1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavfilter/vf_remap.c
Daniel Oberhoff a75d805e6b avfilter/vf_remap: add slice threading
Signed-off-by: Daniel Oberhoff <daniel@danieloberhoff.de>
Signed-off-by: Paul B Mahol <onemda@gmail.com>
2018-09-09 19:57:14 +02:00

460 lines
15 KiB
C

/*
* Copyright (c) 2016 Floris Sluiter
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Pixel remap filter
* This filter copies pixel by pixel a source frame to a target frame.
* It remaps the pixels to a new x,y destination based on two files ymap/xmap.
* Map files are passed as a parameter and are in PGM format (P2 or P5),
* where the values are y(rows)/x(cols) coordinates of the source_frame.
* The *target* frame dimension is based on mapfile dimensions: specified in the
* header of the mapfile and reflected in the number of datavalues.
* Dimensions of ymap and xmap must be equal. Datavalues must be positive or zero.
* Any datavalue in the ymap or xmap which value is higher
* then the *source* frame height or width is silently ignored, leaving a
* blank/chromakey pixel. This can safely be used as a feature to create overlays.
*
* Algorithm digest:
* Target_frame[y][x] = Source_frame[ ymap[y][x] ][ [xmap[y][x] ];
*/
#include "libavutil/imgutils.h"
#include "libavutil/pixdesc.h"
#include "libavutil/opt.h"
#include "avfilter.h"
#include "formats.h"
#include "framesync.h"
#include "internal.h"
#include "video.h"
typedef struct RemapContext {
const AVClass *class;
int nb_planes;
int nb_components;
int step;
FFFrameSync fs;
int (*remap_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
} RemapContext;
#define OFFSET(x) offsetof(RemapContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption remap_options[] = {
{ NULL }
};
AVFILTER_DEFINE_CLASS(remap);
typedef struct ThreadData {
AVFrame *in, *xin, *yin, *out;
int nb_planes;
int nb_components;
int step;
} ThreadData;
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR, AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12,
AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48,
AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat map_fmts[] = {
AV_PIX_FMT_GRAY16,
AV_PIX_FMT_NONE
};
AVFilterFormats *pix_formats = NULL, *map_formats = NULL;
int ret;
if (!(pix_formats = ff_make_format_list(pix_fmts)) ||
!(map_formats = ff_make_format_list(map_fmts))) {
ret = AVERROR(ENOMEM);
goto fail;
}
if ((ret = ff_formats_ref(pix_formats, &ctx->inputs[0]->out_formats)) < 0 ||
(ret = ff_formats_ref(map_formats, &ctx->inputs[1]->out_formats)) < 0 ||
(ret = ff_formats_ref(map_formats, &ctx->inputs[2]->out_formats)) < 0 ||
(ret = ff_formats_ref(pix_formats, &ctx->outputs[0]->in_formats)) < 0)
goto fail;
return 0;
fail:
if (pix_formats)
av_freep(&pix_formats->formats);
av_freep(&pix_formats);
if (map_formats)
av_freep(&map_formats->formats);
av_freep(&map_formats);
return ret;
}
/**
* remap_planar algorithm expects planes of same size
* pixels are copied from source to target using :
* Target_frame[y][x] = Source_frame[ ymap[y][x] ][ [xmap[y][x] ];
*/
static int remap_planar_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
const ThreadData *td = (ThreadData*)arg;
const AVFrame *in = td->in;
const AVFrame *xin = td->xin;
const AVFrame *yin = td->yin;
const AVFrame *out = td->out;
const int slice_start = (out->height * jobnr ) / nb_jobs;
const int slice_end = (out->height * (jobnr+1)) / nb_jobs;
const int xlinesize = xin->linesize[0] / 2;
const int ylinesize = yin->linesize[0] / 2;
int x , y, plane;
for (plane = 0; plane < td->nb_planes ; plane++) {
const int dlinesize = out->linesize[plane];
const uint8_t *src = in->data[plane];
uint8_t *dst = out->data[plane] + slice_start * dlinesize;
const int slinesize = in->linesize[plane];
const uint16_t *xmap = (const uint16_t *)xin->data[0] + slice_start * xlinesize;
const uint16_t *ymap = (const uint16_t *)yin->data[0] + slice_start * ylinesize;
for (y = slice_start; y < slice_end; y++) {
for (x = 0; x < out->width; x++) {
if (ymap[x] < in->height && xmap[x] < in->width) {
dst[x] = src[ymap[x] * slinesize + xmap[x]];
} else {
dst[x] = 0;
}
}
dst += dlinesize;
xmap += xlinesize;
ymap += ylinesize;
}
}
return 0;
}
static int remap_planar16_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
const ThreadData *td = (ThreadData*)arg;
const AVFrame *in = td->in;
const AVFrame *xin = td->xin;
const AVFrame *yin = td->yin;
const AVFrame *out = td->out;
const int slice_start = (out->height * jobnr ) / nb_jobs;
const int slice_end = (out->height * (jobnr+1)) / nb_jobs;
const int xlinesize = xin->linesize[0] / 2;
const int ylinesize = yin->linesize[0] / 2;
int x , y, plane;
for (plane = 0; plane < td->nb_planes ; plane++) {
const int dlinesize = out->linesize[plane] / 2;
const uint16_t *src = (const uint16_t *)in->data[plane];
uint16_t *dst = (uint16_t *)out->data[plane] + slice_start * dlinesize;
const int slinesize = in->linesize[plane] / 2;
const uint16_t *xmap = (const uint16_t *)xin->data[0] + slice_start * xlinesize;
const uint16_t *ymap = (const uint16_t *)yin->data[0] + slice_start * ylinesize;
for (y = slice_start; y < slice_end; y++) {
for (x = 0; x < out->width; x++) {
if (ymap[x] < in->height && xmap[x] < in->width) {
dst[x] = src[ymap[x] * slinesize + xmap[x]];
} else {
dst[x] = 0;
}
}
dst += dlinesize;
xmap += xlinesize;
ymap += ylinesize;
}
}
return 0;
}
/**
* remap_packed algorithm expects pixels with both padded bits (step) and
* number of components correctly set.
* pixels are copied from source to target using :
* Target_frame[y][x] = Source_frame[ ymap[y][x] ][ [xmap[y][x] ];
*/
static int remap_packed_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
const ThreadData *td = (ThreadData*)arg;
const AVFrame *in = td->in;
const AVFrame *xin = td->xin;
const AVFrame *yin = td->yin;
const AVFrame *out = td->out;
const int slice_start = (out->height * jobnr ) / nb_jobs;
const int slice_end = (out->height * (jobnr+1)) / nb_jobs;
const int dlinesize = out->linesize[0];
const int slinesize = in->linesize[0];
const int xlinesize = xin->linesize[0] / 2;
const int ylinesize = yin->linesize[0] / 2;
const uint8_t *src = in->data[0];
uint8_t *dst = out->data[0] + slice_start * dlinesize;
const uint16_t *xmap = (const uint16_t *)xin->data[0] + slice_start * xlinesize;
const uint16_t *ymap = (const uint16_t *)yin->data[0] + slice_start * ylinesize;
const int step = td->step;
int c, x, y;
for (y = slice_start; y < slice_end; y++) {
for (x = 0; x < out->width; x++) {
for (c = 0; c < td->nb_components; c++) {
if (ymap[x] < in->height && xmap[x] < in->width) {
dst[x * step + c] = src[ymap[x] * slinesize + xmap[x] * step + c];
} else {
dst[x * step + c] = 0;
}
}
}
dst += dlinesize;
xmap += xlinesize;
ymap += ylinesize;
}
return 0;
}
static int remap_packed16_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
const ThreadData *td = (ThreadData*)arg;
const AVFrame *in = td->in;
const AVFrame *xin = td->xin;
const AVFrame *yin = td->yin;
const AVFrame *out = td->out;
const int slice_start = (out->height * jobnr ) / nb_jobs;
const int slice_end = (out->height * (jobnr+1)) / nb_jobs;
const int dlinesize = out->linesize[0] / 2;
const int slinesize = in->linesize[0] / 2;
const int xlinesize = xin->linesize[0] / 2;
const int ylinesize = yin->linesize[0] / 2;
const uint16_t *src = (const uint16_t *)in->data[0];
uint16_t *dst = (uint16_t *)out->data[0] + slice_start * dlinesize;
const uint16_t *xmap = (const uint16_t *)xin->data[0] + slice_start * xlinesize;
const uint16_t *ymap = (const uint16_t *)yin->data[0] + slice_start * ylinesize;
const int step = td->step / 2;
int c, x, y;
for (y = slice_start; y < slice_end; y++) {
for (x = 0; x < out->width; x++) {
for (c = 0; c < td->nb_components; c++) {
if (ymap[x] < in->height && xmap[x] < in->width) {
dst[x * step + c] = src[ymap[x] * slinesize + xmap[x] * step + c];
} else {
dst[x * step + c] = 0;
}
}
}
dst += dlinesize;
xmap += xlinesize;
ymap += ylinesize;
}
return 0;
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
RemapContext *s = ctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
s->nb_components = desc->nb_components;
if (desc->comp[0].depth == 8) {
if (s->nb_planes > 1 || s->nb_components == 1) {
s->remap_slice = remap_planar_slice;
} else {
s->remap_slice = remap_packed_slice;
}
} else {
if (s->nb_planes > 1 || s->nb_components == 1) {
s->remap_slice = remap_planar16_slice;
} else {
s->remap_slice = remap_packed16_slice;
}
}
s->step = av_get_padded_bits_per_pixel(desc) >> 3;
return 0;
}
static int process_frame(FFFrameSync *fs)
{
AVFilterContext *ctx = fs->parent;
RemapContext *s = fs->opaque;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out, *in, *xpic, *ypic;
int ret;
if ((ret = ff_framesync_get_frame(&s->fs, 0, &in, 0)) < 0 ||
(ret = ff_framesync_get_frame(&s->fs, 1, &xpic, 0)) < 0 ||
(ret = ff_framesync_get_frame(&s->fs, 2, &ypic, 0)) < 0)
return ret;
if (ctx->is_disabled) {
out = av_frame_clone(in);
if (!out)
return AVERROR(ENOMEM);
} else {
ThreadData td;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out)
return AVERROR(ENOMEM);
av_frame_copy_props(out, in);
td.in = in;
td.xin = xpic;
td.yin = ypic;
td.out = out;
td.nb_planes = s->nb_planes;
td.nb_components = s->nb_components;
td.step = s->step;
ctx->internal->execute(ctx, s->remap_slice, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
}
out->pts = av_rescale_q(in->pts, s->fs.time_base, outlink->time_base);
return ff_filter_frame(outlink, out);
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
RemapContext *s = ctx->priv;
AVFilterLink *srclink = ctx->inputs[0];
AVFilterLink *xlink = ctx->inputs[1];
AVFilterLink *ylink = ctx->inputs[2];
FFFrameSyncIn *in;
int ret;
if (xlink->w != ylink->w || xlink->h != ylink->h) {
av_log(ctx, AV_LOG_ERROR, "Second input link %s parameters "
"(size %dx%d) do not match the corresponding "
"third input link %s parameters (%dx%d)\n",
ctx->input_pads[1].name, xlink->w, xlink->h,
ctx->input_pads[2].name, ylink->w, ylink->h);
return AVERROR(EINVAL);
}
outlink->w = xlink->w;
outlink->h = xlink->h;
outlink->time_base = srclink->time_base;
outlink->sample_aspect_ratio = srclink->sample_aspect_ratio;
outlink->frame_rate = srclink->frame_rate;
ret = ff_framesync_init(&s->fs, ctx, 3);
if (ret < 0)
return ret;
in = s->fs.in;
in[0].time_base = srclink->time_base;
in[1].time_base = xlink->time_base;
in[2].time_base = ylink->time_base;
in[0].sync = 2;
in[0].before = EXT_STOP;
in[0].after = EXT_STOP;
in[1].sync = 1;
in[1].before = EXT_NULL;
in[1].after = EXT_INFINITY;
in[2].sync = 1;
in[2].before = EXT_NULL;
in[2].after = EXT_INFINITY;
s->fs.opaque = s;
s->fs.on_event = process_frame;
return ff_framesync_configure(&s->fs);
}
static int activate(AVFilterContext *ctx)
{
RemapContext *s = ctx->priv;
return ff_framesync_activate(&s->fs);
}
static av_cold void uninit(AVFilterContext *ctx)
{
RemapContext *s = ctx->priv;
ff_framesync_uninit(&s->fs);
}
static const AVFilterPad remap_inputs[] = {
{
.name = "source",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input,
},
{
.name = "xmap",
.type = AVMEDIA_TYPE_VIDEO,
},
{
.name = "ymap",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
static const AVFilterPad remap_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
{ NULL }
};
AVFilter ff_vf_remap = {
.name = "remap",
.description = NULL_IF_CONFIG_SMALL("Remap pixels."),
.priv_size = sizeof(RemapContext),
.uninit = uninit,
.query_formats = query_formats,
.activate = activate,
.inputs = remap_inputs,
.outputs = remap_outputs,
.priv_class = &remap_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
};