s->ham_buf, s->ham_palbuf, s->planesize);
}
}
} else if (avctx->codec_tag == MKTAG('D','E','E','P')) {
int raw_width = avctx->width * (av_get_bits_per_pixel(&av_pix_fmt_descriptors[avctx->pix_fmt]) >> 3);
for(y = 0; y < avctx->height && buf < buf_end; y++ ) {
uint8_t *row = &s->frame.data[0][y * s->frame.linesize[0]];
memcpy(row, buf, FFMIN(raw_width, buf_end - buf));
buf += raw_width;
}
} else if (avctx->codec_tag == MKTAG('I','L','B','M')) { // interleaved
if (avctx->pix_fmt == PIX_FMT_PAL8 || avctx->pix_fmt == PIX_FMT_GRAY8) {
for(y = 0; y < avctx->height; y++ ) {
uint8_t *row = &s->frame.data[0][ y*s->frame.linesize[0] ];
memset(row, 0, avctx->width);
for (plane = 0; plane < s->bpp && buf < buf_end; plane++) {
decodeplane8(row, buf, FFMIN(s->planesize, buf_end - buf), plane);
buf += s->planesize;
}
}
} else if (s->ham) { // HAM to PIX_FMT_BGR32
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &s->frame.data[0][ y*s->frame.linesize[0] ];
memset(s->ham_buf, 0, s->planesize * 8);
for (plane = 0; plane < s->bpp && buf < buf_end; plane++) {
decodeplane8(s->ham_buf, buf, FFMIN(s->planesize, buf_end - buf), plane);
buf += s->planesize;
}
decode_ham_plane32((uint32_t *) row, s->ham_buf, s->ham_palbuf, s->planesize);
}
} else { // PIX_FMT_BGR32
for(y = 0; y < avctx->height; y++ ) {
uint8_t *row = &s->frame.data[0][y*s->frame.linesize[0]];
memset(row, 0, avctx->width << 2);
for (plane = 0; plane < s->bpp && buf < buf_end; plane++) {
decodeplane32((uint32_t *) row, buf, FFMIN(s->planesize, buf_end - buf), plane);
buf += s->planesize;
}
}
}
} else if (avctx->codec_tag == MKTAG('P','B','M',' ')) { // IFF-PBM
if (avctx->pix_fmt == PIX_FMT_PAL8 || avctx->pix_fmt == PIX_FMT_GRAY8) {
for(y = 0; y < avctx->height; y++ ) {
uint8_t *row = &s->frame.data[0][y * s->frame.linesize[0]];
memcpy(row, buf, FFMIN(avctx->width, buf_end - buf));
buf += avctx->width + (avctx->width % 2); // padding if odd
}
} else { // IFF-PBM: HAM to PIX_FMT_BGR32
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &s->frame.data[0][ y*s->frame.linesize[0] ];
memcpy(s->ham_buf, buf, FFMIN(avctx->width, buf_end - buf));
buf += avctx->width + (avctx->width & 1); // padding if odd
decode_ham_plane32((uint32_t *) row, s->ham_buf, s->ham_palbuf, s->planesize);
}
}
}
*data_size = sizeof(AVFrame);
*(AVFrame*)data = s->frame;
return buf_size;
}
static int decode_frame_byterun1(AVCodecContext *avctx,
void *data, int *data_size,
AVPacket *avpkt)
{
IffContext *s = avctx->priv_data;
const uint8_t *buf = avpkt->size >= 2 ? avpkt->data + AV_RB16(avpkt->data) : NULL;
const int buf_size = avpkt->size >= 2 ? avpkt->size - AV_RB16(avpkt->data) : 0;
const uint8_t *buf_end = buf+buf_size;
int y, plane, res;
if ((res = extract_header(avctx, avpkt)) < 0)
return res;
if (s->init) {
if ((res = avctx->reget_buffer(avctx, &s->frame)) < 0) {
av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
return res;
}
} else if ((res = avctx->get_buffer(avctx, &s->frame)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return res;
} else if (avctx->pix_fmt == PIX_FMT_PAL8) {
if ((res = ff_cmap_read_palette(avctx, (uint32_t*)s->frame.data[1])) < 0)
return res;
} else if (avctx->pix_fmt == PIX_FMT_RGB32 && avctx->bits_per_coded_sample <= 8) {
if ((res = ff_cmap_read_palette(avctx, s->mask_palbuf)) < 0)
return res;
}
s->init = 1;
if (avctx->codec_tag == MKTAG('I','L','B','M')) { //interleaved
if (avctx->pix_fmt == PIX_FMT_PAL8 || avctx->pix_fmt == PIX_FMT_GRAY8) {
for(y = 0; y < avctx->height ; y++ ) {
uint8_t *row = &s->frame.data[0][ y*s->frame.linesize[0] ];
memset(row, 0, avctx->width);
for (plane = 0; plane < s->bpp; plane++) {
buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end);
decodeplane8(row, s->planebuf, s->planesize, plane);
}
}
} else if (avctx->bits_per_coded_sample <= 8) { //8-bit (+ mask) to PIX_FMT_BGR32
for (y = 0; y < avctx->height ; y++ ) {
uint8_t *row = &s->frame.data[0][y*s->frame.linesize[0]];
memset(s->mask_buf, 0, avctx->width * sizeof(uint32_t));
for (plane = 0; plane < s->bpp; plane++) {
buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end);
decodeplane32(s->mask_buf, s->planebuf, s->planesize, plane);
}
lookup_pal_indicies((uint32_t *) row, s->mask_buf, s->mask_palbuf, avctx->width);
}
} else if (s->ham) { // HAM to PIX_FMT_BGR32
for (y = 0; y < avctx->height ; y++) {
uint8_t *row = &s->frame.data[0][y*s->frame.linesize[0]];
memset(s->ham_buf, 0, s->planesize * 8);
for (plane = 0; plane < s->bpp; plane++) {
buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end);
decodeplane8(s->ham_buf, s->planebuf, s->planesize, plane);
}
decode_ham_plane32((uint32_t *) row, s->ham_buf, s->ham_palbuf, s->planesize);
}
} else { //PIX_FMT_BGR32
for(y = 0; y < avctx->height ; y++ ) {
uint8_t *row = &s->frame.data[0][y*s->frame.linesize[0]];
memset(row, 0, avctx->width << 2);
for (plane = 0; plane < s->bpp; plane++) {
buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end);
decodeplane32((uint32_t *) row, s->planebuf, s->planesize, plane);
}
}
}
} else if (avctx->codec_tag == MKTAG('P','B','M',' ')) { // IFF-PBM
if (avctx->pix_fmt == PIX_FMT_PAL8 || avctx->pix_fmt == PIX_FMT_GRAY8) {
for(y = 0; y < avctx->height ; y++ ) {
uint8_t *row = &s->frame.data[0][y*s->frame.linesize[0]];
buf += decode_byterun(row, avctx->width, buf, buf_end);
}
} else { // IFF-PBM: HAM to PIX_FMT_BGR32
for (y = 0; y < avctx->height ; y++) {
uint8_t *row = &s->frame.data[0][y*s->frame.linesize[0]];
buf += decode_byterun(s->ham_buf, avctx->width, buf, buf_end);
decode_ham_plane32((uint32_t *) row, s->ham_buf, s->ham_palbuf, s->planesize);
}
}
}
*data_size = sizeof(AVFrame);
*(AVFrame*)data = s->frame;
return buf_size;
}
static av_cold int decode_end(AVCodecContext *avctx)
{
IffContext *s = avctx->priv_data;
if (s->frame.data[0])
avctx->release_buffer(avctx, &s->frame);
av_freep(&s->planebuf);
av_freep(&s->ham_buf);
av_freep(&s->ham_palbuf);
return 0;
}
AVCodec ff_iff_ilbm_decoder = {
.name = "iff_ilbm",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_IFF_ILBM,
.priv_data_size = sizeof(IffContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame_ilbm,
.capabilities = CODEC_CAP_DR1,
.long_name = NULL_IF_CONFIG_SMALL("IFF ILBM"),
};
AVCodec ff_iff_byterun1_decoder = {
.name = "iff_byterun1",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_IFF_BYTERUN1,
.priv_data_size = sizeof(IffContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame_byterun1,
.capabilities = CODEC_CAP_DR1,
.long_name = NULL_IF_CONFIG_SMALL("IFF ByteRun1"),
};