mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-19 05:49:09 +02:00
317be31eaf
The intention is to have both encoding and decoding functions in opus_rc.c. Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
1840 lines
60 KiB
C
1840 lines
60 KiB
C
/*
|
|
* Copyright (c) 2012 Andrew D'Addesio
|
|
* Copyright (c) 2013-2014 Mozilla Corporation
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* Opus CELT decoder
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "libavutil/float_dsp.h"
|
|
#include "libavutil/libm.h"
|
|
|
|
#include "imdct15.h"
|
|
#include "opus.h"
|
|
#include "opustab.h"
|
|
|
|
enum CeltSpread {
|
|
CELT_SPREAD_NONE,
|
|
CELT_SPREAD_LIGHT,
|
|
CELT_SPREAD_NORMAL,
|
|
CELT_SPREAD_AGGRESSIVE
|
|
};
|
|
|
|
typedef struct CeltFrame {
|
|
float energy[CELT_MAX_BANDS];
|
|
float prev_energy[2][CELT_MAX_BANDS];
|
|
|
|
uint8_t collapse_masks[CELT_MAX_BANDS];
|
|
|
|
/* buffer for mdct output + postfilter */
|
|
DECLARE_ALIGNED(32, float, buf)[2048];
|
|
|
|
/* postfilter parameters */
|
|
int pf_period_new;
|
|
float pf_gains_new[3];
|
|
int pf_period;
|
|
float pf_gains[3];
|
|
int pf_period_old;
|
|
float pf_gains_old[3];
|
|
|
|
float deemph_coeff;
|
|
} CeltFrame;
|
|
|
|
struct CeltContext {
|
|
// constant values that do not change during context lifetime
|
|
AVCodecContext *avctx;
|
|
IMDCT15Context *imdct[4];
|
|
AVFloatDSPContext *dsp;
|
|
int output_channels;
|
|
|
|
// values that have inter-frame effect and must be reset on flush
|
|
CeltFrame frame[2];
|
|
uint32_t seed;
|
|
int flushed;
|
|
|
|
// values that only affect a single frame
|
|
int coded_channels;
|
|
int framebits;
|
|
int duration;
|
|
|
|
/* number of iMDCT blocks in the frame */
|
|
int blocks;
|
|
/* size of each block */
|
|
int blocksize;
|
|
|
|
int startband;
|
|
int endband;
|
|
int codedbands;
|
|
|
|
int anticollapse_bit;
|
|
|
|
int intensitystereo;
|
|
int dualstereo;
|
|
enum CeltSpread spread;
|
|
|
|
int remaining;
|
|
int remaining2;
|
|
int fine_bits [CELT_MAX_BANDS];
|
|
int fine_priority[CELT_MAX_BANDS];
|
|
int pulses [CELT_MAX_BANDS];
|
|
int tf_change [CELT_MAX_BANDS];
|
|
|
|
DECLARE_ALIGNED(32, float, coeffs)[2][CELT_MAX_FRAME_SIZE];
|
|
DECLARE_ALIGNED(32, float, scratch)[22 * 8]; // MAX(ff_celt_freq_range) * 1<<CELT_MAX_LOG_BLOCKS
|
|
};
|
|
|
|
static inline int16_t celt_cos(int16_t x)
|
|
{
|
|
x = (MUL16(x, x) + 4096) >> 13;
|
|
x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
|
|
return 1+x;
|
|
}
|
|
|
|
static inline int celt_log2tan(int isin, int icos)
|
|
{
|
|
int lc, ls;
|
|
lc = opus_ilog(icos);
|
|
ls = opus_ilog(isin);
|
|
icos <<= 15 - lc;
|
|
isin <<= 15 - ls;
|
|
return (ls << 11) - (lc << 11) +
|
|
ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
|
|
ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
|
|
}
|
|
|
|
static inline uint32_t celt_rng(CeltContext *s)
|
|
{
|
|
s->seed = 1664525 * s->seed + 1013904223;
|
|
return s->seed;
|
|
}
|
|
|
|
static void celt_decode_coarse_energy(CeltContext *s, OpusRangeCoder *rc)
|
|
{
|
|
int i, j;
|
|
float prev[2] = {0};
|
|
float alpha, beta;
|
|
const uint8_t *model;
|
|
|
|
/* use the 2D z-transform to apply prediction in both */
|
|
/* the time domain (alpha) and the frequency domain (beta) */
|
|
|
|
if (opus_rc_tell(rc)+3 <= s->framebits && ff_opus_rc_dec_log(rc, 3)) {
|
|
/* intra frame */
|
|
alpha = 0;
|
|
beta = 1.0f - 4915.0f/32768.0f;
|
|
model = ff_celt_coarse_energy_dist[s->duration][1];
|
|
} else {
|
|
alpha = ff_celt_alpha_coef[s->duration];
|
|
beta = 1.0f - ff_celt_beta_coef[s->duration];
|
|
model = ff_celt_coarse_energy_dist[s->duration][0];
|
|
}
|
|
|
|
for (i = 0; i < CELT_MAX_BANDS; i++) {
|
|
for (j = 0; j < s->coded_channels; j++) {
|
|
CeltFrame *frame = &s->frame[j];
|
|
float value;
|
|
int available;
|
|
|
|
if (i < s->startband || i >= s->endband) {
|
|
frame->energy[i] = 0.0;
|
|
continue;
|
|
}
|
|
|
|
available = s->framebits - opus_rc_tell(rc);
|
|
if (available >= 15) {
|
|
/* decode using a Laplace distribution */
|
|
int k = FFMIN(i, 20) << 1;
|
|
value = ff_opus_rc_dec_laplace(rc, model[k] << 7, model[k+1] << 6);
|
|
} else if (available >= 2) {
|
|
int x = ff_opus_rc_dec_cdf(rc, ff_celt_model_energy_small);
|
|
value = (x>>1) ^ -(x&1);
|
|
} else if (available >= 1) {
|
|
value = -(float)ff_opus_rc_dec_log(rc, 1);
|
|
} else value = -1;
|
|
|
|
frame->energy[i] = FFMAX(-9.0f, frame->energy[i]) * alpha + prev[j] + value;
|
|
prev[j] += beta * value;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void celt_decode_fine_energy(CeltContext *s, OpusRangeCoder *rc)
|
|
{
|
|
int i;
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
int j;
|
|
if (!s->fine_bits[i])
|
|
continue;
|
|
|
|
for (j = 0; j < s->coded_channels; j++) {
|
|
CeltFrame *frame = &s->frame[j];
|
|
int q2;
|
|
float offset;
|
|
q2 = ff_opus_rc_get_raw(rc, s->fine_bits[i]);
|
|
offset = (q2 + 0.5f) * (1 << (14 - s->fine_bits[i])) / 16384.0f - 0.5f;
|
|
frame->energy[i] += offset;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void celt_decode_final_energy(CeltContext *s, OpusRangeCoder *rc,
|
|
int bits_left)
|
|
{
|
|
int priority, i, j;
|
|
|
|
for (priority = 0; priority < 2; priority++) {
|
|
for (i = s->startband; i < s->endband && bits_left >= s->coded_channels; i++) {
|
|
if (s->fine_priority[i] != priority || s->fine_bits[i] >= CELT_MAX_FINE_BITS)
|
|
continue;
|
|
|
|
for (j = 0; j < s->coded_channels; j++) {
|
|
int q2;
|
|
float offset;
|
|
q2 = ff_opus_rc_get_raw(rc, 1);
|
|
offset = (q2 - 0.5f) * (1 << (14 - s->fine_bits[i] - 1)) / 16384.0f;
|
|
s->frame[j].energy[i] += offset;
|
|
bits_left--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void celt_decode_tf_changes(CeltContext *s, OpusRangeCoder *rc,
|
|
int transient)
|
|
{
|
|
int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit;
|
|
int consumed, bits = transient ? 2 : 4;
|
|
|
|
consumed = opus_rc_tell(rc);
|
|
tf_select_bit = (s->duration != 0 && consumed+bits+1 <= s->framebits);
|
|
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
if (consumed+bits+tf_select_bit <= s->framebits) {
|
|
diff ^= ff_opus_rc_dec_log(rc, bits);
|
|
consumed = opus_rc_tell(rc);
|
|
tf_changed |= diff;
|
|
}
|
|
s->tf_change[i] = diff;
|
|
bits = transient ? 4 : 5;
|
|
}
|
|
|
|
if (tf_select_bit && ff_celt_tf_select[s->duration][transient][0][tf_changed] !=
|
|
ff_celt_tf_select[s->duration][transient][1][tf_changed])
|
|
tf_select = ff_opus_rc_dec_log(rc, 1);
|
|
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
s->tf_change[i] = ff_celt_tf_select[s->duration][transient][tf_select][s->tf_change[i]];
|
|
}
|
|
}
|
|
|
|
static void celt_decode_allocation(CeltContext *s, OpusRangeCoder *rc)
|
|
{
|
|
// approx. maximum bit allocation for each band before boost/trim
|
|
int cap[CELT_MAX_BANDS];
|
|
int boost[CELT_MAX_BANDS];
|
|
int threshold[CELT_MAX_BANDS];
|
|
int bits1[CELT_MAX_BANDS];
|
|
int bits2[CELT_MAX_BANDS];
|
|
int trim_offset[CELT_MAX_BANDS];
|
|
|
|
int skip_startband = s->startband;
|
|
int dynalloc = 6;
|
|
int alloctrim = 5;
|
|
int extrabits = 0;
|
|
|
|
int skip_bit = 0;
|
|
int intensitystereo_bit = 0;
|
|
int dualstereo_bit = 0;
|
|
|
|
int remaining, bandbits;
|
|
int low, high, total, done;
|
|
int totalbits;
|
|
int consumed;
|
|
int i, j;
|
|
|
|
consumed = opus_rc_tell(rc);
|
|
|
|
/* obtain spread flag */
|
|
s->spread = CELT_SPREAD_NORMAL;
|
|
if (consumed + 4 <= s->framebits)
|
|
s->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread);
|
|
|
|
/* generate static allocation caps */
|
|
for (i = 0; i < CELT_MAX_BANDS; i++) {
|
|
cap[i] = (ff_celt_static_caps[s->duration][s->coded_channels - 1][i] + 64)
|
|
* ff_celt_freq_range[i] << (s->coded_channels - 1) << s->duration >> 2;
|
|
}
|
|
|
|
/* obtain band boost */
|
|
totalbits = s->framebits << 3; // convert to 1/8 bits
|
|
consumed = opus_rc_tell_frac(rc);
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
int quanta, band_dynalloc;
|
|
|
|
boost[i] = 0;
|
|
|
|
quanta = ff_celt_freq_range[i] << (s->coded_channels - 1) << s->duration;
|
|
quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
|
|
band_dynalloc = dynalloc;
|
|
while (consumed + (band_dynalloc<<3) < totalbits && boost[i] < cap[i]) {
|
|
int add = ff_opus_rc_dec_log(rc, band_dynalloc);
|
|
consumed = opus_rc_tell_frac(rc);
|
|
if (!add)
|
|
break;
|
|
|
|
boost[i] += quanta;
|
|
totalbits -= quanta;
|
|
band_dynalloc = 1;
|
|
}
|
|
/* dynalloc is more likely to occur if it's already been used for earlier bands */
|
|
if (boost[i])
|
|
dynalloc = FFMAX(2, dynalloc - 1);
|
|
}
|
|
|
|
/* obtain allocation trim */
|
|
if (consumed + (6 << 3) <= totalbits)
|
|
alloctrim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim);
|
|
|
|
/* anti-collapse bit reservation */
|
|
totalbits = (s->framebits << 3) - opus_rc_tell_frac(rc) - 1;
|
|
s->anticollapse_bit = 0;
|
|
if (s->blocks > 1 && s->duration >= 2 &&
|
|
totalbits >= ((s->duration + 2) << 3))
|
|
s->anticollapse_bit = 1 << 3;
|
|
totalbits -= s->anticollapse_bit;
|
|
|
|
/* band skip bit reservation */
|
|
if (totalbits >= 1 << 3)
|
|
skip_bit = 1 << 3;
|
|
totalbits -= skip_bit;
|
|
|
|
/* intensity/dual stereo bit reservation */
|
|
if (s->coded_channels == 2) {
|
|
intensitystereo_bit = ff_celt_log2_frac[s->endband - s->startband];
|
|
if (intensitystereo_bit <= totalbits) {
|
|
totalbits -= intensitystereo_bit;
|
|
if (totalbits >= 1 << 3) {
|
|
dualstereo_bit = 1 << 3;
|
|
totalbits -= 1 << 3;
|
|
}
|
|
} else
|
|
intensitystereo_bit = 0;
|
|
}
|
|
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
int trim = alloctrim - 5 - s->duration;
|
|
int band = ff_celt_freq_range[i] * (s->endband - i - 1);
|
|
int duration = s->duration + 3;
|
|
int scale = duration + s->coded_channels - 1;
|
|
|
|
/* PVQ minimum allocation threshold, below this value the band is
|
|
* skipped */
|
|
threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
|
|
s->coded_channels << 3);
|
|
|
|
trim_offset[i] = trim * (band << scale) >> 6;
|
|
|
|
if (ff_celt_freq_range[i] << s->duration == 1)
|
|
trim_offset[i] -= s->coded_channels << 3;
|
|
}
|
|
|
|
/* bisection */
|
|
low = 1;
|
|
high = CELT_VECTORS - 1;
|
|
while (low <= high) {
|
|
int center = (low + high) >> 1;
|
|
done = total = 0;
|
|
|
|
for (i = s->endband - 1; i >= s->startband; i--) {
|
|
bandbits = ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]
|
|
<< (s->coded_channels - 1) << s->duration >> 2;
|
|
|
|
if (bandbits)
|
|
bandbits = FFMAX(0, bandbits + trim_offset[i]);
|
|
bandbits += boost[i];
|
|
|
|
if (bandbits >= threshold[i] || done) {
|
|
done = 1;
|
|
total += FFMIN(bandbits, cap[i]);
|
|
} else if (bandbits >= s->coded_channels << 3)
|
|
total += s->coded_channels << 3;
|
|
}
|
|
|
|
if (total > totalbits)
|
|
high = center - 1;
|
|
else
|
|
low = center + 1;
|
|
}
|
|
high = low--;
|
|
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
bits1[i] = ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]
|
|
<< (s->coded_channels - 1) << s->duration >> 2;
|
|
bits2[i] = high >= CELT_VECTORS ? cap[i] :
|
|
ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]
|
|
<< (s->coded_channels - 1) << s->duration >> 2;
|
|
|
|
if (bits1[i])
|
|
bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]);
|
|
if (bits2[i])
|
|
bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]);
|
|
if (low)
|
|
bits1[i] += boost[i];
|
|
bits2[i] += boost[i];
|
|
|
|
if (boost[i])
|
|
skip_startband = i;
|
|
bits2[i] = FFMAX(0, bits2[i] - bits1[i]);
|
|
}
|
|
|
|
/* bisection */
|
|
low = 0;
|
|
high = 1 << CELT_ALLOC_STEPS;
|
|
for (i = 0; i < CELT_ALLOC_STEPS; i++) {
|
|
int center = (low + high) >> 1;
|
|
done = total = 0;
|
|
|
|
for (j = s->endband - 1; j >= s->startband; j--) {
|
|
bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
|
|
|
|
if (bandbits >= threshold[j] || done) {
|
|
done = 1;
|
|
total += FFMIN(bandbits, cap[j]);
|
|
} else if (bandbits >= s->coded_channels << 3)
|
|
total += s->coded_channels << 3;
|
|
}
|
|
if (total > totalbits)
|
|
high = center;
|
|
else
|
|
low = center;
|
|
}
|
|
|
|
done = total = 0;
|
|
for (i = s->endband - 1; i >= s->startband; i--) {
|
|
bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
|
|
|
|
if (bandbits >= threshold[i] || done)
|
|
done = 1;
|
|
else
|
|
bandbits = (bandbits >= s->coded_channels << 3) ?
|
|
s->coded_channels << 3 : 0;
|
|
|
|
bandbits = FFMIN(bandbits, cap[i]);
|
|
s->pulses[i] = bandbits;
|
|
total += bandbits;
|
|
}
|
|
|
|
/* band skipping */
|
|
for (s->codedbands = s->endband; ; s->codedbands--) {
|
|
int allocation;
|
|
j = s->codedbands - 1;
|
|
|
|
if (j == skip_startband) {
|
|
/* all remaining bands are not skipped */
|
|
totalbits += skip_bit;
|
|
break;
|
|
}
|
|
|
|
/* determine the number of bits available for coding "do not skip" markers */
|
|
remaining = totalbits - total;
|
|
bandbits = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[s->startband]);
|
|
remaining -= bandbits * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[s->startband]);
|
|
allocation = s->pulses[j] + bandbits * ff_celt_freq_range[j]
|
|
+ FFMAX(0, remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[s->startband]));
|
|
|
|
/* a "do not skip" marker is only coded if the allocation is
|
|
above the chosen threshold */
|
|
if (allocation >= FFMAX(threshold[j], (s->coded_channels + 1) <<3 )) {
|
|
if (ff_opus_rc_dec_log(rc, 1))
|
|
break;
|
|
|
|
total += 1 << 3;
|
|
allocation -= 1 << 3;
|
|
}
|
|
|
|
/* the band is skipped, so reclaim its bits */
|
|
total -= s->pulses[j];
|
|
if (intensitystereo_bit) {
|
|
total -= intensitystereo_bit;
|
|
intensitystereo_bit = ff_celt_log2_frac[j - s->startband];
|
|
total += intensitystereo_bit;
|
|
}
|
|
|
|
total += s->pulses[j] = (allocation >= s->coded_channels << 3) ?
|
|
s->coded_channels << 3 : 0;
|
|
}
|
|
|
|
/* obtain stereo flags */
|
|
s->intensitystereo = 0;
|
|
s->dualstereo = 0;
|
|
if (intensitystereo_bit)
|
|
s->intensitystereo = s->startband +
|
|
ff_opus_rc_dec_uint(rc, s->codedbands + 1 - s->startband);
|
|
if (s->intensitystereo <= s->startband)
|
|
totalbits += dualstereo_bit; /* no intensity stereo means no dual stereo */
|
|
else if (dualstereo_bit)
|
|
s->dualstereo = ff_opus_rc_dec_log(rc, 1);
|
|
|
|
/* supply the remaining bits in this frame to lower bands */
|
|
remaining = totalbits - total;
|
|
bandbits = remaining / (ff_celt_freq_bands[s->codedbands] - ff_celt_freq_bands[s->startband]);
|
|
remaining -= bandbits * (ff_celt_freq_bands[s->codedbands] - ff_celt_freq_bands[s->startband]);
|
|
for (i = s->startband; i < s->codedbands; i++) {
|
|
int bits = FFMIN(remaining, ff_celt_freq_range[i]);
|
|
|
|
s->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
|
|
remaining -= bits;
|
|
}
|
|
|
|
for (i = s->startband; i < s->codedbands; i++) {
|
|
int N = ff_celt_freq_range[i] << s->duration;
|
|
int prev_extra = extrabits;
|
|
s->pulses[i] += extrabits;
|
|
|
|
if (N > 1) {
|
|
int dof; // degrees of freedom
|
|
int temp; // dof * channels * log(dof)
|
|
int offset; // fine energy quantization offset, i.e.
|
|
// extra bits assigned over the standard
|
|
// totalbits/dof
|
|
int fine_bits, max_bits;
|
|
|
|
extrabits = FFMAX(0, s->pulses[i] - cap[i]);
|
|
s->pulses[i] -= extrabits;
|
|
|
|
/* intensity stereo makes use of an extra degree of freedom */
|
|
dof = N * s->coded_channels
|
|
+ (s->coded_channels == 2 && N > 2 && !s->dualstereo && i < s->intensitystereo);
|
|
temp = dof * (ff_celt_log_freq_range[i] + (s->duration<<3));
|
|
offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
|
|
if (N == 2) /* dof=2 is the only case that doesn't fit the model */
|
|
offset += dof<<1;
|
|
|
|
/* grant an additional bias for the first and second pulses */
|
|
if (s->pulses[i] + offset < 2 * (dof << 3))
|
|
offset += temp >> 2;
|
|
else if (s->pulses[i] + offset < 3 * (dof << 3))
|
|
offset += temp >> 3;
|
|
|
|
fine_bits = (s->pulses[i] + offset + (dof << 2)) / (dof << 3);
|
|
max_bits = FFMIN((s->pulses[i]>>3) >> (s->coded_channels - 1),
|
|
CELT_MAX_FINE_BITS);
|
|
|
|
max_bits = FFMAX(max_bits, 0);
|
|
|
|
s->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
|
|
|
|
/* if fine_bits was rounded down or capped,
|
|
give priority for the final fine energy pass */
|
|
s->fine_priority[i] = (s->fine_bits[i] * (dof<<3) >= s->pulses[i] + offset);
|
|
|
|
/* the remaining bits are assigned to PVQ */
|
|
s->pulses[i] -= s->fine_bits[i] << (s->coded_channels - 1) << 3;
|
|
} else {
|
|
/* all bits go to fine energy except for the sign bit */
|
|
extrabits = FFMAX(0, s->pulses[i] - (s->coded_channels << 3));
|
|
s->pulses[i] -= extrabits;
|
|
s->fine_bits[i] = 0;
|
|
s->fine_priority[i] = 1;
|
|
}
|
|
|
|
/* hand back a limited number of extra fine energy bits to this band */
|
|
if (extrabits > 0) {
|
|
int fineextra = FFMIN(extrabits >> (s->coded_channels + 2),
|
|
CELT_MAX_FINE_BITS - s->fine_bits[i]);
|
|
s->fine_bits[i] += fineextra;
|
|
|
|
fineextra <<= s->coded_channels + 2;
|
|
s->fine_priority[i] = (fineextra >= extrabits - prev_extra);
|
|
extrabits -= fineextra;
|
|
}
|
|
}
|
|
s->remaining = extrabits;
|
|
|
|
/* skipped bands dedicate all of their bits for fine energy */
|
|
for (; i < s->endband; i++) {
|
|
s->fine_bits[i] = s->pulses[i] >> (s->coded_channels - 1) >> 3;
|
|
s->pulses[i] = 0;
|
|
s->fine_priority[i] = s->fine_bits[i] < 1;
|
|
}
|
|
}
|
|
|
|
static inline int celt_bits2pulses(const uint8_t *cache, int bits)
|
|
{
|
|
// TODO: Find the size of cache and make it into an array in the parameters list
|
|
int i, low = 0, high;
|
|
|
|
high = cache[0];
|
|
bits--;
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
int center = (low + high + 1) >> 1;
|
|
if (cache[center] >= bits)
|
|
high = center;
|
|
else
|
|
low = center;
|
|
}
|
|
|
|
return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
|
|
}
|
|
|
|
static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
|
|
{
|
|
// TODO: Find the size of cache and make it into an array in the parameters list
|
|
return (pulses == 0) ? 0 : cache[pulses] + 1;
|
|
}
|
|
|
|
static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X,
|
|
int N, float g)
|
|
{
|
|
int i;
|
|
for (i = 0; i < N; i++)
|
|
X[i] = g * iy[i];
|
|
}
|
|
|
|
static void celt_exp_rotation1(float *X, unsigned int len, unsigned int stride,
|
|
float c, float s)
|
|
{
|
|
float *Xptr;
|
|
int i;
|
|
|
|
Xptr = X;
|
|
for (i = 0; i < len - stride; i++) {
|
|
float x1, x2;
|
|
x1 = Xptr[0];
|
|
x2 = Xptr[stride];
|
|
Xptr[stride] = c * x2 + s * x1;
|
|
*Xptr++ = c * x1 - s * x2;
|
|
}
|
|
|
|
Xptr = &X[len - 2 * stride - 1];
|
|
for (i = len - 2 * stride - 1; i >= 0; i--) {
|
|
float x1, x2;
|
|
x1 = Xptr[0];
|
|
x2 = Xptr[stride];
|
|
Xptr[stride] = c * x2 + s * x1;
|
|
*Xptr-- = c * x1 - s * x2;
|
|
}
|
|
}
|
|
|
|
static inline void celt_exp_rotation(float *X, unsigned int len,
|
|
unsigned int stride, unsigned int K,
|
|
enum CeltSpread spread)
|
|
{
|
|
unsigned int stride2 = 0;
|
|
float c, s;
|
|
float gain, theta;
|
|
int i;
|
|
|
|
if (2*K >= len || spread == CELT_SPREAD_NONE)
|
|
return;
|
|
|
|
gain = (float)len / (len + (20 - 5*spread) * K);
|
|
theta = M_PI * gain * gain / 4;
|
|
|
|
c = cos(theta);
|
|
s = sin(theta);
|
|
|
|
if (len >= stride << 3) {
|
|
stride2 = 1;
|
|
/* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
|
|
It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
|
|
while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
|
|
stride2++;
|
|
}
|
|
|
|
/*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
|
|
extract_collapse_mask().*/
|
|
len /= stride;
|
|
for (i = 0; i < stride; i++) {
|
|
if (stride2)
|
|
celt_exp_rotation1(X + i * len, len, stride2, s, c);
|
|
celt_exp_rotation1(X + i * len, len, 1, c, s);
|
|
}
|
|
}
|
|
|
|
static inline unsigned int celt_extract_collapse_mask(const int *iy,
|
|
unsigned int N,
|
|
unsigned int B)
|
|
{
|
|
unsigned int collapse_mask;
|
|
int N0;
|
|
int i, j;
|
|
|
|
if (B <= 1)
|
|
return 1;
|
|
|
|
/*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
|
|
exp_rotation().*/
|
|
N0 = N/B;
|
|
collapse_mask = 0;
|
|
for (i = 0; i < B; i++)
|
|
for (j = 0; j < N0; j++)
|
|
collapse_mask |= (iy[i*N0+j]!=0)<<i;
|
|
return collapse_mask;
|
|
}
|
|
|
|
static inline void celt_renormalize_vector(float *X, int N, float gain)
|
|
{
|
|
int i;
|
|
float g = 1e-15f;
|
|
for (i = 0; i < N; i++)
|
|
g += X[i] * X[i];
|
|
g = gain / sqrtf(g);
|
|
|
|
for (i = 0; i < N; i++)
|
|
X[i] *= g;
|
|
}
|
|
|
|
static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
|
|
{
|
|
int i;
|
|
float xp = 0, side = 0;
|
|
float E[2];
|
|
float mid2;
|
|
float t, gain[2];
|
|
|
|
/* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
|
|
for (i = 0; i < N; i++) {
|
|
xp += X[i] * Y[i];
|
|
side += Y[i] * Y[i];
|
|
}
|
|
|
|
/* Compensating for the mid normalization */
|
|
xp *= mid;
|
|
mid2 = mid;
|
|
E[0] = mid2 * mid2 + side - 2 * xp;
|
|
E[1] = mid2 * mid2 + side + 2 * xp;
|
|
if (E[0] < 6e-4f || E[1] < 6e-4f) {
|
|
for (i = 0; i < N; i++)
|
|
Y[i] = X[i];
|
|
return;
|
|
}
|
|
|
|
t = E[0];
|
|
gain[0] = 1.0f / sqrtf(t);
|
|
t = E[1];
|
|
gain[1] = 1.0f / sqrtf(t);
|
|
|
|
for (i = 0; i < N; i++) {
|
|
float value[2];
|
|
/* Apply mid scaling (side is already scaled) */
|
|
value[0] = mid * X[i];
|
|
value[1] = Y[i];
|
|
X[i] = gain[0] * (value[0] - value[1]);
|
|
Y[i] = gain[1] * (value[0] + value[1]);
|
|
}
|
|
}
|
|
|
|
static void celt_interleave_hadamard(float *tmp, float *X, int N0,
|
|
int stride, int hadamard)
|
|
{
|
|
int i, j;
|
|
int N = N0*stride;
|
|
|
|
if (hadamard) {
|
|
const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2;
|
|
for (i = 0; i < stride; i++)
|
|
for (j = 0; j < N0; j++)
|
|
tmp[j*stride+i] = X[ordery[i]*N0+j];
|
|
} else {
|
|
for (i = 0; i < stride; i++)
|
|
for (j = 0; j < N0; j++)
|
|
tmp[j*stride+i] = X[i*N0+j];
|
|
}
|
|
|
|
for (i = 0; i < N; i++)
|
|
X[i] = tmp[i];
|
|
}
|
|
|
|
static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
|
|
int stride, int hadamard)
|
|
{
|
|
int i, j;
|
|
int N = N0*stride;
|
|
|
|
if (hadamard) {
|
|
const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2;
|
|
for (i = 0; i < stride; i++)
|
|
for (j = 0; j < N0; j++)
|
|
tmp[ordery[i]*N0+j] = X[j*stride+i];
|
|
} else {
|
|
for (i = 0; i < stride; i++)
|
|
for (j = 0; j < N0; j++)
|
|
tmp[i*N0+j] = X[j*stride+i];
|
|
}
|
|
|
|
for (i = 0; i < N; i++)
|
|
X[i] = tmp[i];
|
|
}
|
|
|
|
static void celt_haar1(float *X, int N0, int stride)
|
|
{
|
|
int i, j;
|
|
N0 >>= 1;
|
|
for (i = 0; i < stride; i++) {
|
|
for (j = 0; j < N0; j++) {
|
|
float x0 = X[stride * (2 * j + 0) + i];
|
|
float x1 = X[stride * (2 * j + 1) + i];
|
|
X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
|
|
X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
|
|
int dualstereo)
|
|
{
|
|
int qn, qb;
|
|
int N2 = 2 * N - 1;
|
|
if (dualstereo && N == 2)
|
|
N2--;
|
|
|
|
/* The upper limit ensures that in a stereo split with itheta==16384, we'll
|
|
* always have enough bits left over to code at least one pulse in the
|
|
* side; otherwise it would collapse, since it doesn't get folded. */
|
|
qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
|
|
qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
|
|
return qn;
|
|
}
|
|
|
|
// this code was adapted from libopus
|
|
static inline uint64_t celt_cwrsi(unsigned int N, unsigned int K, unsigned int i, int *y)
|
|
{
|
|
uint64_t norm = 0;
|
|
uint32_t p;
|
|
int s, val;
|
|
int k0;
|
|
|
|
while (N > 2) {
|
|
uint32_t q;
|
|
|
|
/*Lots of pulses case:*/
|
|
if (K >= N) {
|
|
const uint32_t *row = ff_celt_pvq_u_row[N];
|
|
|
|
/* Are the pulses in this dimension negative? */
|
|
p = row[K + 1];
|
|
s = -(i >= p);
|
|
i -= p & s;
|
|
|
|
/*Count how many pulses were placed in this dimension.*/
|
|
k0 = K;
|
|
q = row[N];
|
|
if (q > i) {
|
|
K = N;
|
|
do {
|
|
p = ff_celt_pvq_u_row[--K][N];
|
|
} while (p > i);
|
|
} else
|
|
for (p = row[K]; p > i; p = row[K])
|
|
K--;
|
|
|
|
i -= p;
|
|
val = (k0 - K + s) ^ s;
|
|
norm += val * val;
|
|
*y++ = val;
|
|
} else { /*Lots of dimensions case:*/
|
|
/*Are there any pulses in this dimension at all?*/
|
|
p = ff_celt_pvq_u_row[K ][N];
|
|
q = ff_celt_pvq_u_row[K + 1][N];
|
|
|
|
if (p <= i && i < q) {
|
|
i -= p;
|
|
*y++ = 0;
|
|
} else {
|
|
/*Are the pulses in this dimension negative?*/
|
|
s = -(i >= q);
|
|
i -= q & s;
|
|
|
|
/*Count how many pulses were placed in this dimension.*/
|
|
k0 = K;
|
|
do p = ff_celt_pvq_u_row[--K][N];
|
|
while (p > i);
|
|
|
|
i -= p;
|
|
val = (k0 - K + s) ^ s;
|
|
norm += val * val;
|
|
*y++ = val;
|
|
}
|
|
}
|
|
N--;
|
|
}
|
|
|
|
/* N == 2 */
|
|
p = 2 * K + 1;
|
|
s = -(i >= p);
|
|
i -= p & s;
|
|
k0 = K;
|
|
K = (i + 1) / 2;
|
|
|
|
if (K)
|
|
i -= 2 * K - 1;
|
|
|
|
val = (k0 - K + s) ^ s;
|
|
norm += val * val;
|
|
*y++ = val;
|
|
|
|
/* N==1 */
|
|
s = -i;
|
|
val = (K + s) ^ s;
|
|
norm += val * val;
|
|
*y = val;
|
|
|
|
return norm;
|
|
}
|
|
|
|
static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, unsigned int N, unsigned int K)
|
|
{
|
|
unsigned int idx;
|
|
#define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
|
|
#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1))
|
|
idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K));
|
|
return celt_cwrsi(N, K, idx, y);
|
|
}
|
|
|
|
/** Decode pulse vector and combine the result with the pitch vector to produce
|
|
the final normalised signal in the current band. */
|
|
static inline unsigned int celt_alg_unquant(OpusRangeCoder *rc, float *X,
|
|
unsigned int N, unsigned int K,
|
|
enum CeltSpread spread,
|
|
unsigned int blocks, float gain)
|
|
{
|
|
int y[176];
|
|
|
|
gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
|
|
celt_normalize_residual(y, X, N, gain);
|
|
celt_exp_rotation(X, N, blocks, K, spread);
|
|
return celt_extract_collapse_mask(y, N, blocks);
|
|
}
|
|
|
|
static unsigned int celt_decode_band(CeltContext *s, OpusRangeCoder *rc,
|
|
const int band, float *X, float *Y,
|
|
int N, int b, unsigned int blocks,
|
|
float *lowband, int duration,
|
|
float *lowband_out, int level,
|
|
float gain, float *lowband_scratch,
|
|
int fill)
|
|
{
|
|
const uint8_t *cache;
|
|
int dualstereo, split;
|
|
int imid = 0, iside = 0;
|
|
unsigned int N0 = N;
|
|
int N_B;
|
|
int N_B0;
|
|
int B0 = blocks;
|
|
int time_divide = 0;
|
|
int recombine = 0;
|
|
int inv = 0;
|
|
float mid = 0, side = 0;
|
|
int longblocks = (B0 == 1);
|
|
unsigned int cm = 0;
|
|
|
|
N_B0 = N_B = N / blocks;
|
|
split = dualstereo = (Y != NULL);
|
|
|
|
if (N == 1) {
|
|
/* special case for one sample */
|
|
int i;
|
|
float *x = X;
|
|
for (i = 0; i <= dualstereo; i++) {
|
|
int sign = 0;
|
|
if (s->remaining2 >= 1<<3) {
|
|
sign = ff_opus_rc_get_raw(rc, 1);
|
|
s->remaining2 -= 1 << 3;
|
|
b -= 1 << 3;
|
|
}
|
|
x[0] = sign ? -1.0f : 1.0f;
|
|
x = Y;
|
|
}
|
|
if (lowband_out)
|
|
lowband_out[0] = X[0];
|
|
return 1;
|
|
}
|
|
|
|
if (!dualstereo && level == 0) {
|
|
int tf_change = s->tf_change[band];
|
|
int k;
|
|
if (tf_change > 0)
|
|
recombine = tf_change;
|
|
/* Band recombining to increase frequency resolution */
|
|
|
|
if (lowband &&
|
|
(recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
|
|
int j;
|
|
for (j = 0; j < N; j++)
|
|
lowband_scratch[j] = lowband[j];
|
|
lowband = lowband_scratch;
|
|
}
|
|
|
|
for (k = 0; k < recombine; k++) {
|
|
if (lowband)
|
|
celt_haar1(lowband, N >> k, 1 << k);
|
|
fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2;
|
|
}
|
|
blocks >>= recombine;
|
|
N_B <<= recombine;
|
|
|
|
/* Increasing the time resolution */
|
|
while ((N_B & 1) == 0 && tf_change < 0) {
|
|
if (lowband)
|
|
celt_haar1(lowband, N_B, blocks);
|
|
fill |= fill << blocks;
|
|
blocks <<= 1;
|
|
N_B >>= 1;
|
|
time_divide++;
|
|
tf_change++;
|
|
}
|
|
B0 = blocks;
|
|
N_B0 = N_B;
|
|
|
|
/* Reorganize the samples in time order instead of frequency order */
|
|
if (B0 > 1 && lowband)
|
|
celt_deinterleave_hadamard(s->scratch, lowband, N_B >> recombine,
|
|
B0 << recombine, longblocks);
|
|
}
|
|
|
|
/* If we need 1.5 more bit than we can produce, split the band in two. */
|
|
cache = ff_celt_cache_bits +
|
|
ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
|
|
if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
|
|
N >>= 1;
|
|
Y = X + N;
|
|
split = 1;
|
|
duration -= 1;
|
|
if (blocks == 1)
|
|
fill = (fill & 1) | (fill << 1);
|
|
blocks = (blocks + 1) >> 1;
|
|
}
|
|
|
|
if (split) {
|
|
int qn;
|
|
int itheta = 0;
|
|
int mbits, sbits, delta;
|
|
int qalloc;
|
|
int pulse_cap;
|
|
int offset;
|
|
int orig_fill;
|
|
int tell;
|
|
|
|
/* Decide on the resolution to give to the split parameter theta */
|
|
pulse_cap = ff_celt_log_freq_range[band] + duration * 8;
|
|
offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
|
|
CELT_QTHETA_OFFSET);
|
|
qn = (dualstereo && band >= s->intensitystereo) ? 1 :
|
|
celt_compute_qn(N, b, offset, pulse_cap, dualstereo);
|
|
tell = opus_rc_tell_frac(rc);
|
|
if (qn != 1) {
|
|
/* Entropy coding of the angle. We use a uniform pdf for the
|
|
time split, a step for stereo, and a triangular one for the rest. */
|
|
if (dualstereo && N > 2)
|
|
itheta = ff_opus_rc_dec_uint_step(rc, qn/2);
|
|
else if (dualstereo || B0 > 1)
|
|
itheta = ff_opus_rc_dec_uint(rc, qn+1);
|
|
else
|
|
itheta = ff_opus_rc_dec_uint_tri(rc, qn);
|
|
itheta = itheta * 16384 / qn;
|
|
/* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
|
|
Let's do that at higher complexity */
|
|
} else if (dualstereo) {
|
|
inv = (b > 2 << 3 && s->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0;
|
|
itheta = 0;
|
|
}
|
|
qalloc = opus_rc_tell_frac(rc) - tell;
|
|
b -= qalloc;
|
|
|
|
orig_fill = fill;
|
|
if (itheta == 0) {
|
|
imid = 32767;
|
|
iside = 0;
|
|
fill = av_mod_uintp2(fill, blocks);
|
|
delta = -16384;
|
|
} else if (itheta == 16384) {
|
|
imid = 0;
|
|
iside = 32767;
|
|
fill &= ((1 << blocks) - 1) << blocks;
|
|
delta = 16384;
|
|
} else {
|
|
imid = celt_cos(itheta);
|
|
iside = celt_cos(16384-itheta);
|
|
/* This is the mid vs side allocation that minimizes squared error
|
|
in that band. */
|
|
delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
|
|
}
|
|
|
|
mid = imid / 32768.0f;
|
|
side = iside / 32768.0f;
|
|
|
|
/* This is a special case for N=2 that only works for stereo and takes
|
|
advantage of the fact that mid and side are orthogonal to encode
|
|
the side with just one bit. */
|
|
if (N == 2 && dualstereo) {
|
|
int c;
|
|
int sign = 0;
|
|
float tmp;
|
|
float *x2, *y2;
|
|
mbits = b;
|
|
/* Only need one bit for the side */
|
|
sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
|
|
mbits -= sbits;
|
|
c = (itheta > 8192);
|
|
s->remaining2 -= qalloc+sbits;
|
|
|
|
x2 = c ? Y : X;
|
|
y2 = c ? X : Y;
|
|
if (sbits)
|
|
sign = ff_opus_rc_get_raw(rc, 1);
|
|
sign = 1 - 2 * sign;
|
|
/* We use orig_fill here because we want to fold the side, but if
|
|
itheta==16384, we'll have cleared the low bits of fill. */
|
|
cm = celt_decode_band(s, rc, band, x2, NULL, N, mbits, blocks,
|
|
lowband, duration, lowband_out, level, gain,
|
|
lowband_scratch, orig_fill);
|
|
/* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
|
|
and there's no need to worry about mixing with the other channel. */
|
|
y2[0] = -sign * x2[1];
|
|
y2[1] = sign * x2[0];
|
|
X[0] *= mid;
|
|
X[1] *= mid;
|
|
Y[0] *= side;
|
|
Y[1] *= side;
|
|
tmp = X[0];
|
|
X[0] = tmp - Y[0];
|
|
Y[0] = tmp + Y[0];
|
|
tmp = X[1];
|
|
X[1] = tmp - Y[1];
|
|
Y[1] = tmp + Y[1];
|
|
} else {
|
|
/* "Normal" split code */
|
|
float *next_lowband2 = NULL;
|
|
float *next_lowband_out1 = NULL;
|
|
int next_level = 0;
|
|
int rebalance;
|
|
|
|
/* Give more bits to low-energy MDCTs than they would
|
|
* otherwise deserve */
|
|
if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) {
|
|
if (itheta > 8192)
|
|
/* Rough approximation for pre-echo masking */
|
|
delta -= delta >> (4 - duration);
|
|
else
|
|
/* Corresponds to a forward-masking slope of
|
|
* 1.5 dB per 10 ms */
|
|
delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
|
|
}
|
|
mbits = av_clip((b - delta) / 2, 0, b);
|
|
sbits = b - mbits;
|
|
s->remaining2 -= qalloc;
|
|
|
|
if (lowband && !dualstereo)
|
|
next_lowband2 = lowband + N; /* >32-bit split case */
|
|
|
|
/* Only stereo needs to pass on lowband_out.
|
|
* Otherwise, it's handled at the end */
|
|
if (dualstereo)
|
|
next_lowband_out1 = lowband_out;
|
|
else
|
|
next_level = level + 1;
|
|
|
|
rebalance = s->remaining2;
|
|
if (mbits >= sbits) {
|
|
/* In stereo mode, we do not apply a scaling to the mid
|
|
* because we need the normalized mid for folding later */
|
|
cm = celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
|
|
lowband, duration, next_lowband_out1,
|
|
next_level, dualstereo ? 1.0f : (gain * mid),
|
|
lowband_scratch, fill);
|
|
|
|
rebalance = mbits - (rebalance - s->remaining2);
|
|
if (rebalance > 3 << 3 && itheta != 0)
|
|
sbits += rebalance - (3 << 3);
|
|
|
|
/* For a stereo split, the high bits of fill are always zero,
|
|
* so no folding will be done to the side. */
|
|
cm |= celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
|
|
next_lowband2, duration, NULL,
|
|
next_level, gain * side, NULL,
|
|
fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
|
|
} else {
|
|
/* For a stereo split, the high bits of fill are always zero,
|
|
* so no folding will be done to the side. */
|
|
cm = celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
|
|
next_lowband2, duration, NULL,
|
|
next_level, gain * side, NULL,
|
|
fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
|
|
|
|
rebalance = sbits - (rebalance - s->remaining2);
|
|
if (rebalance > 3 << 3 && itheta != 16384)
|
|
mbits += rebalance - (3 << 3);
|
|
|
|
/* In stereo mode, we do not apply a scaling to the mid because
|
|
* we need the normalized mid for folding later */
|
|
cm |= celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
|
|
lowband, duration, next_lowband_out1,
|
|
next_level, dualstereo ? 1.0f : (gain * mid),
|
|
lowband_scratch, fill);
|
|
}
|
|
}
|
|
} else {
|
|
/* This is the basic no-split case */
|
|
unsigned int q = celt_bits2pulses(cache, b);
|
|
unsigned int curr_bits = celt_pulses2bits(cache, q);
|
|
s->remaining2 -= curr_bits;
|
|
|
|
/* Ensures we can never bust the budget */
|
|
while (s->remaining2 < 0 && q > 0) {
|
|
s->remaining2 += curr_bits;
|
|
curr_bits = celt_pulses2bits(cache, --q);
|
|
s->remaining2 -= curr_bits;
|
|
}
|
|
|
|
if (q != 0) {
|
|
/* Finally do the actual quantization */
|
|
cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
|
|
s->spread, blocks, gain);
|
|
} else {
|
|
/* If there's no pulse, fill the band anyway */
|
|
int j;
|
|
unsigned int cm_mask = (1 << blocks) - 1;
|
|
fill &= cm_mask;
|
|
if (!fill) {
|
|
for (j = 0; j < N; j++)
|
|
X[j] = 0.0f;
|
|
} else {
|
|
if (!lowband) {
|
|
/* Noise */
|
|
for (j = 0; j < N; j++)
|
|
X[j] = (((int32_t)celt_rng(s)) >> 20);
|
|
cm = cm_mask;
|
|
} else {
|
|
/* Folded spectrum */
|
|
for (j = 0; j < N; j++) {
|
|
/* About 48 dB below the "normal" folding level */
|
|
X[j] = lowband[j] + (((celt_rng(s)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
|
|
}
|
|
cm = fill;
|
|
}
|
|
celt_renormalize_vector(X, N, gain);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* This code is used by the decoder and by the resynthesis-enabled encoder */
|
|
if (dualstereo) {
|
|
int j;
|
|
if (N != 2)
|
|
celt_stereo_merge(X, Y, mid, N);
|
|
if (inv) {
|
|
for (j = 0; j < N; j++)
|
|
Y[j] *= -1;
|
|
}
|
|
} else if (level == 0) {
|
|
int k;
|
|
|
|
/* Undo the sample reorganization going from time order to frequency order */
|
|
if (B0 > 1)
|
|
celt_interleave_hadamard(s->scratch, X, N_B>>recombine,
|
|
B0<<recombine, longblocks);
|
|
|
|
/* Undo time-freq changes that we did earlier */
|
|
N_B = N_B0;
|
|
blocks = B0;
|
|
for (k = 0; k < time_divide; k++) {
|
|
blocks >>= 1;
|
|
N_B <<= 1;
|
|
cm |= cm >> blocks;
|
|
celt_haar1(X, N_B, blocks);
|
|
}
|
|
|
|
for (k = 0; k < recombine; k++) {
|
|
cm = ff_celt_bit_deinterleave[cm];
|
|
celt_haar1(X, N0>>k, 1<<k);
|
|
}
|
|
blocks <<= recombine;
|
|
|
|
/* Scale output for later folding */
|
|
if (lowband_out) {
|
|
int j;
|
|
float n = sqrtf(N0);
|
|
for (j = 0; j < N0; j++)
|
|
lowband_out[j] = n * X[j];
|
|
}
|
|
cm = av_mod_uintp2(cm, blocks);
|
|
}
|
|
return cm;
|
|
}
|
|
|
|
static void celt_denormalize(CeltContext *s, CeltFrame *frame, float *data)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
float *dst = data + (ff_celt_freq_bands[i] << s->duration);
|
|
float norm = exp2(frame->energy[i] + ff_celt_mean_energy[i]);
|
|
|
|
for (j = 0; j < ff_celt_freq_range[i] << s->duration; j++)
|
|
dst[j] *= norm;
|
|
}
|
|
}
|
|
|
|
static void celt_postfilter_apply_transition(CeltFrame *frame, float *data)
|
|
{
|
|
const int T0 = frame->pf_period_old;
|
|
const int T1 = frame->pf_period;
|
|
|
|
float g00, g01, g02;
|
|
float g10, g11, g12;
|
|
|
|
float x0, x1, x2, x3, x4;
|
|
|
|
int i;
|
|
|
|
if (frame->pf_gains[0] == 0.0 &&
|
|
frame->pf_gains_old[0] == 0.0)
|
|
return;
|
|
|
|
g00 = frame->pf_gains_old[0];
|
|
g01 = frame->pf_gains_old[1];
|
|
g02 = frame->pf_gains_old[2];
|
|
g10 = frame->pf_gains[0];
|
|
g11 = frame->pf_gains[1];
|
|
g12 = frame->pf_gains[2];
|
|
|
|
x1 = data[-T1 + 1];
|
|
x2 = data[-T1];
|
|
x3 = data[-T1 - 1];
|
|
x4 = data[-T1 - 2];
|
|
|
|
for (i = 0; i < CELT_OVERLAP; i++) {
|
|
float w = ff_celt_window2[i];
|
|
x0 = data[i - T1 + 2];
|
|
|
|
data[i] += (1.0 - w) * g00 * data[i - T0] +
|
|
(1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) +
|
|
(1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) +
|
|
w * g10 * x2 +
|
|
w * g11 * (x1 + x3) +
|
|
w * g12 * (x0 + x4);
|
|
x4 = x3;
|
|
x3 = x2;
|
|
x2 = x1;
|
|
x1 = x0;
|
|
}
|
|
}
|
|
|
|
static void celt_postfilter_apply(CeltFrame *frame,
|
|
float *data, int len)
|
|
{
|
|
const int T = frame->pf_period;
|
|
float g0, g1, g2;
|
|
float x0, x1, x2, x3, x4;
|
|
int i;
|
|
|
|
if (frame->pf_gains[0] == 0.0 || len <= 0)
|
|
return;
|
|
|
|
g0 = frame->pf_gains[0];
|
|
g1 = frame->pf_gains[1];
|
|
g2 = frame->pf_gains[2];
|
|
|
|
x4 = data[-T - 2];
|
|
x3 = data[-T - 1];
|
|
x2 = data[-T];
|
|
x1 = data[-T + 1];
|
|
|
|
for (i = 0; i < len; i++) {
|
|
x0 = data[i - T + 2];
|
|
data[i] += g0 * x2 +
|
|
g1 * (x1 + x3) +
|
|
g2 * (x0 + x4);
|
|
x4 = x3;
|
|
x3 = x2;
|
|
x2 = x1;
|
|
x1 = x0;
|
|
}
|
|
}
|
|
|
|
static void celt_postfilter(CeltContext *s, CeltFrame *frame)
|
|
{
|
|
int len = s->blocksize * s->blocks;
|
|
|
|
celt_postfilter_apply_transition(frame, frame->buf + 1024);
|
|
|
|
frame->pf_period_old = frame->pf_period;
|
|
memcpy(frame->pf_gains_old, frame->pf_gains, sizeof(frame->pf_gains));
|
|
|
|
frame->pf_period = frame->pf_period_new;
|
|
memcpy(frame->pf_gains, frame->pf_gains_new, sizeof(frame->pf_gains));
|
|
|
|
if (len > CELT_OVERLAP) {
|
|
celt_postfilter_apply_transition(frame, frame->buf + 1024 + CELT_OVERLAP);
|
|
celt_postfilter_apply(frame, frame->buf + 1024 + 2 * CELT_OVERLAP,
|
|
len - 2 * CELT_OVERLAP);
|
|
|
|
frame->pf_period_old = frame->pf_period;
|
|
memcpy(frame->pf_gains_old, frame->pf_gains, sizeof(frame->pf_gains));
|
|
}
|
|
|
|
memmove(frame->buf, frame->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float));
|
|
}
|
|
|
|
static int parse_postfilter(CeltContext *s, OpusRangeCoder *rc, int consumed)
|
|
{
|
|
static const float postfilter_taps[3][3] = {
|
|
{ 0.3066406250f, 0.2170410156f, 0.1296386719f },
|
|
{ 0.4638671875f, 0.2680664062f, 0.0 },
|
|
{ 0.7998046875f, 0.1000976562f, 0.0 }
|
|
};
|
|
int i;
|
|
|
|
memset(s->frame[0].pf_gains_new, 0, sizeof(s->frame[0].pf_gains_new));
|
|
memset(s->frame[1].pf_gains_new, 0, sizeof(s->frame[1].pf_gains_new));
|
|
|
|
if (s->startband == 0 && consumed + 16 <= s->framebits) {
|
|
int has_postfilter = ff_opus_rc_dec_log(rc, 1);
|
|
if (has_postfilter) {
|
|
float gain;
|
|
int tapset, octave, period;
|
|
|
|
octave = ff_opus_rc_dec_uint(rc, 6);
|
|
period = (16 << octave) + ff_opus_rc_get_raw(rc, 4 + octave) - 1;
|
|
gain = 0.09375f * (ff_opus_rc_get_raw(rc, 3) + 1);
|
|
tapset = (opus_rc_tell(rc) + 2 <= s->framebits) ?
|
|
ff_opus_rc_dec_cdf(rc, ff_celt_model_tapset) : 0;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
CeltFrame *frame = &s->frame[i];
|
|
|
|
frame->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
|
|
frame->pf_gains_new[0] = gain * postfilter_taps[tapset][0];
|
|
frame->pf_gains_new[1] = gain * postfilter_taps[tapset][1];
|
|
frame->pf_gains_new[2] = gain * postfilter_taps[tapset][2];
|
|
}
|
|
}
|
|
|
|
consumed = opus_rc_tell(rc);
|
|
}
|
|
|
|
return consumed;
|
|
}
|
|
|
|
static void process_anticollapse(CeltContext *s, CeltFrame *frame, float *X)
|
|
{
|
|
int i, j, k;
|
|
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
int renormalize = 0;
|
|
float *xptr;
|
|
float prev[2];
|
|
float Ediff, r;
|
|
float thresh, sqrt_1;
|
|
int depth;
|
|
|
|
/* depth in 1/8 bits */
|
|
depth = (1 + s->pulses[i]) / (ff_celt_freq_range[i] << s->duration);
|
|
thresh = exp2f(-1.0 - 0.125f * depth);
|
|
sqrt_1 = 1.0f / sqrtf(ff_celt_freq_range[i] << s->duration);
|
|
|
|
xptr = X + (ff_celt_freq_bands[i] << s->duration);
|
|
|
|
prev[0] = frame->prev_energy[0][i];
|
|
prev[1] = frame->prev_energy[1][i];
|
|
if (s->coded_channels == 1) {
|
|
CeltFrame *frame1 = &s->frame[1];
|
|
|
|
prev[0] = FFMAX(prev[0], frame1->prev_energy[0][i]);
|
|
prev[1] = FFMAX(prev[1], frame1->prev_energy[1][i]);
|
|
}
|
|
Ediff = frame->energy[i] - FFMIN(prev[0], prev[1]);
|
|
Ediff = FFMAX(0, Ediff);
|
|
|
|
/* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
|
|
short blocks don't have the same energy as long */
|
|
r = exp2(1 - Ediff);
|
|
if (s->duration == 3)
|
|
r *= M_SQRT2;
|
|
r = FFMIN(thresh, r) * sqrt_1;
|
|
for (k = 0; k < 1 << s->duration; k++) {
|
|
/* Detect collapse */
|
|
if (!(frame->collapse_masks[i] & 1 << k)) {
|
|
/* Fill with noise */
|
|
for (j = 0; j < ff_celt_freq_range[i]; j++)
|
|
xptr[(j << s->duration) + k] = (celt_rng(s) & 0x8000) ? r : -r;
|
|
renormalize = 1;
|
|
}
|
|
}
|
|
|
|
/* We just added some energy, so we need to renormalize */
|
|
if (renormalize)
|
|
celt_renormalize_vector(xptr, ff_celt_freq_range[i] << s->duration, 1.0f);
|
|
}
|
|
}
|
|
|
|
static void celt_decode_bands(CeltContext *s, OpusRangeCoder *rc)
|
|
{
|
|
float lowband_scratch[8 * 22];
|
|
float norm[2 * 8 * 100];
|
|
|
|
int totalbits = (s->framebits << 3) - s->anticollapse_bit;
|
|
|
|
int update_lowband = 1;
|
|
int lowband_offset = 0;
|
|
|
|
int i, j;
|
|
|
|
memset(s->coeffs, 0, sizeof(s->coeffs));
|
|
|
|
for (i = s->startband; i < s->endband; i++) {
|
|
int band_offset = ff_celt_freq_bands[i] << s->duration;
|
|
int band_size = ff_celt_freq_range[i] << s->duration;
|
|
float *X = s->coeffs[0] + band_offset;
|
|
float *Y = (s->coded_channels == 2) ? s->coeffs[1] + band_offset : NULL;
|
|
|
|
int consumed = opus_rc_tell_frac(rc);
|
|
float *norm2 = norm + 8 * 100;
|
|
int effective_lowband = -1;
|
|
unsigned int cm[2];
|
|
int b;
|
|
|
|
/* Compute how many bits we want to allocate to this band */
|
|
if (i != s->startband)
|
|
s->remaining -= consumed;
|
|
s->remaining2 = totalbits - consumed - 1;
|
|
if (i <= s->codedbands - 1) {
|
|
int curr_balance = s->remaining / FFMIN(3, s->codedbands-i);
|
|
b = av_clip_uintp2(FFMIN(s->remaining2 + 1, s->pulses[i] + curr_balance), 14);
|
|
} else
|
|
b = 0;
|
|
|
|
if (ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[s->startband] &&
|
|
(update_lowband || lowband_offset == 0))
|
|
lowband_offset = i;
|
|
|
|
/* Get a conservative estimate of the collapse_mask's for the bands we're
|
|
going to be folding from. */
|
|
if (lowband_offset != 0 && (s->spread != CELT_SPREAD_AGGRESSIVE ||
|
|
s->blocks > 1 || s->tf_change[i] < 0)) {
|
|
int foldstart, foldend;
|
|
|
|
/* This ensures we never repeat spectral content within one band */
|
|
effective_lowband = FFMAX(ff_celt_freq_bands[s->startband],
|
|
ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
|
|
foldstart = lowband_offset;
|
|
while (ff_celt_freq_bands[--foldstart] > effective_lowband);
|
|
foldend = lowband_offset - 1;
|
|
while (ff_celt_freq_bands[++foldend] < effective_lowband + ff_celt_freq_range[i]);
|
|
|
|
cm[0] = cm[1] = 0;
|
|
for (j = foldstart; j < foldend; j++) {
|
|
cm[0] |= s->frame[0].collapse_masks[j];
|
|
cm[1] |= s->frame[s->coded_channels - 1].collapse_masks[j];
|
|
}
|
|
} else
|
|
/* Otherwise, we'll be using the LCG to fold, so all blocks will (almost
|
|
always) be non-zero.*/
|
|
cm[0] = cm[1] = (1 << s->blocks) - 1;
|
|
|
|
if (s->dualstereo && i == s->intensitystereo) {
|
|
/* Switch off dual stereo to do intensity */
|
|
s->dualstereo = 0;
|
|
for (j = ff_celt_freq_bands[s->startband] << s->duration; j < band_offset; j++)
|
|
norm[j] = (norm[j] + norm2[j]) / 2;
|
|
}
|
|
|
|
if (s->dualstereo) {
|
|
cm[0] = celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks,
|
|
effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
|
|
norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
|
|
|
|
cm[1] = celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks,
|
|
effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration,
|
|
norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
|
|
} else {
|
|
cm[0] = celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks,
|
|
effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
|
|
norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
|
|
|
|
cm[1] = cm[0];
|
|
}
|
|
|
|
s->frame[0].collapse_masks[i] = (uint8_t)cm[0];
|
|
s->frame[s->coded_channels - 1].collapse_masks[i] = (uint8_t)cm[1];
|
|
s->remaining += s->pulses[i] + consumed;
|
|
|
|
/* Update the folding position only as long as we have 1 bit/sample depth */
|
|
update_lowband = (b > band_size << 3);
|
|
}
|
|
}
|
|
|
|
int ff_celt_decode_frame(CeltContext *s, OpusRangeCoder *rc,
|
|
float **output, int coded_channels, int frame_size,
|
|
int startband, int endband)
|
|
{
|
|
int i, j;
|
|
|
|
int consumed; // bits of entropy consumed thus far for this frame
|
|
int silence = 0;
|
|
int transient = 0;
|
|
int anticollapse = 0;
|
|
IMDCT15Context *imdct;
|
|
float imdct_scale = 1.0;
|
|
|
|
if (coded_channels != 1 && coded_channels != 2) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n",
|
|
coded_channels);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
if (startband < 0 || startband > endband || endband > CELT_MAX_BANDS) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n",
|
|
startband, endband);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
s->flushed = 0;
|
|
s->coded_channels = coded_channels;
|
|
s->startband = startband;
|
|
s->endband = endband;
|
|
s->framebits = rc->rb.bytes * 8;
|
|
|
|
s->duration = av_log2(frame_size / CELT_SHORT_BLOCKSIZE);
|
|
if (s->duration > CELT_MAX_LOG_BLOCKS ||
|
|
frame_size != CELT_SHORT_BLOCKSIZE * (1 << s->duration)) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n",
|
|
frame_size);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (!s->output_channels)
|
|
s->output_channels = coded_channels;
|
|
|
|
memset(s->frame[0].collapse_masks, 0, sizeof(s->frame[0].collapse_masks));
|
|
memset(s->frame[1].collapse_masks, 0, sizeof(s->frame[1].collapse_masks));
|
|
|
|
consumed = opus_rc_tell(rc);
|
|
|
|
/* obtain silence flag */
|
|
if (consumed >= s->framebits)
|
|
silence = 1;
|
|
else if (consumed == 1)
|
|
silence = ff_opus_rc_dec_log(rc, 15);
|
|
|
|
|
|
if (silence) {
|
|
consumed = s->framebits;
|
|
rc->total_read_bits += s->framebits - opus_rc_tell(rc);
|
|
}
|
|
|
|
/* obtain post-filter options */
|
|
consumed = parse_postfilter(s, rc, consumed);
|
|
|
|
/* obtain transient flag */
|
|
if (s->duration != 0 && consumed+3 <= s->framebits)
|
|
transient = ff_opus_rc_dec_log(rc, 3);
|
|
|
|
s->blocks = transient ? 1 << s->duration : 1;
|
|
s->blocksize = frame_size / s->blocks;
|
|
|
|
imdct = s->imdct[transient ? 0 : s->duration];
|
|
|
|
if (coded_channels == 1) {
|
|
for (i = 0; i < CELT_MAX_BANDS; i++)
|
|
s->frame[0].energy[i] = FFMAX(s->frame[0].energy[i], s->frame[1].energy[i]);
|
|
}
|
|
|
|
celt_decode_coarse_energy(s, rc);
|
|
celt_decode_tf_changes (s, rc, transient);
|
|
celt_decode_allocation (s, rc);
|
|
celt_decode_fine_energy (s, rc);
|
|
celt_decode_bands (s, rc);
|
|
|
|
if (s->anticollapse_bit)
|
|
anticollapse = ff_opus_rc_get_raw(rc, 1);
|
|
|
|
celt_decode_final_energy(s, rc, s->framebits - opus_rc_tell(rc));
|
|
|
|
/* apply anti-collapse processing and denormalization to
|
|
* each coded channel */
|
|
for (i = 0; i < s->coded_channels; i++) {
|
|
CeltFrame *frame = &s->frame[i];
|
|
|
|
if (anticollapse)
|
|
process_anticollapse(s, frame, s->coeffs[i]);
|
|
|
|
celt_denormalize(s, frame, s->coeffs[i]);
|
|
}
|
|
|
|
/* stereo -> mono downmix */
|
|
if (s->output_channels < s->coded_channels) {
|
|
s->dsp->vector_fmac_scalar(s->coeffs[0], s->coeffs[1], 1.0, FFALIGN(frame_size, 16));
|
|
imdct_scale = 0.5;
|
|
} else if (s->output_channels > s->coded_channels)
|
|
memcpy(s->coeffs[1], s->coeffs[0], frame_size * sizeof(float));
|
|
|
|
if (silence) {
|
|
for (i = 0; i < 2; i++) {
|
|
CeltFrame *frame = &s->frame[i];
|
|
|
|
for (j = 0; j < FF_ARRAY_ELEMS(frame->energy); j++)
|
|
frame->energy[j] = CELT_ENERGY_SILENCE;
|
|
}
|
|
memset(s->coeffs, 0, sizeof(s->coeffs));
|
|
}
|
|
|
|
/* transform and output for each output channel */
|
|
for (i = 0; i < s->output_channels; i++) {
|
|
CeltFrame *frame = &s->frame[i];
|
|
float m = frame->deemph_coeff;
|
|
|
|
/* iMDCT and overlap-add */
|
|
for (j = 0; j < s->blocks; j++) {
|
|
float *dst = frame->buf + 1024 + j * s->blocksize;
|
|
|
|
imdct->imdct_half(imdct, dst + CELT_OVERLAP / 2, s->coeffs[i] + j,
|
|
s->blocks, imdct_scale);
|
|
s->dsp->vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2,
|
|
ff_celt_window, CELT_OVERLAP / 2);
|
|
}
|
|
|
|
/* postfilter */
|
|
celt_postfilter(s, frame);
|
|
|
|
/* deemphasis and output scaling */
|
|
for (j = 0; j < frame_size; j++) {
|
|
float tmp = frame->buf[1024 - frame_size + j] + m;
|
|
m = tmp * CELT_DEEMPH_COEFF;
|
|
output[i][j] = tmp / 32768.;
|
|
}
|
|
frame->deemph_coeff = m;
|
|
}
|
|
|
|
if (coded_channels == 1)
|
|
memcpy(s->frame[1].energy, s->frame[0].energy, sizeof(s->frame[0].energy));
|
|
|
|
for (i = 0; i < 2; i++ ) {
|
|
CeltFrame *frame = &s->frame[i];
|
|
|
|
if (!transient) {
|
|
memcpy(frame->prev_energy[1], frame->prev_energy[0], sizeof(frame->prev_energy[0]));
|
|
memcpy(frame->prev_energy[0], frame->energy, sizeof(frame->prev_energy[0]));
|
|
} else {
|
|
for (j = 0; j < CELT_MAX_BANDS; j++)
|
|
frame->prev_energy[0][j] = FFMIN(frame->prev_energy[0][j], frame->energy[j]);
|
|
}
|
|
|
|
for (j = 0; j < s->startband; j++) {
|
|
frame->prev_energy[0][j] = CELT_ENERGY_SILENCE;
|
|
frame->energy[j] = 0.0;
|
|
}
|
|
for (j = s->endband; j < CELT_MAX_BANDS; j++) {
|
|
frame->prev_energy[0][j] = CELT_ENERGY_SILENCE;
|
|
frame->energy[j] = 0.0;
|
|
}
|
|
}
|
|
|
|
s->seed = rc->range;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ff_celt_flush(CeltContext *s)
|
|
{
|
|
int i, j;
|
|
|
|
if (s->flushed)
|
|
return;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
CeltFrame *frame = &s->frame[i];
|
|
|
|
for (j = 0; j < CELT_MAX_BANDS; j++)
|
|
frame->prev_energy[0][j] = frame->prev_energy[1][j] = CELT_ENERGY_SILENCE;
|
|
|
|
memset(frame->energy, 0, sizeof(frame->energy));
|
|
memset(frame->buf, 0, sizeof(frame->buf));
|
|
|
|
memset(frame->pf_gains, 0, sizeof(frame->pf_gains));
|
|
memset(frame->pf_gains_old, 0, sizeof(frame->pf_gains_old));
|
|
memset(frame->pf_gains_new, 0, sizeof(frame->pf_gains_new));
|
|
|
|
frame->deemph_coeff = 0.0;
|
|
}
|
|
s->seed = 0;
|
|
|
|
s->flushed = 1;
|
|
}
|
|
|
|
void ff_celt_free(CeltContext **ps)
|
|
{
|
|
CeltContext *s = *ps;
|
|
int i;
|
|
|
|
if (!s)
|
|
return;
|
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s->imdct); i++)
|
|
ff_imdct15_uninit(&s->imdct[i]);
|
|
|
|
av_freep(&s->dsp);
|
|
av_freep(ps);
|
|
}
|
|
|
|
int ff_celt_init(AVCodecContext *avctx, CeltContext **ps, int output_channels)
|
|
{
|
|
CeltContext *s;
|
|
int i, ret;
|
|
|
|
if (output_channels != 1 && output_channels != 2) {
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n",
|
|
output_channels);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
s = av_mallocz(sizeof(*s));
|
|
if (!s)
|
|
return AVERROR(ENOMEM);
|
|
|
|
s->avctx = avctx;
|
|
s->output_channels = output_channels;
|
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(s->imdct); i++) {
|
|
ret = ff_imdct15_init(&s->imdct[i], i + 3);
|
|
if (ret < 0)
|
|
goto fail;
|
|
}
|
|
|
|
s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
|
|
if (!s->dsp) {
|
|
ret = AVERROR(ENOMEM);
|
|
goto fail;
|
|
}
|
|
|
|
ff_celt_flush(s);
|
|
|
|
*ps = s;
|
|
|
|
return 0;
|
|
fail:
|
|
ff_celt_free(&s);
|
|
return ret;
|
|
}
|