mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-23 12:43:46 +02:00
439 lines
13 KiB
C
439 lines
13 KiB
C
/*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#undef ftype
|
|
#undef SQRT
|
|
#undef TAN
|
|
#undef ONE
|
|
#undef TWO
|
|
#undef ZERO
|
|
#undef FMAX
|
|
#undef FMIN
|
|
#undef CLIP
|
|
#undef SAMPLE_FORMAT
|
|
#undef FABS
|
|
#undef FLOG
|
|
#undef FEXP
|
|
#undef FLOG2
|
|
#undef FLOG10
|
|
#undef FEXP2
|
|
#undef FEXP10
|
|
#undef EPSILON
|
|
#if DEPTH == 32
|
|
#define SAMPLE_FORMAT float
|
|
#define SQRT sqrtf
|
|
#define TAN tanf
|
|
#define ONE 1.f
|
|
#define TWO 2.f
|
|
#define ZERO 0.f
|
|
#define FMIN fminf
|
|
#define FMAX fmaxf
|
|
#define CLIP av_clipf
|
|
#define FABS fabsf
|
|
#define FLOG logf
|
|
#define FEXP expf
|
|
#define FLOG2 log2f
|
|
#define FLOG10 log10f
|
|
#define FEXP2 exp2f
|
|
#define FEXP10 ff_exp10f
|
|
#define EPSILON (1.f / (1 << 23))
|
|
#define ftype float
|
|
#else
|
|
#define SAMPLE_FORMAT double
|
|
#define SQRT sqrt
|
|
#define TAN tan
|
|
#define ONE 1.0
|
|
#define TWO 2.0
|
|
#define ZERO 0.0
|
|
#define FMIN fmin
|
|
#define FMAX fmax
|
|
#define CLIP av_clipd
|
|
#define FABS fabs
|
|
#define FLOG log
|
|
#define FEXP exp
|
|
#define FLOG2 log2
|
|
#define FLOG10 log10
|
|
#define FEXP2 exp2
|
|
#define FEXP10 ff_exp10
|
|
#define EPSILON (1.0 / (1LL << 53))
|
|
#define ftype double
|
|
#endif
|
|
|
|
#define LIN2LOG(x) (20.0 * FLOG10(x))
|
|
#define LOG2LIN(x) (FEXP10(x / 20.0))
|
|
|
|
#define fn3(a,b) a##_##b
|
|
#define fn2(a,b) fn3(a,b)
|
|
#define fn(a) fn2(a, SAMPLE_FORMAT)
|
|
|
|
static ftype fn(get_svf)(ftype in, const ftype *m, const ftype *a, ftype *b)
|
|
{
|
|
const ftype v0 = in;
|
|
const ftype v3 = v0 - b[1];
|
|
const ftype v1 = a[0] * b[0] + a[1] * v3;
|
|
const ftype v2 = b[1] + a[1] * b[0] + a[2] * v3;
|
|
|
|
b[0] = TWO * v1 - b[0];
|
|
b[1] = TWO * v2 - b[1];
|
|
|
|
return m[0] * v0 + m[1] * v1 + m[2] * v2;
|
|
}
|
|
|
|
static int fn(filter_prepare)(AVFilterContext *ctx)
|
|
{
|
|
AudioDynamicEqualizerContext *s = ctx->priv;
|
|
const ftype sample_rate = ctx->inputs[0]->sample_rate;
|
|
const ftype dfrequency = FMIN(s->dfrequency, sample_rate * 0.5);
|
|
const ftype dg = TAN(M_PI * dfrequency / sample_rate);
|
|
const ftype dqfactor = s->dqfactor;
|
|
const int dftype = s->dftype;
|
|
ftype *da = fn(s->da);
|
|
ftype *dm = fn(s->dm);
|
|
ftype k;
|
|
|
|
s->threshold_log = LIN2LOG(s->threshold);
|
|
s->dattack_coef = get_coef(s->dattack, sample_rate);
|
|
s->drelease_coef = get_coef(s->drelease, sample_rate);
|
|
s->gattack_coef = s->dattack_coef * 0.25;
|
|
s->grelease_coef = s->drelease_coef * 0.25;
|
|
|
|
switch (dftype) {
|
|
case 0:
|
|
k = ONE / dqfactor;
|
|
|
|
da[0] = ONE / (ONE + dg * (dg + k));
|
|
da[1] = dg * da[0];
|
|
da[2] = dg * da[1];
|
|
|
|
dm[0] = ZERO;
|
|
dm[1] = k;
|
|
dm[2] = ZERO;
|
|
break;
|
|
case 1:
|
|
k = ONE / dqfactor;
|
|
|
|
da[0] = ONE / (ONE + dg * (dg + k));
|
|
da[1] = dg * da[0];
|
|
da[2] = dg * da[1];
|
|
|
|
dm[0] = ZERO;
|
|
dm[1] = ZERO;
|
|
dm[2] = ONE;
|
|
break;
|
|
case 2:
|
|
k = ONE / dqfactor;
|
|
|
|
da[0] = ONE / (ONE + dg * (dg + k));
|
|
da[1] = dg * da[0];
|
|
da[2] = dg * da[1];
|
|
|
|
dm[0] = ZERO;
|
|
dm[1] = -k;
|
|
dm[2] = -ONE;
|
|
break;
|
|
case 3:
|
|
k = ONE / dqfactor;
|
|
|
|
da[0] = ONE / (ONE + dg * (dg + k));
|
|
da[1] = dg * da[0];
|
|
da[2] = dg * da[1];
|
|
|
|
dm[0] = ONE;
|
|
dm[1] = -k;
|
|
dm[2] = -TWO;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define PEAKS(empty_value,op,sample, psample)\
|
|
if (!empty && psample == ss[front]) { \
|
|
ss[front] = empty_value; \
|
|
if (back != front) { \
|
|
front--; \
|
|
if (front < 0) \
|
|
front = n - 1; \
|
|
} \
|
|
empty = front == back; \
|
|
} \
|
|
\
|
|
if (!empty && sample op ss[front]) { \
|
|
while (1) { \
|
|
ss[front] = empty_value; \
|
|
if (back == front) { \
|
|
empty = 1; \
|
|
break; \
|
|
} \
|
|
front--; \
|
|
if (front < 0) \
|
|
front = n - 1; \
|
|
} \
|
|
} \
|
|
\
|
|
while (!empty && sample op ss[back]) { \
|
|
ss[back] = empty_value; \
|
|
if (back == front) { \
|
|
empty = 1; \
|
|
break; \
|
|
} \
|
|
back++; \
|
|
if (back >= n) \
|
|
back = 0; \
|
|
} \
|
|
\
|
|
if (!empty) { \
|
|
back--; \
|
|
if (back < 0) \
|
|
back = n - 1; \
|
|
}
|
|
|
|
static void fn(queue_sample)(ChannelContext *cc,
|
|
const ftype x,
|
|
const int nb_samples)
|
|
{
|
|
ftype *ss = cc->dqueue;
|
|
ftype *qq = cc->queue;
|
|
int front = cc->front;
|
|
int back = cc->back;
|
|
int empty, n, pos = cc->position;
|
|
ftype px = qq[pos];
|
|
|
|
fn(cc->sum) += x;
|
|
fn(cc->log_sum) += FLOG2(x);
|
|
if (cc->size >= nb_samples) {
|
|
fn(cc->sum) -= px;
|
|
fn(cc->log_sum) -= FLOG2(px);
|
|
}
|
|
|
|
qq[pos] = x;
|
|
pos++;
|
|
if (pos >= nb_samples)
|
|
pos = 0;
|
|
cc->position = pos;
|
|
|
|
if (cc->size < nb_samples)
|
|
cc->size++;
|
|
n = cc->size;
|
|
|
|
empty = (front == back) && (ss[front] == ZERO);
|
|
PEAKS(ZERO, >, x, px)
|
|
|
|
ss[back] = x;
|
|
|
|
cc->front = front;
|
|
cc->back = back;
|
|
}
|
|
|
|
static ftype fn(get_peak)(ChannelContext *cc, ftype *score)
|
|
{
|
|
ftype s, *ss = cc->dqueue;
|
|
s = FEXP2(fn(cc->log_sum) / cc->size) / (fn(cc->sum) / cc->size);
|
|
*score = LIN2LOG(s);
|
|
return ss[cc->front];
|
|
}
|
|
|
|
static int fn(filter_channels)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
|
|
{
|
|
AudioDynamicEqualizerContext *s = ctx->priv;
|
|
ThreadData *td = arg;
|
|
AVFrame *in = td->in;
|
|
AVFrame *out = td->out;
|
|
const ftype sample_rate = in->sample_rate;
|
|
const int isample_rate = in->sample_rate;
|
|
const ftype makeup = s->makeup;
|
|
const ftype ratio = s->ratio;
|
|
const ftype range = s->range;
|
|
const ftype tfrequency = FMIN(s->tfrequency, sample_rate * 0.5);
|
|
const int mode = s->mode;
|
|
const ftype power = (mode == CUT_BELOW || mode == CUT_ABOVE) ? -ONE : ONE;
|
|
const ftype grelease = s->grelease_coef;
|
|
const ftype gattack = s->gattack_coef;
|
|
const ftype drelease = s->drelease_coef;
|
|
const ftype dattack = s->dattack_coef;
|
|
const ftype tqfactor = s->tqfactor;
|
|
const ftype itqfactor = ONE / tqfactor;
|
|
const ftype fg = TAN(M_PI * tfrequency / sample_rate);
|
|
const int start = (in->ch_layout.nb_channels * jobnr) / nb_jobs;
|
|
const int end = (in->ch_layout.nb_channels * (jobnr+1)) / nb_jobs;
|
|
const int is_disabled = ctx->is_disabled;
|
|
const int detection = s->detection;
|
|
const int tftype = s->tftype;
|
|
const ftype *da = fn(s->da);
|
|
const ftype *dm = fn(s->dm);
|
|
|
|
if (detection == DET_ON) {
|
|
for (int ch = start; ch < end; ch++) {
|
|
const ftype *src = (const ftype *)in->extended_data[ch];
|
|
ChannelContext *cc = &s->cc[ch];
|
|
ftype *tstate = fn(cc->tstate);
|
|
ftype new_threshold = ZERO;
|
|
|
|
if (cc->detection != detection) {
|
|
cc->detection = detection;
|
|
fn(cc->new_threshold_log) = LIN2LOG(EPSILON);
|
|
}
|
|
|
|
for (int n = 0; n < in->nb_samples; n++) {
|
|
ftype detect = FABS(fn(get_svf)(src[n], dm, da, tstate));
|
|
new_threshold = FMAX(new_threshold, detect);
|
|
}
|
|
|
|
fn(cc->new_threshold_log) = FMAX(fn(cc->new_threshold_log), LIN2LOG(new_threshold));
|
|
}
|
|
} else if (detection == DET_ADAPTIVE) {
|
|
for (int ch = start; ch < end; ch++) {
|
|
const ftype *src = (const ftype *)in->extended_data[ch];
|
|
ChannelContext *cc = &s->cc[ch];
|
|
ftype *tstate = fn(cc->tstate);
|
|
ftype score, peak;
|
|
|
|
for (int n = 0; n < in->nb_samples; n++) {
|
|
ftype detect = FMAX(FABS(fn(get_svf)(src[n], dm, da, tstate)), EPSILON);
|
|
fn(queue_sample)(cc, detect, isample_rate);
|
|
}
|
|
|
|
peak = fn(get_peak)(cc, &score);
|
|
|
|
if (score >= -3.5) {
|
|
fn(cc->threshold_log) = LIN2LOG(peak);
|
|
} else if (cc->detection == DET_UNSET) {
|
|
fn(cc->threshold_log) = s->threshold_log;
|
|
}
|
|
cc->detection = detection;
|
|
}
|
|
} else if (detection == DET_DISABLED) {
|
|
for (int ch = start; ch < end; ch++) {
|
|
ChannelContext *cc = &s->cc[ch];
|
|
fn(cc->threshold_log) = s->threshold_log;
|
|
cc->detection = detection;
|
|
}
|
|
} else if (detection == DET_OFF) {
|
|
for (int ch = start; ch < end; ch++) {
|
|
ChannelContext *cc = &s->cc[ch];
|
|
if (cc->detection == DET_ON)
|
|
fn(cc->threshold_log) = fn(cc->new_threshold_log);
|
|
else if (cc->detection == DET_UNSET)
|
|
fn(cc->threshold_log) = s->threshold_log;
|
|
cc->detection = detection;
|
|
}
|
|
}
|
|
|
|
for (int ch = start; ch < end; ch++) {
|
|
const ftype *src = (const ftype *)in->extended_data[ch];
|
|
ftype *dst = (ftype *)out->extended_data[ch];
|
|
ChannelContext *cc = &s->cc[ch];
|
|
const ftype threshold_log = fn(cc->threshold_log);
|
|
ftype *fa = fn(cc->fa), *fm = fn(cc->fm);
|
|
ftype *fstate = fn(cc->fstate);
|
|
ftype *dstate = fn(cc->dstate);
|
|
ftype detect = fn(cc->detect);
|
|
ftype lin_gain = fn(cc->lin_gain);
|
|
int init = cc->init;
|
|
|
|
for (int n = 0; n < out->nb_samples; n++) {
|
|
ftype new_detect, new_lin_gain = ONE;
|
|
ftype f, v, listen, k, g, ld;
|
|
|
|
listen = fn(get_svf)(src[n], dm, da, dstate);
|
|
if (mode > LISTEN) {
|
|
new_detect = FABS(listen);
|
|
f = (new_detect > detect) * dattack + (new_detect <= detect) * drelease;
|
|
detect = f * new_detect + (ONE - f) * detect;
|
|
}
|
|
|
|
switch (mode) {
|
|
case LISTEN:
|
|
break;
|
|
case CUT_BELOW:
|
|
case BOOST_BELOW:
|
|
ld = LIN2LOG(detect);
|
|
if (ld < threshold_log) {
|
|
ftype new_log_gain = CLIP(makeup + (threshold_log - ld) * ratio, ZERO, range) * power;
|
|
new_lin_gain = LOG2LIN(new_log_gain);
|
|
}
|
|
break;
|
|
case CUT_ABOVE:
|
|
case BOOST_ABOVE:
|
|
ld = LIN2LOG(detect);
|
|
if (ld > threshold_log) {
|
|
ftype new_log_gain = CLIP(makeup + (ld - threshold_log) * ratio, ZERO, range) * power;
|
|
new_lin_gain = LOG2LIN(new_log_gain);
|
|
}
|
|
break;
|
|
}
|
|
|
|
f = (new_lin_gain > lin_gain) * gattack + (new_lin_gain <= lin_gain) * grelease;
|
|
new_lin_gain = f * new_lin_gain + (ONE - f) * lin_gain;
|
|
|
|
if (lin_gain != new_lin_gain || !init) {
|
|
init = 1;
|
|
lin_gain = new_lin_gain;
|
|
|
|
switch (tftype) {
|
|
case 0:
|
|
k = itqfactor / lin_gain;
|
|
|
|
fa[0] = ONE / (ONE + fg * (fg + k));
|
|
fa[1] = fg * fa[0];
|
|
fa[2] = fg * fa[1];
|
|
|
|
fm[0] = ONE;
|
|
fm[1] = k * (lin_gain * lin_gain - ONE);
|
|
fm[2] = ZERO;
|
|
break;
|
|
case 1:
|
|
k = itqfactor;
|
|
g = fg / SQRT(lin_gain);
|
|
|
|
fa[0] = ONE / (ONE + g * (g + k));
|
|
fa[1] = g * fa[0];
|
|
fa[2] = g * fa[1];
|
|
|
|
fm[0] = ONE;
|
|
fm[1] = k * (lin_gain - ONE);
|
|
fm[2] = lin_gain * lin_gain - ONE;
|
|
break;
|
|
case 2:
|
|
k = itqfactor;
|
|
g = fg * SQRT(lin_gain);
|
|
|
|
fa[0] = ONE / (ONE + g * (g + k));
|
|
fa[1] = g * fa[0];
|
|
fa[2] = g * fa[1];
|
|
|
|
fm[0] = lin_gain * lin_gain;
|
|
fm[1] = k * (ONE - lin_gain) * lin_gain;
|
|
fm[2] = ONE - lin_gain * lin_gain;
|
|
break;
|
|
}
|
|
}
|
|
|
|
v = fn(get_svf)(src[n], fm, fa, fstate);
|
|
v = mode == LISTEN ? listen : v;
|
|
dst[n] = is_disabled ? src[n] : v;
|
|
}
|
|
|
|
fn(cc->detect) = detect;
|
|
fn(cc->lin_gain) = lin_gain;
|
|
cc->init = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|