1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-12 19:18:44 +02:00
FFmpeg/libavcodec/x86/dsputil.asm
James Almer 197fe392db x86/dsputil: use HADDD where applicable
Signed-off-by: James Almer <jamrial@gmail.com>
Reviewed-by: "Ronald S. Bultje" <rsbultje@gmail.com>
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
2014-04-17 14:15:35 +02:00

516 lines
12 KiB
NASM

;******************************************************************************
;* MMX optimized DSP utils
;* Copyright (c) 2008 Loren Merritt
;* Copyright (c) 2003-2013 Michael Niedermayer
;* Copyright (c) 2013 Daniel Kang
;*
;* This file is part of FFmpeg.
;*
;* FFmpeg is free software; you can redistribute it and/or
;* modify it under the terms of the GNU Lesser General Public
;* License as published by the Free Software Foundation; either
;* version 2.1 of the License, or (at your option) any later version.
;*
;* FFmpeg is distributed in the hope that it will be useful,
;* but WITHOUT ANY WARRANTY; without even the implied warranty of
;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;* Lesser General Public License for more details.
;*
;* You should have received a copy of the GNU Lesser General Public
;* License along with FFmpeg; if not, write to the Free Software
;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;******************************************************************************
%include "libavutil/x86/x86util.asm"
SECTION_RODATA
pb_f: times 16 db 15
pb_zzzzzzzz77777777: times 8 db -1
pb_7: times 8 db 7
pb_zzzz3333zzzzbbbb: db -1,-1,-1,-1,3,3,3,3,-1,-1,-1,-1,11,11,11,11
pb_zz11zz55zz99zzdd: db -1,-1,1,1,-1,-1,5,5,-1,-1,9,9,-1,-1,13,13
pb_bswap32: db 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12
SECTION_TEXT
%macro SCALARPRODUCT 0
; int ff_scalarproduct_int16(int16_t *v1, int16_t *v2, int order)
cglobal scalarproduct_int16, 3,3,3, v1, v2, order
shl orderq, 1
add v1q, orderq
add v2q, orderq
neg orderq
pxor m2, m2
.loop:
movu m0, [v1q + orderq]
movu m1, [v1q + orderq + mmsize]
pmaddwd m0, [v2q + orderq]
pmaddwd m1, [v2q + orderq + mmsize]
paddd m2, m0
paddd m2, m1
add orderq, mmsize*2
jl .loop
HADDD m2, m0
movd eax, m2
%if mmsize == 8
emms
%endif
RET
; int ff_scalarproduct_and_madd_int16(int16_t *v1, int16_t *v2, int16_t *v3,
; int order, int mul)
cglobal scalarproduct_and_madd_int16, 4,4,8, v1, v2, v3, order, mul
shl orderq, 1
movd m7, mulm
%if mmsize == 16
pshuflw m7, m7, 0
punpcklqdq m7, m7
%else
pshufw m7, m7, 0
%endif
pxor m6, m6
add v1q, orderq
add v2q, orderq
add v3q, orderq
neg orderq
.loop:
movu m0, [v2q + orderq]
movu m1, [v2q + orderq + mmsize]
mova m4, [v1q + orderq]
mova m5, [v1q + orderq + mmsize]
movu m2, [v3q + orderq]
movu m3, [v3q + orderq + mmsize]
pmaddwd m0, m4
pmaddwd m1, m5
pmullw m2, m7
pmullw m3, m7
paddd m6, m0
paddd m6, m1
paddw m2, m4
paddw m3, m5
mova [v1q + orderq], m2
mova [v1q + orderq + mmsize], m3
add orderq, mmsize*2
jl .loop
HADDD m6, m0
movd eax, m6
RET
%endmacro
INIT_MMX mmxext
SCALARPRODUCT
INIT_XMM sse2
SCALARPRODUCT
%macro SCALARPRODUCT_LOOP 1
align 16
.loop%1:
sub orderq, mmsize*2
%if %1
mova m1, m4
mova m4, [v2q + orderq]
mova m0, [v2q + orderq + mmsize]
palignr m1, m0, %1
palignr m0, m4, %1
mova m3, m5
mova m5, [v3q + orderq]
mova m2, [v3q + orderq + mmsize]
palignr m3, m2, %1
palignr m2, m5, %1
%else
mova m0, [v2q + orderq]
mova m1, [v2q + orderq + mmsize]
mova m2, [v3q + orderq]
mova m3, [v3q + orderq + mmsize]
%endif
%define t0 [v1q + orderq]
%define t1 [v1q + orderq + mmsize]
%if ARCH_X86_64
mova m8, t0
mova m9, t1
%define t0 m8
%define t1 m9
%endif
pmaddwd m0, t0
pmaddwd m1, t1
pmullw m2, m7
pmullw m3, m7
paddw m2, t0
paddw m3, t1
paddd m6, m0
paddd m6, m1
mova [v1q + orderq], m2
mova [v1q + orderq + mmsize], m3
jg .loop%1
%if %1
jmp .end
%endif
%endmacro
; int ff_scalarproduct_and_madd_int16(int16_t *v1, int16_t *v2, int16_t *v3,
; int order, int mul)
INIT_XMM ssse3
cglobal scalarproduct_and_madd_int16, 4,5,10, v1, v2, v3, order, mul
shl orderq, 1
movd m7, mulm
pshuflw m7, m7, 0
punpcklqdq m7, m7
pxor m6, m6
mov r4d, v2d
and r4d, 15
and v2q, ~15
and v3q, ~15
mova m4, [v2q + orderq]
mova m5, [v3q + orderq]
; linear is faster than branch tree or jump table, because the branches taken are cyclic (i.e. predictable)
cmp r4d, 0
je .loop0
cmp r4d, 2
je .loop2
cmp r4d, 4
je .loop4
cmp r4d, 6
je .loop6
cmp r4d, 8
je .loop8
cmp r4d, 10
je .loop10
cmp r4d, 12
je .loop12
SCALARPRODUCT_LOOP 14
SCALARPRODUCT_LOOP 12
SCALARPRODUCT_LOOP 10
SCALARPRODUCT_LOOP 8
SCALARPRODUCT_LOOP 6
SCALARPRODUCT_LOOP 4
SCALARPRODUCT_LOOP 2
SCALARPRODUCT_LOOP 0
.end:
HADDD m6, m0
movd eax, m6
RET
; void ff_add_hfyu_median_prediction_mmxext(uint8_t *dst, const uint8_t *top,
; const uint8_t *diff, int w,
; int *left, int *left_top)
INIT_MMX mmxext
cglobal add_hfyu_median_prediction, 6,6,0, dst, top, diff, w, left, left_top
movq mm0, [topq]
movq mm2, mm0
movd mm4, [left_topq]
psllq mm2, 8
movq mm1, mm0
por mm4, mm2
movd mm3, [leftq]
psubb mm0, mm4 ; t-tl
add dstq, wq
add topq, wq
add diffq, wq
neg wq
jmp .skip
.loop:
movq mm4, [topq+wq]
movq mm0, mm4
psllq mm4, 8
por mm4, mm1
movq mm1, mm0 ; t
psubb mm0, mm4 ; t-tl
.skip:
movq mm2, [diffq+wq]
%assign i 0
%rep 8
movq mm4, mm0
paddb mm4, mm3 ; t-tl+l
movq mm5, mm3
pmaxub mm3, mm1
pminub mm5, mm1
pminub mm3, mm4
pmaxub mm3, mm5 ; median
paddb mm3, mm2 ; +residual
%if i==0
movq mm7, mm3
psllq mm7, 56
%else
movq mm6, mm3
psrlq mm7, 8
psllq mm6, 56
por mm7, mm6
%endif
%if i<7
psrlq mm0, 8
psrlq mm1, 8
psrlq mm2, 8
%endif
%assign i i+1
%endrep
movq [dstq+wq], mm7
add wq, 8
jl .loop
movzx r2d, byte [dstq-1]
mov [leftq], r2d
movzx r2d, byte [topq-1]
mov [left_topq], r2d
RET
%macro ADD_HFYU_LEFT_LOOP 2 ; %1 = dst_is_aligned, %2 = src_is_aligned
add srcq, wq
add dstq, wq
neg wq
%%.loop:
%if %2
mova m1, [srcq+wq]
%else
movu m1, [srcq+wq]
%endif
mova m2, m1
psllw m1, 8
paddb m1, m2
mova m2, m1
pshufb m1, m3
paddb m1, m2
pshufb m0, m5
mova m2, m1
pshufb m1, m4
paddb m1, m2
%if mmsize == 16
mova m2, m1
pshufb m1, m6
paddb m1, m2
%endif
paddb m0, m1
%if %1
mova [dstq+wq], m0
%else
movq [dstq+wq], m0
movhps [dstq+wq+8], m0
%endif
add wq, mmsize
jl %%.loop
mov eax, mmsize-1
sub eax, wd
movd m1, eax
pshufb m0, m1
movd eax, m0
RET
%endmacro
; int ff_add_hfyu_left_prediction(uint8_t *dst, const uint8_t *src,
; int w, int left)
INIT_MMX ssse3
cglobal add_hfyu_left_prediction, 3,3,7, dst, src, w, left
.skip_prologue:
mova m5, [pb_7]
mova m4, [pb_zzzz3333zzzzbbbb]
mova m3, [pb_zz11zz55zz99zzdd]
movd m0, leftm
psllq m0, 56
ADD_HFYU_LEFT_LOOP 1, 1
INIT_XMM sse4
cglobal add_hfyu_left_prediction, 3,3,7, dst, src, w, left
mova m5, [pb_f]
mova m6, [pb_zzzzzzzz77777777]
mova m4, [pb_zzzz3333zzzzbbbb]
mova m3, [pb_zz11zz55zz99zzdd]
movd m0, leftm
pslldq m0, 15
test srcq, 15
jnz .src_unaligned
test dstq, 15
jnz .dst_unaligned
ADD_HFYU_LEFT_LOOP 1, 1
.dst_unaligned:
ADD_HFYU_LEFT_LOOP 0, 1
.src_unaligned:
ADD_HFYU_LEFT_LOOP 0, 0
;-----------------------------------------------------------------------------
; void ff_vector_clip_int32(int32_t *dst, const int32_t *src, int32_t min,
; int32_t max, unsigned int len)
;-----------------------------------------------------------------------------
; %1 = number of xmm registers used
; %2 = number of inline load/process/store loops per asm loop
; %3 = process 4*mmsize (%3=0) or 8*mmsize (%3=1) bytes per loop
; %4 = CLIPD function takes min/max as float instead of int (CLIPD_SSE2)
; %5 = suffix
%macro VECTOR_CLIP_INT32 4-5
cglobal vector_clip_int32%5, 5,5,%1, dst, src, min, max, len
%if %4
cvtsi2ss m4, minm
cvtsi2ss m5, maxm
%else
movd m4, minm
movd m5, maxm
%endif
SPLATD m4
SPLATD m5
.loop:
%assign %%i 1
%rep %2
mova m0, [srcq+mmsize*0*%%i]
mova m1, [srcq+mmsize*1*%%i]
mova m2, [srcq+mmsize*2*%%i]
mova m3, [srcq+mmsize*3*%%i]
%if %3
mova m7, [srcq+mmsize*4*%%i]
mova m8, [srcq+mmsize*5*%%i]
mova m9, [srcq+mmsize*6*%%i]
mova m10, [srcq+mmsize*7*%%i]
%endif
CLIPD m0, m4, m5, m6
CLIPD m1, m4, m5, m6
CLIPD m2, m4, m5, m6
CLIPD m3, m4, m5, m6
%if %3
CLIPD m7, m4, m5, m6
CLIPD m8, m4, m5, m6
CLIPD m9, m4, m5, m6
CLIPD m10, m4, m5, m6
%endif
mova [dstq+mmsize*0*%%i], m0
mova [dstq+mmsize*1*%%i], m1
mova [dstq+mmsize*2*%%i], m2
mova [dstq+mmsize*3*%%i], m3
%if %3
mova [dstq+mmsize*4*%%i], m7
mova [dstq+mmsize*5*%%i], m8
mova [dstq+mmsize*6*%%i], m9
mova [dstq+mmsize*7*%%i], m10
%endif
%assign %%i %%i+1
%endrep
add srcq, mmsize*4*(%2+%3)
add dstq, mmsize*4*(%2+%3)
sub lend, mmsize*(%2+%3)
jg .loop
REP_RET
%endmacro
INIT_MMX mmx
%define CLIPD CLIPD_MMX
VECTOR_CLIP_INT32 0, 1, 0, 0
INIT_XMM sse2
VECTOR_CLIP_INT32 6, 1, 0, 0, _int
%define CLIPD CLIPD_SSE2
VECTOR_CLIP_INT32 6, 2, 0, 1
INIT_XMM sse4
%define CLIPD CLIPD_SSE41
%ifdef m8
VECTOR_CLIP_INT32 11, 1, 1, 0
%else
VECTOR_CLIP_INT32 6, 1, 0, 0
%endif
; %1 = aligned/unaligned
%macro BSWAP_LOOPS 1
mov r3, r2
sar r2, 3
jz .left4_%1
.loop8_%1:
mov%1 m0, [r1 + 0]
mov%1 m1, [r1 + 16]
%if cpuflag(ssse3)
pshufb m0, m2
pshufb m1, m2
mov%1 [r0 + 0], m0
mov%1 [r0 + 16], m1
%else
pshuflw m0, m0, 10110001b
pshuflw m1, m1, 10110001b
pshufhw m0, m0, 10110001b
pshufhw m1, m1, 10110001b
mova m2, m0
mova m3, m1
psllw m0, 8
psllw m1, 8
psrlw m2, 8
psrlw m3, 8
por m2, m0
por m3, m1
mov%1 [r0 + 0], m2
mov%1 [r0 + 16], m3
%endif
add r0, 32
add r1, 32
dec r2
jnz .loop8_%1
.left4_%1:
mov r2, r3
and r3, 4
jz .left
mov%1 m0, [r1]
%if cpuflag(ssse3)
pshufb m0, m2
mov%1 [r0], m0
%else
pshuflw m0, m0, 10110001b
pshufhw m0, m0, 10110001b
mova m2, m0
psllw m0, 8
psrlw m2, 8
por m2, m0
mov%1 [r0], m2
%endif
add r1, 16
add r0, 16
%endmacro
; void ff_bswap_buf(uint32_t *dst, const uint32_t *src, int w);
%macro BSWAP32_BUF 0
%if cpuflag(ssse3)
cglobal bswap32_buf, 3,4,3
mov r3, r1
mova m2, [pb_bswap32]
%else
cglobal bswap32_buf, 3,4,5
mov r3, r1
%endif
or r3, r0
and r3, 15
jz .start_align
BSWAP_LOOPS u
jmp .left
.start_align:
BSWAP_LOOPS a
.left:
%if cpuflag(ssse3)
mov r3, r2
and r2, 2
jz .left1
movq m0, [r1]
pshufb m0, m2
movq [r0], m0
add r1, 8
add r0, 8
.left1:
and r3, 1
jz .end
mov r2d, [r1]
bswap r2d
mov [r0], r2d
%else
and r2, 3
jz .end
.loop2:
mov r3d, [r1]
bswap r3d
mov [r0], r3d
add r1, 4
add r0, 4
dec r2
jnz .loop2
%endif
.end:
RET
%endmacro
INIT_XMM sse2
BSWAP32_BUF
INIT_XMM ssse3
BSWAP32_BUF