1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavfilter/vf_signalstats.c
Andreas Rheinhardt 790f793844 avutil/common: Don't auto-include mem.h
There are lots of files that don't need it: The number of object
files that actually need it went down from 2011 to 884 here.

Keep it for external users in order to not cause breakages.

Also improve the other headers a bit while just at it.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-03-31 00:08:43 +01:00

1037 lines
34 KiB
C

/*
* Copyright (c) 2010 Mark Heath mjpeg0 @ silicontrip dot org
* Copyright (c) 2014 Clément Bœsch
* Copyright (c) 2014 Dave Rice @dericed
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/intreadwrite.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "filters.h"
#include "internal.h"
enum FilterMode {
FILTER_NONE = -1,
FILTER_TOUT,
FILTER_VREP,
FILTER_BRNG,
FILT_NUMB
};
typedef struct SignalstatsContext {
const AVClass *class;
int chromah; // height of chroma plane
int chromaw; // width of chroma plane
int hsub; // horizontal subsampling
int vsub; // vertical subsampling
int depth; // pixel depth
int fs; // pixel count per frame
int cfs; // pixel count per frame of chroma planes
int outfilter; // FilterMode
int filters;
AVFrame *frame_prev;
uint8_t rgba_color[4];
int yuv_color[3];
int nb_jobs;
int *jobs_rets;
int maxsize; // history stats array size
int *histy, *histu, *histv, *histsat;
AVFrame *frame_sat;
AVFrame *frame_hue;
} SignalstatsContext;
typedef struct ThreadData {
const AVFrame *in;
AVFrame *out;
} ThreadData;
typedef struct ThreadDataHueSatMetrics {
const AVFrame *src;
AVFrame *dst_sat, *dst_hue;
} ThreadDataHueSatMetrics;
#define OFFSET(x) offsetof(SignalstatsContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption signalstats_options[] = {
{"stat", "set statistics filters", OFFSET(filters), AV_OPT_TYPE_FLAGS, {.i64=0}, 0, INT_MAX, FLAGS, .unit = "filters"},
{"tout", "analyze pixels for temporal outliers", 0, AV_OPT_TYPE_CONST, {.i64=1<<FILTER_TOUT}, 0, 0, FLAGS, .unit = "filters"},
{"vrep", "analyze video lines for vertical line repetition", 0, AV_OPT_TYPE_CONST, {.i64=1<<FILTER_VREP}, 0, 0, FLAGS, .unit = "filters"},
{"brng", "analyze for pixels outside of broadcast range", 0, AV_OPT_TYPE_CONST, {.i64=1<<FILTER_BRNG}, 0, 0, FLAGS, .unit = "filters"},
{"out", "set video filter", OFFSET(outfilter), AV_OPT_TYPE_INT, {.i64=FILTER_NONE}, -1, FILT_NUMB-1, FLAGS, .unit = "out"},
{"tout", "highlight pixels that depict temporal outliers", 0, AV_OPT_TYPE_CONST, {.i64=FILTER_TOUT}, 0, 0, FLAGS, .unit = "out"},
{"vrep", "highlight video lines that depict vertical line repetition", 0, AV_OPT_TYPE_CONST, {.i64=FILTER_VREP}, 0, 0, FLAGS, .unit = "out"},
{"brng", "highlight pixels that are outside of broadcast range", 0, AV_OPT_TYPE_CONST, {.i64=FILTER_BRNG}, 0, 0, FLAGS, .unit = "out"},
{"c", "set highlight color", OFFSET(rgba_color), AV_OPT_TYPE_COLOR, {.str="yellow"}, .flags=FLAGS},
{"color", "set highlight color", OFFSET(rgba_color), AV_OPT_TYPE_COLOR, {.str="yellow"}, .flags=FLAGS},
{NULL}
};
AVFILTER_DEFINE_CLASS(signalstats);
static av_cold int init(AVFilterContext *ctx)
{
uint8_t r, g, b;
SignalstatsContext *s = ctx->priv;
if (s->outfilter != FILTER_NONE)
s->filters |= 1 << s->outfilter;
r = s->rgba_color[0];
g = s->rgba_color[1];
b = s->rgba_color[2];
s->yuv_color[0] = (( 66*r + 129*g + 25*b + (1<<7)) >> 8) + 16;
s->yuv_color[1] = ((-38*r + -74*g + 112*b + (1<<7)) >> 8) + 128;
s->yuv_color[2] = ((112*r + -94*g + -18*b + (1<<7)) >> 8) + 128;
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
SignalstatsContext *s = ctx->priv;
av_frame_free(&s->frame_prev);
av_frame_free(&s->frame_sat);
av_frame_free(&s->frame_hue);
av_freep(&s->jobs_rets);
av_freep(&s->histy);
av_freep(&s->histu);
av_freep(&s->histv);
av_freep(&s->histsat);
}
// TODO: add more
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV440P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV420P9,
AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV420P10,
AV_PIX_FMT_YUV440P10,
AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV420P16,
AV_PIX_FMT_NONE
};
static AVFrame *alloc_frame(enum AVPixelFormat pixfmt, int w, int h)
{
AVFrame *frame = av_frame_alloc();
if (!frame)
return NULL;
frame->format = pixfmt;
frame->width = w;
frame->height = h;
if (av_frame_get_buffer(frame, 0) < 0) {
av_frame_free(&frame);
return NULL;
}
return frame;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
SignalstatsContext *s = ctx->priv;
AVFilterLink *inlink = outlink->src->inputs[0];
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(outlink->format);
s->hsub = desc->log2_chroma_w;
s->vsub = desc->log2_chroma_h;
s->depth = desc->comp[0].depth;
s->maxsize = 1 << s->depth;
s->histy = av_malloc_array(s->maxsize, sizeof(*s->histy));
s->histu = av_malloc_array(s->maxsize, sizeof(*s->histu));
s->histv = av_malloc_array(s->maxsize, sizeof(*s->histv));
s->histsat = av_malloc_array(s->maxsize, sizeof(*s->histsat));
if (!s->histy || !s->histu || !s->histv || !s->histsat)
return AVERROR(ENOMEM);
outlink->w = inlink->w;
outlink->h = inlink->h;
s->chromaw = AV_CEIL_RSHIFT(inlink->w, s->hsub);
s->chromah = AV_CEIL_RSHIFT(inlink->h, s->vsub);
s->fs = inlink->w * inlink->h;
s->cfs = s->chromaw * s->chromah;
s->nb_jobs = FFMAX(1, FFMIN(inlink->h, ff_filter_get_nb_threads(ctx)));
s->jobs_rets = av_malloc_array(s->nb_jobs, sizeof(*s->jobs_rets));
if (!s->jobs_rets)
return AVERROR(ENOMEM);
s->frame_sat = alloc_frame(s->depth > 8 ? AV_PIX_FMT_GRAY16 : AV_PIX_FMT_GRAY8, inlink->w, inlink->h);
s->frame_hue = alloc_frame(AV_PIX_FMT_GRAY16, inlink->w, inlink->h);
if (!s->frame_sat || !s->frame_hue)
return AVERROR(ENOMEM);
return 0;
}
static void burn_frame8(const SignalstatsContext *s, AVFrame *f, int x, int y)
{
const int chromax = x >> s->hsub;
const int chromay = y >> s->vsub;
f->data[0][y * f->linesize[0] + x] = s->yuv_color[0];
f->data[1][chromay * f->linesize[1] + chromax] = s->yuv_color[1];
f->data[2][chromay * f->linesize[2] + chromax] = s->yuv_color[2];
}
static void burn_frame16(const SignalstatsContext *s, AVFrame *f, int x, int y)
{
const int chromax = x >> s->hsub;
const int chromay = y >> s->vsub;
const int mult = 1 << (s->depth - 8);
AV_WN16(f->data[0] + y * f->linesize[0] + x * 2, s->yuv_color[0] * mult);
AV_WN16(f->data[1] + chromay * f->linesize[1] + chromax * 2, s->yuv_color[1] * mult);
AV_WN16(f->data[2] + chromay * f->linesize[2] + chromax * 2, s->yuv_color[2] * mult);
}
static int filter8_brng(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
const SignalstatsContext *s = ctx->priv;
const AVFrame *in = td->in;
AVFrame *out = td->out;
const int w = in->width;
const int h = in->height;
const int slice_start = (h * jobnr ) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
int x, y, score = 0;
for (y = slice_start; y < slice_end; y++) {
const int yc = y >> s->vsub;
const uint8_t *pluma = &in->data[0][y * in->linesize[0]];
const uint8_t *pchromau = &in->data[1][yc * in->linesize[1]];
const uint8_t *pchromav = &in->data[2][yc * in->linesize[2]];
for (x = 0; x < w; x++) {
const int xc = x >> s->hsub;
const int luma = pluma[x];
const int chromau = pchromau[xc];
const int chromav = pchromav[xc];
const int filt = luma < 16 || luma > 235 ||
chromau < 16 || chromau > 240 ||
chromav < 16 || chromav > 240;
score += filt;
if (out && filt)
burn_frame8(s, out, x, y);
}
}
return score;
}
static int filter16_brng(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
const SignalstatsContext *s = ctx->priv;
const AVFrame *in = td->in;
AVFrame *out = td->out;
const int mult = 1 << (s->depth - 8);
const int w = in->width;
const int h = in->height;
const int slice_start = (h * jobnr ) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
int x, y, score = 0;
for (y = slice_start; y < slice_end; y++) {
const int yc = y >> s->vsub;
const uint16_t *pluma = (uint16_t *)&in->data[0][y * in->linesize[0]];
const uint16_t *pchromau = (uint16_t *)&in->data[1][yc * in->linesize[1]];
const uint16_t *pchromav = (uint16_t *)&in->data[2][yc * in->linesize[2]];
for (x = 0; x < w; x++) {
const int xc = x >> s->hsub;
const int luma = pluma[x];
const int chromau = pchromau[xc];
const int chromav = pchromav[xc];
const int filt = luma < 16 * mult || luma > 235 * mult ||
chromau < 16 * mult || chromau > 240 * mult ||
chromav < 16 * mult || chromav > 240 * mult;
score += filt;
if (out && filt)
burn_frame16(s, out, x, y);
}
}
return score;
}
static int filter_tout_outlier(uint8_t x, uint8_t y, uint8_t z)
{
return ((abs(x - y) + abs (z - y)) / 2) - abs(z - x) > 4; // make 4 configurable?
}
static int filter8_tout(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
const SignalstatsContext *s = ctx->priv;
const AVFrame *in = td->in;
AVFrame *out = td->out;
const int w = in->width;
const int h = in->height;
const int slice_start = (h * jobnr ) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
const uint8_t *p = in->data[0];
int lw = in->linesize[0];
int x, y, score = 0, filt;
for (y = slice_start; y < slice_end; y++) {
if (y - 1 < 0 || y + 1 >= h)
continue;
// detect two pixels above and below (to eliminate interlace artefacts)
// should check that video format is infact interlaced.
#define FILTER(i, j) \
filter_tout_outlier(p[(y-j) * lw + x + i], \
p[ y * lw + x + i], \
p[(y+j) * lw + x + i])
#define FILTER3(j) (FILTER(-1, j) && FILTER(0, j) && FILTER(1, j))
if (y - 2 >= 0 && y + 2 < h) {
for (x = 1; x < w - 1; x++) {
filt = FILTER3(2) && FILTER3(1);
score += filt;
if (filt && out)
burn_frame8(s, out, x, y);
}
} else {
for (x = 1; x < w - 1; x++) {
filt = FILTER3(1);
score += filt;
if (filt && out)
burn_frame8(s, out, x, y);
}
}
}
return score;
}
static int filter16_tout(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
const SignalstatsContext *s = ctx->priv;
const AVFrame *in = td->in;
AVFrame *out = td->out;
const int w = in->width;
const int h = in->height;
const int slice_start = (h * jobnr ) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
const uint16_t *p = (uint16_t *)in->data[0];
int lw = in->linesize[0] / 2;
int x, y, score = 0, filt;
for (y = slice_start; y < slice_end; y++) {
if (y - 1 < 0 || y + 1 >= h)
continue;
// detect two pixels above and below (to eliminate interlace artefacts)
// should check that video format is infact interlaced.
if (y - 2 >= 0 && y + 2 < h) {
for (x = 1; x < w - 1; x++) {
filt = FILTER3(2) && FILTER3(1);
score += filt;
if (filt && out)
burn_frame16(s, out, x, y);
}
} else {
for (x = 1; x < w - 1; x++) {
filt = FILTER3(1);
score += filt;
if (filt && out)
burn_frame16(s, out, x, y);
}
}
}
return score;
}
#define VREP_START 4
static int filter8_vrep(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
const SignalstatsContext *s = ctx->priv;
const AVFrame *in = td->in;
AVFrame *out = td->out;
const int w = in->width;
const int h = in->height;
const int slice_start = (h * jobnr ) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
const uint8_t *p = in->data[0];
const int lw = in->linesize[0];
int x, y, score = 0;
for (y = slice_start; y < slice_end; y++) {
const int y2lw = (y - VREP_START) * lw;
const int ylw = y * lw;
int filt, totdiff = 0;
if (y < VREP_START)
continue;
for (x = 0; x < w; x++)
totdiff += abs(p[y2lw + x] - p[ylw + x]);
filt = totdiff < w;
score += filt;
if (filt && out)
for (x = 0; x < w; x++)
burn_frame8(s, out, x, y);
}
return score * w;
}
static int filter16_vrep(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
ThreadData *td = arg;
const SignalstatsContext *s = ctx->priv;
const AVFrame *in = td->in;
AVFrame *out = td->out;
const int w = in->width;
const int h = in->height;
const int slice_start = (h * jobnr ) / nb_jobs;
const int slice_end = (h * (jobnr+1)) / nb_jobs;
const uint16_t *p = (uint16_t *)in->data[0];
const int lw = in->linesize[0] / 2;
int x, y, score = 0;
for (y = slice_start; y < slice_end; y++) {
const int y2lw = (y - VREP_START) * lw;
const int ylw = y * lw;
int64_t totdiff = 0;
int filt;
if (y < VREP_START)
continue;
for (x = 0; x < w; x++)
totdiff += abs(p[y2lw + x] - p[ylw + x]);
filt = totdiff < w;
score += filt;
if (filt && out)
for (x = 0; x < w; x++)
burn_frame16(s, out, x, y);
}
return score * w;
}
static const struct {
const char *name;
int (*process8)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
int (*process16)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
} filters_def[] = {
{"TOUT", filter8_tout, filter16_tout},
{"VREP", filter8_vrep, filter16_vrep},
{"BRNG", filter8_brng, filter16_brng},
{NULL}
};
static int compute_sat_hue_metrics8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
int i, j;
ThreadDataHueSatMetrics *td = arg;
const SignalstatsContext *s = ctx->priv;
const AVFrame *src = td->src;
AVFrame *dst_sat = td->dst_sat;
AVFrame *dst_hue = td->dst_hue;
const int slice_start = (s->chromah * jobnr ) / nb_jobs;
const int slice_end = (s->chromah * (jobnr+1)) / nb_jobs;
const int lsz_u = src->linesize[1];
const int lsz_v = src->linesize[2];
const uint8_t *p_u = src->data[1] + slice_start * lsz_u;
const uint8_t *p_v = src->data[2] + slice_start * lsz_v;
const int lsz_sat = dst_sat->linesize[0];
const int lsz_hue = dst_hue->linesize[0];
uint8_t *p_sat = dst_sat->data[0] + slice_start * lsz_sat;
uint8_t *p_hue = dst_hue->data[0] + slice_start * lsz_hue;
for (j = slice_start; j < slice_end; j++) {
for (i = 0; i < s->chromaw; i++) {
const int yuvu = p_u[i];
const int yuvv = p_v[i];
p_sat[i] = hypotf(yuvu - 128, yuvv - 128); // int or round?
((int16_t*)p_hue)[i] = fmodf(floorf((180.f / M_PI) * atan2f(yuvu-128, yuvv-128) + 180.f), 360.f);
}
p_u += lsz_u;
p_v += lsz_v;
p_sat += lsz_sat;
p_hue += lsz_hue;
}
return 0;
}
static int compute_sat_hue_metrics16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
int i, j;
ThreadDataHueSatMetrics *td = arg;
const SignalstatsContext *s = ctx->priv;
const AVFrame *src = td->src;
AVFrame *dst_sat = td->dst_sat;
AVFrame *dst_hue = td->dst_hue;
const int mid = 1 << (s->depth - 1);
const int slice_start = (s->chromah * jobnr ) / nb_jobs;
const int slice_end = (s->chromah * (jobnr+1)) / nb_jobs;
const int lsz_u = src->linesize[1] / 2;
const int lsz_v = src->linesize[2] / 2;
const uint16_t *p_u = (uint16_t*)src->data[1] + slice_start * lsz_u;
const uint16_t *p_v = (uint16_t*)src->data[2] + slice_start * lsz_v;
const int lsz_sat = dst_sat->linesize[0] / 2;
const int lsz_hue = dst_hue->linesize[0] / 2;
uint16_t *p_sat = (uint16_t*)dst_sat->data[0] + slice_start * lsz_sat;
uint16_t *p_hue = (uint16_t*)dst_hue->data[0] + slice_start * lsz_hue;
for (j = slice_start; j < slice_end; j++) {
for (i = 0; i < s->chromaw; i++) {
const int yuvu = p_u[i];
const int yuvv = p_v[i];
p_sat[i] = hypotf(yuvu - mid, yuvv - mid); // int or round?
((int16_t*)p_hue)[i] = fmodf(floorf((180.f / M_PI) * atan2f(yuvu-mid, yuvv-mid) + 180.f), 360.f);
}
p_u += lsz_u;
p_v += lsz_v;
p_sat += lsz_sat;
p_hue += lsz_hue;
}
return 0;
}
static unsigned compute_bit_depth(uint16_t mask)
{
return av_popcount(mask);
}
static int filter_frame8(AVFilterLink *link, AVFrame *in)
{
AVFilterContext *ctx = link->dst;
SignalstatsContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out = in;
int i, j;
int w = 0, cw = 0, // in
pw = 0, cpw = 0; // prev
int fil;
char metabuf[128];
unsigned int *histy = s->histy,
*histu = s->histu,
*histv = s->histv,
histhue[360] = {0},
*histsat = s->histsat;
int miny = -1, minu = -1, minv = -1;
int maxy = -1, maxu = -1, maxv = -1;
int lowy = -1, lowu = -1, lowv = -1;
int highy = -1, highu = -1, highv = -1;
int minsat = -1, maxsat = -1, lowsat = -1, highsat = -1;
int lowp, highp, clowp, chighp;
int accy, accu, accv;
int accsat, acchue = 0;
int medhue, maxhue;
int toty = 0, totu = 0, totv = 0, totsat=0;
int tothue = 0;
int dify = 0, difu = 0, difv = 0;
uint16_t masky = 0, masku = 0, maskv = 0;
int ret;
int filtot[FILT_NUMB] = {0};
AVFrame *prev;
AVFrame *sat = s->frame_sat;
AVFrame *hue = s->frame_hue;
const uint8_t *p_sat = sat->data[0];
const uint8_t *p_hue = hue->data[0];
const int lsz_sat = sat->linesize[0];
const int lsz_hue = hue->linesize[0];
ThreadDataHueSatMetrics td_huesat = {
.src = in,
.dst_sat = sat,
.dst_hue = hue,
};
if (!s->frame_prev)
s->frame_prev = av_frame_clone(in);
prev = s->frame_prev;
if (s->outfilter != FILTER_NONE) {
out = av_frame_clone(in);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
ret = ff_inlink_make_frame_writable(link, &out);
if (ret < 0) {
av_frame_free(&out);
av_frame_free(&in);
return ret;
}
}
ff_filter_execute(ctx, compute_sat_hue_metrics8, &td_huesat,
NULL, FFMIN(s->chromah, ff_filter_get_nb_threads(ctx)));
// Calculate luma histogram and difference with previous frame or field.
memset(s->histy, 0, s->maxsize * sizeof(*s->histy));
for (j = 0; j < link->h; j++) {
for (i = 0; i < link->w; i++) {
const int yuv = in->data[0][w + i];
masky |= yuv;
histy[yuv]++;
dify += abs(yuv - prev->data[0][pw + i]);
}
w += in->linesize[0];
pw += prev->linesize[0];
}
// Calculate chroma histogram and difference with previous frame or field.
memset(s->histu, 0, s->maxsize * sizeof(*s->histu));
memset(s->histv, 0, s->maxsize * sizeof(*s->histv));
memset(s->histsat, 0, s->maxsize * sizeof(*s->histsat));
for (j = 0; j < s->chromah; j++) {
for (i = 0; i < s->chromaw; i++) {
const int yuvu = in->data[1][cw+i];
const int yuvv = in->data[2][cw+i];
masku |= yuvu;
maskv |= yuvv;
histu[yuvu]++;
difu += abs(yuvu - prev->data[1][cpw+i]);
histv[yuvv]++;
difv += abs(yuvv - prev->data[2][cpw+i]);
histsat[p_sat[i]]++;
histhue[((int16_t*)p_hue)[i]]++;
}
cw += in->linesize[1];
cpw += prev->linesize[1];
p_sat += lsz_sat;
p_hue += lsz_hue;
}
for (fil = 0; fil < FILT_NUMB; fil ++) {
if (s->filters & 1<<fil) {
ThreadData td = {
.in = in,
.out = out != in && s->outfilter == fil ? out : NULL,
};
memset(s->jobs_rets, 0, s->nb_jobs * sizeof(*s->jobs_rets));
ff_filter_execute(ctx, filters_def[fil].process8,
&td, s->jobs_rets, s->nb_jobs);
for (i = 0; i < s->nb_jobs; i++)
filtot[fil] += s->jobs_rets[i];
}
}
// find low / high based on histogram percentile
// these only need to be calculated once.
lowp = lrint(s->fs * 10 / 100.);
highp = lrint(s->fs * 90 / 100.);
clowp = lrint(s->cfs * 10 / 100.);
chighp = lrint(s->cfs * 90 / 100.);
accy = accu = accv = accsat = 0;
for (fil = 0; fil < s->maxsize; fil++) {
if (miny < 0 && histy[fil]) miny = fil;
if (minu < 0 && histu[fil]) minu = fil;
if (minv < 0 && histv[fil]) minv = fil;
if (minsat < 0 && histsat[fil]) minsat = fil;
if (histy[fil]) maxy = fil;
if (histu[fil]) maxu = fil;
if (histv[fil]) maxv = fil;
if (histsat[fil]) maxsat = fil;
toty += histy[fil] * fil;
totu += histu[fil] * fil;
totv += histv[fil] * fil;
totsat += histsat[fil] * fil;
accy += histy[fil];
accu += histu[fil];
accv += histv[fil];
accsat += histsat[fil];
if (lowy == -1 && accy >= lowp) lowy = fil;
if (lowu == -1 && accu >= clowp) lowu = fil;
if (lowv == -1 && accv >= clowp) lowv = fil;
if (lowsat == -1 && accsat >= clowp) lowsat = fil;
if (highy == -1 && accy >= highp) highy = fil;
if (highu == -1 && accu >= chighp) highu = fil;
if (highv == -1 && accv >= chighp) highv = fil;
if (highsat == -1 && accsat >= chighp) highsat = fil;
}
maxhue = histhue[0];
medhue = -1;
for (fil = 0; fil < 360; fil++) {
tothue += histhue[fil] * fil;
acchue += histhue[fil];
if (medhue == -1 && acchue > s->cfs / 2)
medhue = fil;
if (histhue[fil] > maxhue) {
maxhue = histhue[fil];
}
}
av_frame_free(&s->frame_prev);
s->frame_prev = av_frame_clone(in);
#define SET_META(key, fmt, val) do { \
snprintf(metabuf, sizeof(metabuf), fmt, val); \
av_dict_set(&out->metadata, "lavfi.signalstats." key, metabuf, 0); \
} while (0)
SET_META("YMIN", "%d", miny);
SET_META("YLOW", "%d", lowy);
SET_META("YAVG", "%g", 1.0 * toty / s->fs);
SET_META("YHIGH", "%d", highy);
SET_META("YMAX", "%d", maxy);
SET_META("UMIN", "%d", minu);
SET_META("ULOW", "%d", lowu);
SET_META("UAVG", "%g", 1.0 * totu / s->cfs);
SET_META("UHIGH", "%d", highu);
SET_META("UMAX", "%d", maxu);
SET_META("VMIN", "%d", minv);
SET_META("VLOW", "%d", lowv);
SET_META("VAVG", "%g", 1.0 * totv / s->cfs);
SET_META("VHIGH", "%d", highv);
SET_META("VMAX", "%d", maxv);
SET_META("SATMIN", "%d", minsat);
SET_META("SATLOW", "%d", lowsat);
SET_META("SATAVG", "%g", 1.0 * totsat / s->cfs);
SET_META("SATHIGH", "%d", highsat);
SET_META("SATMAX", "%d", maxsat);
SET_META("HUEMED", "%d", medhue);
SET_META("HUEAVG", "%g", 1.0 * tothue / s->cfs);
SET_META("YDIF", "%g", 1.0 * dify / s->fs);
SET_META("UDIF", "%g", 1.0 * difu / s->cfs);
SET_META("VDIF", "%g", 1.0 * difv / s->cfs);
SET_META("YBITDEPTH", "%d", compute_bit_depth(masky));
SET_META("UBITDEPTH", "%d", compute_bit_depth(masku));
SET_META("VBITDEPTH", "%d", compute_bit_depth(maskv));
for (fil = 0; fil < FILT_NUMB; fil ++) {
if (s->filters & 1<<fil) {
char metaname[128];
snprintf(metabuf, sizeof(metabuf), "%g", 1.0 * filtot[fil] / s->fs);
snprintf(metaname, sizeof(metaname), "lavfi.signalstats.%s", filters_def[fil].name);
av_dict_set(&out->metadata, metaname, metabuf, 0);
}
}
if (in != out)
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static int filter_frame16(AVFilterLink *link, AVFrame *in)
{
AVFilterContext *ctx = link->dst;
SignalstatsContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out = in;
int i, j;
int w = 0, cw = 0, // in
pw = 0, cpw = 0; // prev
int fil;
char metabuf[128];
unsigned int *histy = s->histy,
*histu = s->histu,
*histv = s->histv,
histhue[360] = {0},
*histsat = s->histsat;
int miny = -1, minu = -1, minv = -1;
int maxy = -1, maxu = -1, maxv = -1;
int lowy = -1, lowu = -1, lowv = -1;
int highy = -1, highu = -1, highv = -1;
int minsat = -1, maxsat = -1, lowsat = -1, highsat = -1;
int lowp, highp, clowp, chighp;
int accy, accu, accv;
int accsat, acchue = 0;
int medhue, maxhue;
int64_t toty = 0, totu = 0, totv = 0, totsat=0;
int64_t tothue = 0;
int64_t dify = 0, difu = 0, difv = 0;
uint16_t masky = 0, masku = 0, maskv = 0;
int filtot[FILT_NUMB] = {0};
AVFrame *prev;
int ret;
AVFrame *sat = s->frame_sat;
AVFrame *hue = s->frame_hue;
const uint16_t *p_sat = (uint16_t *)sat->data[0];
const uint16_t *p_hue = (uint16_t *)hue->data[0];
const int lsz_sat = sat->linesize[0] / 2;
const int lsz_hue = hue->linesize[0] / 2;
ThreadDataHueSatMetrics td_huesat = {
.src = in,
.dst_sat = sat,
.dst_hue = hue,
};
if (!s->frame_prev)
s->frame_prev = av_frame_clone(in);
prev = s->frame_prev;
if (s->outfilter != FILTER_NONE) {
out = av_frame_clone(in);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
ret = ff_inlink_make_frame_writable(link, &out);
if (ret < 0) {
av_frame_free(&out);
av_frame_free(&in);
return ret;
}
}
ff_filter_execute(ctx, compute_sat_hue_metrics16, &td_huesat,
NULL, FFMIN(s->chromah, ff_filter_get_nb_threads(ctx)));
// Calculate luma histogram and difference with previous frame or field.
memset(s->histy, 0, s->maxsize * sizeof(*s->histy));
for (j = 0; j < link->h; j++) {
for (i = 0; i < link->w; i++) {
const int yuv = AV_RN16(in->data[0] + w + i * 2);
masky |= yuv;
histy[yuv]++;
dify += abs(yuv - (int)AV_RN16(prev->data[0] + pw + i * 2));
}
w += in->linesize[0];
pw += prev->linesize[0];
}
// Calculate chroma histogram and difference with previous frame or field.
memset(s->histu, 0, s->maxsize * sizeof(*s->histu));
memset(s->histv, 0, s->maxsize * sizeof(*s->histv));
memset(s->histsat, 0, s->maxsize * sizeof(*s->histsat));
for (j = 0; j < s->chromah; j++) {
for (i = 0; i < s->chromaw; i++) {
const int yuvu = AV_RN16(in->data[1] + cw + i * 2);
const int yuvv = AV_RN16(in->data[2] + cw + i * 2);
masku |= yuvu;
maskv |= yuvv;
histu[yuvu]++;
difu += abs(yuvu - (int)AV_RN16(prev->data[1] + cpw + i * 2));
histv[yuvv]++;
difv += abs(yuvv - (int)AV_RN16(prev->data[2] + cpw + i * 2));
histsat[p_sat[i]]++;
histhue[((int16_t*)p_hue)[i]]++;
}
cw += in->linesize[1];
cpw += prev->linesize[1];
p_sat += lsz_sat;
p_hue += lsz_hue;
}
for (fil = 0; fil < FILT_NUMB; fil ++) {
if (s->filters & 1<<fil) {
ThreadData td = {
.in = in,
.out = out != in && s->outfilter == fil ? out : NULL,
};
memset(s->jobs_rets, 0, s->nb_jobs * sizeof(*s->jobs_rets));
ff_filter_execute(ctx, filters_def[fil].process16,
&td, s->jobs_rets, s->nb_jobs);
for (i = 0; i < s->nb_jobs; i++)
filtot[fil] += s->jobs_rets[i];
}
}
// find low / high based on histogram percentile
// these only need to be calculated once.
lowp = lrint(s->fs * 10 / 100.);
highp = lrint(s->fs * 90 / 100.);
clowp = lrint(s->cfs * 10 / 100.);
chighp = lrint(s->cfs * 90 / 100.);
accy = accu = accv = accsat = 0;
for (fil = 0; fil < s->maxsize; fil++) {
if (miny < 0 && histy[fil]) miny = fil;
if (minu < 0 && histu[fil]) minu = fil;
if (minv < 0 && histv[fil]) minv = fil;
if (minsat < 0 && histsat[fil]) minsat = fil;
if (histy[fil]) maxy = fil;
if (histu[fil]) maxu = fil;
if (histv[fil]) maxv = fil;
if (histsat[fil]) maxsat = fil;
toty += histy[fil] * fil;
totu += histu[fil] * fil;
totv += histv[fil] * fil;
totsat += histsat[fil] * fil;
accy += histy[fil];
accu += histu[fil];
accv += histv[fil];
accsat += histsat[fil];
if (lowy == -1 && accy >= lowp) lowy = fil;
if (lowu == -1 && accu >= clowp) lowu = fil;
if (lowv == -1 && accv >= clowp) lowv = fil;
if (lowsat == -1 && accsat >= clowp) lowsat = fil;
if (highy == -1 && accy >= highp) highy = fil;
if (highu == -1 && accu >= chighp) highu = fil;
if (highv == -1 && accv >= chighp) highv = fil;
if (highsat == -1 && accsat >= chighp) highsat = fil;
}
maxhue = histhue[0];
medhue = -1;
for (fil = 0; fil < 360; fil++) {
tothue += histhue[fil] * fil;
acchue += histhue[fil];
if (medhue == -1 && acchue > s->cfs / 2)
medhue = fil;
if (histhue[fil] > maxhue) {
maxhue = histhue[fil];
}
}
av_frame_free(&s->frame_prev);
s->frame_prev = av_frame_clone(in);
SET_META("YMIN", "%d", miny);
SET_META("YLOW", "%d", lowy);
SET_META("YAVG", "%g", 1.0 * toty / s->fs);
SET_META("YHIGH", "%d", highy);
SET_META("YMAX", "%d", maxy);
SET_META("UMIN", "%d", minu);
SET_META("ULOW", "%d", lowu);
SET_META("UAVG", "%g", 1.0 * totu / s->cfs);
SET_META("UHIGH", "%d", highu);
SET_META("UMAX", "%d", maxu);
SET_META("VMIN", "%d", minv);
SET_META("VLOW", "%d", lowv);
SET_META("VAVG", "%g", 1.0 * totv / s->cfs);
SET_META("VHIGH", "%d", highv);
SET_META("VMAX", "%d", maxv);
SET_META("SATMIN", "%d", minsat);
SET_META("SATLOW", "%d", lowsat);
SET_META("SATAVG", "%g", 1.0 * totsat / s->cfs);
SET_META("SATHIGH", "%d", highsat);
SET_META("SATMAX", "%d", maxsat);
SET_META("HUEMED", "%d", medhue);
SET_META("HUEAVG", "%g", 1.0 * tothue / s->cfs);
SET_META("YDIF", "%g", 1.0 * dify / s->fs);
SET_META("UDIF", "%g", 1.0 * difu / s->cfs);
SET_META("VDIF", "%g", 1.0 * difv / s->cfs);
SET_META("YBITDEPTH", "%d", compute_bit_depth(masky));
SET_META("UBITDEPTH", "%d", compute_bit_depth(masku));
SET_META("VBITDEPTH", "%d", compute_bit_depth(maskv));
for (fil = 0; fil < FILT_NUMB; fil ++) {
if (s->filters & 1<<fil) {
char metaname[128];
snprintf(metabuf, sizeof(metabuf), "%g", 1.0 * filtot[fil] / s->fs);
snprintf(metaname, sizeof(metaname), "lavfi.signalstats.%s", filters_def[fil].name);
av_dict_set(&out->metadata, metaname, metabuf, 0);
}
}
if (in != out)
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static int filter_frame(AVFilterLink *link, AVFrame *in)
{
AVFilterContext *ctx = link->dst;
SignalstatsContext *s = ctx->priv;
if (s->depth > 8)
return filter_frame16(link, in);
else
return filter_frame8(link, in);
}
static const AVFilterPad signalstats_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
},
};
static const AVFilterPad signalstats_outputs[] = {
{
.name = "default",
.config_props = config_output,
.type = AVMEDIA_TYPE_VIDEO,
},
};
const AVFilter ff_vf_signalstats = {
.name = "signalstats",
.description = "Generate statistics from video analysis.",
.init = init,
.uninit = uninit,
.priv_size = sizeof(SignalstatsContext),
FILTER_INPUTS(signalstats_inputs),
FILTER_OUTPUTS(signalstats_outputs),
FILTER_PIXFMTS_ARRAY(pix_fmts),
.priv_class = &signalstats_class,
.flags = AVFILTER_FLAG_SLICE_THREADS,
};