1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavutil/aes.c
Mans Rullgard 4bfe064460 aes: whitespace cosmetics
Signed-off-by: Mans Rullgard <mans@mansr.com>
2011-06-30 16:50:27 +01:00

313 lines
9.5 KiB
C

/*
* copyright (c) 2007 Michael Niedermayer <michaelni@gmx.at>
*
* some optimization ideas from aes128.c by Reimar Doeffinger
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "common.h"
#include "aes.h"
typedef union {
uint64_t u64[2];
uint32_t u32[4];
uint8_t u8x4[4][4];
uint8_t u8[16];
} av_aes_block;
typedef struct AVAES {
// Note: round_key[16] is accessed in the init code, but this only
// overwrites state, which does not matter (see also r7471).
av_aes_block round_key[15];
av_aes_block state[2];
int rounds;
} AVAES;
const int av_aes_size= sizeof(AVAES);
static const uint8_t rcon[10] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
};
static uint8_t sbox[256];
static uint8_t inv_sbox[256];
#if CONFIG_SMALL
static uint32_t enc_multbl[1][256];
static uint32_t dec_multbl[1][256];
#else
static uint32_t enc_multbl[4][256];
static uint32_t dec_multbl[4][256];
#endif
static inline void addkey(av_aes_block *dst, const av_aes_block *src,
const av_aes_block *round_key)
{
dst->u64[0] = src->u64[0] ^ round_key->u64[0];
dst->u64[1] = src->u64[1] ^ round_key->u64[1];
}
static void subshift(av_aes_block s0[2], int s, const uint8_t *box)
{
av_aes_block *s1 = (av_aes_block *) (s0[0].u8 - s);
av_aes_block *s3 = (av_aes_block *) (s0[0].u8 + s);
s0[0].u8[ 0] = box[s0[1].u8[ 0]];
s0[0].u8[ 4] = box[s0[1].u8[ 4]];
s0[0].u8[ 8] = box[s0[1].u8[ 8]];
s0[0].u8[12] = box[s0[1].u8[12]];
s1[0].u8[ 3] = box[s1[1].u8[ 7]];
s1[0].u8[ 7] = box[s1[1].u8[11]];
s1[0].u8[11] = box[s1[1].u8[15]];
s1[0].u8[15] = box[s1[1].u8[ 3]];
s0[0].u8[ 2] = box[s0[1].u8[10]];
s0[0].u8[10] = box[s0[1].u8[ 2]];
s0[0].u8[ 6] = box[s0[1].u8[14]];
s0[0].u8[14] = box[s0[1].u8[ 6]];
s3[0].u8[ 1] = box[s3[1].u8[13]];
s3[0].u8[13] = box[s3[1].u8[ 9]];
s3[0].u8[ 9] = box[s3[1].u8[ 5]];
s3[0].u8[ 5] = box[s3[1].u8[ 1]];
}
static inline int mix_core(uint32_t multbl[][256], int a, int b, int c, int d){
#if CONFIG_SMALL
#define ROT(x,s) ((x<<s)|(x>>(32-s)))
return multbl[0][a] ^ ROT(multbl[0][b], 8) ^ ROT(multbl[0][c], 16) ^ ROT(multbl[0][d], 24);
#else
return multbl[0][a] ^ multbl[1][b] ^ multbl[2][c] ^ multbl[3][d];
#endif
}
static inline void mix(av_aes_block state[2], uint32_t multbl[][256], int s1, int s3){
uint8_t (*src)[4] = state[1].u8x4;
state[0].u32[0] = mix_core(multbl, src[0][0], src[s1 ][1], src[2][2], src[s3 ][3]);
state[0].u32[1] = mix_core(multbl, src[1][0], src[s3-1][1], src[3][2], src[s1-1][3]);
state[0].u32[2] = mix_core(multbl, src[2][0], src[s3 ][1], src[0][2], src[s1 ][3]);
state[0].u32[3] = mix_core(multbl, src[3][0], src[s1-1][1], src[1][2], src[s3-1][3]);
}
static inline void crypt(AVAES *a, int s, const uint8_t *sbox,
uint32_t multbl[][256])
{
int r;
for (r = a->rounds - 1; r > 0; r--) {
mix(a->state, multbl, 3 - s, 1 + s);
addkey(&a->state[1], &a->state[0], &a->round_key[r]);
}
subshift(&a->state[0], s, sbox);
}
void av_aes_crypt(AVAES *a, uint8_t *dst_, const uint8_t *src_,
int count, uint8_t *iv_, int decrypt)
{
av_aes_block *dst = (av_aes_block *) dst_;
const av_aes_block *src = (const av_aes_block *) src_;
av_aes_block *iv = (av_aes_block *) iv_;
while (count--) {
addkey(&a->state[1], src, &a->round_key[a->rounds]);
if (decrypt) {
crypt(a, 0, inv_sbox, dec_multbl);
if (iv) {
addkey(&a->state[0], &a->state[0], iv);
memcpy(iv, src, 16);
}
addkey(dst, &a->state[0], &a->round_key[0]);
} else {
if (iv)
addkey(&a->state[1], &a->state[1], iv);
crypt(a, 2, sbox, enc_multbl);
addkey(dst, &a->state[0], &a->round_key[0]);
if (iv)
memcpy(iv, dst, 16);
}
src++;
dst++;
}
}
static void init_multbl2(uint8_t tbl[1024], const int c[4],
const uint8_t *log8, const uint8_t *alog8,
const uint8_t *sbox)
{
int i, j;
for (i = 0; i < 1024; i++) {
int x = sbox[i >> 2];
if (x)
tbl[i] = alog8[log8[x] + log8[c[i & 3]]];
}
#if !CONFIG_SMALL
for (j = 256; j < 1024; j++)
for (i = 0; i < 4; i++)
tbl[4*j + i] = tbl[4*j + ((i - 1) & 3) - 1024];
#endif
}
// this is based on the reference AES code by Paulo Barreto and Vincent Rijmen
int av_aes_init(AVAES *a, const uint8_t *key, int key_bits, int decrypt)
{
int i, j, t, rconpointer = 0;
uint8_t tk[8][4];
int KC = key_bits >> 5;
int rounds = KC + 6;
uint8_t log8[256];
uint8_t alog8[512];
if (!enc_multbl[FF_ARRAY_ELEMS(enc_multbl)-1][FF_ARRAY_ELEMS(enc_multbl[0])-1]) {
j = 1;
for (i = 0; i < 255; i++) {
alog8[i] = alog8[i + 255] = j;
log8[j] = i;
j ^= j + j;
if (j > 255)
j ^= 0x11B;
}
for (i = 0; i < 256; i++) {
j = i ? alog8[255 - log8[i]] : 0;
j ^= (j << 1) ^ (j << 2) ^ (j << 3) ^ (j << 4);
j = (j ^ (j >> 8) ^ 99) & 255;
inv_sbox[j] = i;
sbox[i] = j;
}
init_multbl2(dec_multbl[0], (const int[4]) { 0xe, 0x9, 0xd, 0xb },
log8, alog8, inv_sbox);
init_multbl2(enc_multbl[0], (const int[4]) { 0x2, 0x1, 0x1, 0x3 },
log8, alog8, sbox);
}
if (key_bits != 128 && key_bits != 192 && key_bits != 256)
return -1;
a->rounds = rounds;
memcpy(tk, key, KC * 4);
for (t = 0; t < (rounds + 1) * 16;) {
memcpy(a->round_key[0].u8 + t, tk, KC * 4);
t += KC * 4;
for (i = 0; i < 4; i++)
tk[0][i] ^= sbox[tk[KC - 1][(i + 1) & 3]];
tk[0][0] ^= rcon[rconpointer++];
for (j = 1; j < KC; j++) {
if (KC != 8 || j != KC >> 1)
for (i = 0; i < 4; i++)
tk[j][i] ^= tk[j - 1][i];
else
for (i = 0; i < 4; i++)
tk[j][i] ^= sbox[tk[j - 1][i]];
}
}
if (decrypt) {
for (i = 1; i < rounds; i++) {
av_aes_block tmp[3];
memcpy(&tmp[2], &a->round_key[i], 16);
subshift(&tmp[1], 0, sbox);
mix(tmp, dec_multbl, 1, 3);
memcpy(&a->round_key[i], &tmp[0], 16);
}
} else {
for (i = 0; i < (rounds + 1) >> 1; i++) {
for (j = 0; j < 16; j++)
FFSWAP(int, a->round_key[i].u8[j], a->round_key[rounds-i].u8[j]);
}
}
return 0;
}
#ifdef TEST
#include <string.h>
#include "lfg.h"
#include "log.h"
int main(int argc, char **argv)
{
int i, j;
AVAES b;
uint8_t rkey[2][16] = {
{ 0 },
{ 0x10, 0xa5, 0x88, 0x69, 0xd7, 0x4b, 0xe5, 0xa3,
0x74, 0xcf, 0x86, 0x7c, 0xfb, 0x47, 0x38, 0x59 }
};
uint8_t pt[16], rpt[2][16]= {
{ 0x6a, 0x84, 0x86, 0x7c, 0xd7, 0x7e, 0x12, 0xad,
0x07, 0xea, 0x1b, 0xe8, 0x95, 0xc5, 0x3f, 0xa3 },
{ 0 }
};
uint8_t rct[2][16]= {
{ 0x73, 0x22, 0x81, 0xc0, 0xa0, 0xaa, 0xb8, 0xf7,
0xa5, 0x4a, 0x0c, 0x67, 0xa0, 0xc4, 0x5e, 0xcf },
{ 0x6d, 0x25, 0x1e, 0x69, 0x44, 0xb0, 0x51, 0xe0,
0x4e, 0xaa, 0x6f, 0xb4, 0xdb, 0xf7, 0x84, 0x65 }
};
uint8_t temp[16];
int err = 0;
av_log_set_level(AV_LOG_DEBUG);
for (i = 0; i < 2; i++) {
av_aes_init(&b, rkey[i], 128, 1);
av_aes_crypt(&b, temp, rct[i], 1, NULL, 1);
for (j = 0; j < 16; j++) {
if (rpt[i][j] != temp[j]) {
av_log(NULL, AV_LOG_ERROR, "%d %02X %02X\n",
j, rpt[i][j], temp[j]);
err = 1;
}
}
}
if (argc > 1 && !strcmp(argv[1], "-t")) {
AVAES ae, ad;
AVLFG prng;
av_aes_init(&ae, "PI=3.141592654..", 128, 0);
av_aes_init(&ad, "PI=3.141592654..", 128, 1);
av_lfg_init(&prng, 1);
for (i = 0; i < 10000; i++) {
for (j = 0; j < 16; j++) {
pt[j] = av_lfg_get(&prng);
}
{
START_TIMER;
av_aes_crypt(&ae, temp, pt, 1, NULL, 0);
if (!(i & (i - 1)))
av_log(NULL, AV_LOG_ERROR, "%02X %02X %02X %02X\n",
temp[0], temp[5], temp[10], temp[15]);
av_aes_crypt(&ad, temp, temp, 1, NULL, 1);
STOP_TIMER("aes");
}
for (j = 0; j < 16; j++) {
if (pt[j] != temp[j]) {
av_log(NULL, AV_LOG_ERROR, "%d %d %02X %02X\n",
i, j, pt[j], temp[j]);
}
}
}
}
return err;
}
#endif