1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-07 11:13:41 +02:00
FFmpeg/libavcodec/proresdec.c
Mans Rullgard a1e98f198e get_bits: remove A32 variant
The A32 bitstream reader variant is only used on ARMv5 and for
Prores due to the larger bit cache this decoder requires.

In benchmarks on ARMv5 (Marvell Sheeva) with gcc 4.6, the only
statistically significant difference between ALT and A32 is
a 4% advantage for ALT in FLAC decoding.  There is thus no (longer)
any reason to keep the A32 reader from this point of view.

This patch adds an option to the ALT reader increasing the bit
cache to 32 bits as required by the Prores decoder.  Benchmarking
shows no significant change in speed on Intel i7.  Again, the
A32 reader fails to justify its existence.

Signed-off-by: Mans Rullgard <mans@mansr.com>
2011-12-16 21:21:48 +00:00

707 lines
23 KiB
C

/*
* Apple ProRes compatible decoder
*
* Copyright (c) 2010-2011 Maxim Poliakovski
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* This is a decoder for Apple ProRes 422 SD/HQ/LT/Proxy and ProRes 4444.
* It is used for storing and editing high definition video data in Apple's Final Cut Pro.
*
* @see http://wiki.multimedia.cx/index.php?title=Apple_ProRes
*/
#define LONG_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once
#include <stdint.h>
#include "libavutil/intmath.h"
#include "avcodec.h"
#include "proresdsp.h"
#include "get_bits.h"
typedef struct {
const uint8_t *index; ///< pointers to the data of this slice
int slice_num;
int x_pos, y_pos;
int slice_width;
DECLARE_ALIGNED(16, DCTELEM, blocks[8 * 4 * 64]);
} ProresThreadData;
typedef struct {
ProresDSPContext dsp;
AVFrame picture;
ScanTable scantable;
int scantable_type; ///< -1 = uninitialized, 0 = progressive, 1/2 = interlaced
int frame_type; ///< 0 = progressive, 1 = top-field first, 2 = bottom-field first
int pic_format; ///< 2 = 422, 3 = 444
uint8_t qmat_luma[64]; ///< dequantization matrix for luma
uint8_t qmat_chroma[64]; ///< dequantization matrix for chroma
int qmat_changed; ///< 1 - global quantization matrices changed
int prev_slice_sf; ///< scalefactor of the previous decoded slice
DECLARE_ALIGNED(16, int16_t, qmat_luma_scaled[64]);
DECLARE_ALIGNED(16, int16_t, qmat_chroma_scaled[64]);
int total_slices; ///< total number of slices in a picture
ProresThreadData *slice_data;
int pic_num;
int chroma_factor;
int mb_chroma_factor;
int num_chroma_blocks; ///< number of chrominance blocks in a macroblock
int num_x_slices;
int num_y_slices;
int slice_width_factor;
int slice_height_factor;
int num_x_mbs;
int num_y_mbs;
int alpha_info;
} ProresContext;
static const uint8_t progressive_scan[64] = {
0, 1, 8, 9, 2, 3, 10, 11,
16, 17, 24, 25, 18, 19, 26, 27,
4, 5, 12, 20, 13, 6, 7, 14,
21, 28, 29, 22, 15, 23, 30, 31,
32, 33, 40, 48, 41, 34, 35, 42,
49, 56, 57, 50, 43, 36, 37, 44,
51, 58, 59, 52, 45, 38, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63
};
static const uint8_t interlaced_scan[64] = {
0, 8, 1, 9, 16, 24, 17, 25,
2, 10, 3, 11, 18, 26, 19, 27,
32, 40, 33, 34, 41, 48, 56, 49,
42, 35, 43, 50, 57, 58, 51, 59,
4, 12, 5, 6, 13, 20, 28, 21,
14, 7, 15, 22, 29, 36, 44, 37,
30, 23, 31, 38, 45, 52, 60, 53,
46, 39, 47, 54, 61, 62, 55, 63
};
static av_cold int decode_init(AVCodecContext *avctx)
{
ProresContext *ctx = avctx->priv_data;
ctx->total_slices = 0;
ctx->slice_data = NULL;
avctx->bits_per_raw_sample = PRORES_BITS_PER_SAMPLE;
ff_proresdsp_init(&ctx->dsp);
avctx->coded_frame = &ctx->picture;
avcodec_get_frame_defaults(&ctx->picture);
ctx->picture.type = AV_PICTURE_TYPE_I;
ctx->picture.key_frame = 1;
ctx->scantable_type = -1; // set scantable type to uninitialized
memset(ctx->qmat_luma, 4, 64);
memset(ctx->qmat_chroma, 4, 64);
ctx->prev_slice_sf = 0;
return 0;
}
static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
const int data_size, AVCodecContext *avctx)
{
int hdr_size, version, width, height, flags;
const uint8_t *ptr;
hdr_size = AV_RB16(buf);
if (hdr_size > data_size) {
av_log(avctx, AV_LOG_ERROR, "frame data too small\n");
return AVERROR_INVALIDDATA;
}
version = AV_RB16(buf + 2);
if (version >= 2) {
av_log(avctx, AV_LOG_ERROR,
"unsupported header version: %d\n", version);
return AVERROR_INVALIDDATA;
}
width = AV_RB16(buf + 8);
height = AV_RB16(buf + 10);
if (width != avctx->width || height != avctx->height) {
av_log(avctx, AV_LOG_ERROR,
"picture dimension changed: old: %d x %d, new: %d x %d\n",
avctx->width, avctx->height, width, height);
return AVERROR_INVALIDDATA;
}
ctx->frame_type = (buf[12] >> 2) & 3;
if (ctx->frame_type > 2) {
av_log(avctx, AV_LOG_ERROR,
"unsupported frame type: %d\n", ctx->frame_type);
return AVERROR_INVALIDDATA;
}
ctx->chroma_factor = (buf[12] >> 6) & 3;
ctx->mb_chroma_factor = ctx->chroma_factor + 2;
ctx->num_chroma_blocks = (1 << ctx->chroma_factor) >> 1;
switch (ctx->chroma_factor) {
case 2:
avctx->pix_fmt = PIX_FMT_YUV422P10;
break;
case 3:
avctx->pix_fmt = PIX_FMT_YUV444P10;
break;
default:
av_log(avctx, AV_LOG_ERROR,
"unsupported picture format: %d\n", ctx->pic_format);
return AVERROR_INVALIDDATA;
}
if (ctx->scantable_type != ctx->frame_type) {
if (!ctx->frame_type)
ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
progressive_scan);
else
ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable,
interlaced_scan);
ctx->scantable_type = ctx->frame_type;
}
if (ctx->frame_type) { /* if interlaced */
ctx->picture.interlaced_frame = 1;
ctx->picture.top_field_first = ctx->frame_type & 1;
}
ctx->alpha_info = buf[17] & 0xf;
if (ctx->alpha_info)
av_log_missing_feature(avctx, "alpha channel", 0);
ctx->qmat_changed = 0;
ptr = buf + 20;
flags = buf[19];
if (flags & 2) {
if (ptr - buf > hdr_size - 64) {
av_log(avctx, AV_LOG_ERROR, "header data too small\n");
return AVERROR_INVALIDDATA;
}
if (memcmp(ctx->qmat_luma, ptr, 64)) {
memcpy(ctx->qmat_luma, ptr, 64);
ctx->qmat_changed = 1;
}
ptr += 64;
} else {
memset(ctx->qmat_luma, 4, 64);
ctx->qmat_changed = 1;
}
if (flags & 1) {
if (ptr - buf > hdr_size - 64) {
av_log(avctx, AV_LOG_ERROR, "header data too small\n");
return -1;
}
if (memcmp(ctx->qmat_chroma, ptr, 64)) {
memcpy(ctx->qmat_chroma, ptr, 64);
ctx->qmat_changed = 1;
}
} else {
memset(ctx->qmat_chroma, 4, 64);
ctx->qmat_changed = 1;
}
return hdr_size;
}
static int decode_picture_header(ProresContext *ctx, const uint8_t *buf,
const int data_size, AVCodecContext *avctx)
{
int i, hdr_size, pic_data_size, num_slices;
int slice_width_factor, slice_height_factor;
int remainder, num_x_slices;
const uint8_t *data_ptr, *index_ptr;
hdr_size = data_size > 0 ? buf[0] >> 3 : 0;
if (hdr_size < 8 || hdr_size > data_size) {
av_log(avctx, AV_LOG_ERROR, "picture header too small\n");
return AVERROR_INVALIDDATA;
}
pic_data_size = AV_RB32(buf + 1);
if (pic_data_size > data_size) {
av_log(avctx, AV_LOG_ERROR, "picture data too small\n");
return AVERROR_INVALIDDATA;
}
slice_width_factor = buf[7] >> 4;
slice_height_factor = buf[7] & 0xF;
if (slice_width_factor > 3 || slice_height_factor) {
av_log(avctx, AV_LOG_ERROR,
"unsupported slice dimension: %d x %d\n",
1 << slice_width_factor, 1 << slice_height_factor);
return AVERROR_INVALIDDATA;
}
ctx->slice_width_factor = slice_width_factor;
ctx->slice_height_factor = slice_height_factor;
ctx->num_x_mbs = (avctx->width + 15) >> 4;
ctx->num_y_mbs = (avctx->height +
(1 << (4 + ctx->picture.interlaced_frame)) - 1) >>
(4 + ctx->picture.interlaced_frame);
remainder = ctx->num_x_mbs & ((1 << slice_width_factor) - 1);
num_x_slices = (ctx->num_x_mbs >> slice_width_factor) + (remainder & 1) +
((remainder >> 1) & 1) + ((remainder >> 2) & 1);
num_slices = num_x_slices * ctx->num_y_mbs;
if (num_slices != AV_RB16(buf + 5)) {
av_log(avctx, AV_LOG_ERROR, "invalid number of slices\n");
return AVERROR_INVALIDDATA;
}
if (ctx->total_slices != num_slices) {
av_freep(&ctx->slice_data);
ctx->slice_data = av_malloc((num_slices + 1) * sizeof(ctx->slice_data[0]));
if (!ctx->slice_data)
return AVERROR(ENOMEM);
ctx->total_slices = num_slices;
}
if (hdr_size + num_slices * 2 > data_size) {
av_log(avctx, AV_LOG_ERROR, "slice table too small\n");
return AVERROR_INVALIDDATA;
}
/* parse slice table allowing quick access to the slice data */
index_ptr = buf + hdr_size;
data_ptr = index_ptr + num_slices * 2;
for (i = 0; i < num_slices; i++) {
ctx->slice_data[i].index = data_ptr;
data_ptr += AV_RB16(index_ptr + i * 2);
}
ctx->slice_data[i].index = data_ptr;
if (data_ptr > buf + data_size) {
av_log(avctx, AV_LOG_ERROR, "out of slice data\n");
return -1;
}
return pic_data_size;
}
/**
* Read an unsigned rice/exp golomb codeword.
*/
static inline int decode_vlc_codeword(GetBitContext *gb, uint8_t codebook)
{
unsigned int rice_order, exp_order, switch_bits;
unsigned int buf, code;
int log, prefix_len, len;
OPEN_READER(re, gb);
UPDATE_CACHE(re, gb);
buf = GET_CACHE(re, gb);
/* number of prefix bits to switch between Rice and expGolomb */
switch_bits = (codebook & 3) + 1;
rice_order = codebook >> 5; /* rice code order */
exp_order = (codebook >> 2) & 7; /* exp golomb code order */
log = 31 - av_log2(buf); /* count prefix bits (zeroes) */
if (log < switch_bits) { /* ok, we got a rice code */
if (!rice_order) {
/* shortcut for faster decoding of rice codes without remainder */
code = log;
LAST_SKIP_BITS(re, gb, log + 1);
} else {
prefix_len = log + 1;
code = (log << rice_order) + NEG_USR32(buf << prefix_len, rice_order);
LAST_SKIP_BITS(re, gb, prefix_len + rice_order);
}
} else { /* otherwise we got a exp golomb code */
len = (log << 1) - switch_bits + exp_order + 1;
code = NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order);
LAST_SKIP_BITS(re, gb, len);
}
CLOSE_READER(re, gb);
return code;
}
#define LSB2SIGN(x) (-((x) & 1))
#define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x))
#define FIRST_DC_CB 0xB8 // rice_order = 5, exp_golomb_order = 6, switch_bits = 0
static uint8_t dc_codebook[4] = {
0x04, // rice_order = 0, exp_golomb_order = 1, switch_bits = 0
0x28, // rice_order = 1, exp_golomb_order = 2, switch_bits = 0
0x4D, // rice_order = 2, exp_golomb_order = 3, switch_bits = 1
0x70 // rice_order = 3, exp_golomb_order = 4, switch_bits = 0
};
/**
* Decode DC coefficients for all blocks in a slice.
*/
static inline void decode_dc_coeffs(GetBitContext *gb, DCTELEM *out,
int nblocks)
{
DCTELEM prev_dc;
int i, sign;
int16_t delta;
unsigned int code;
code = decode_vlc_codeword(gb, FIRST_DC_CB);
out[0] = prev_dc = TOSIGNED(code);
out += 64; /* move to the DC coeff of the next block */
delta = 3;
for (i = 1; i < nblocks; i++, out += 64) {
code = decode_vlc_codeword(gb, dc_codebook[FFMIN(FFABS(delta), 3)]);
sign = -(((delta >> 15) & 1) ^ (code & 1));
delta = (((code + 1) >> 1) ^ sign) - sign;
prev_dc += delta;
out[0] = prev_dc;
}
}
static uint8_t ac_codebook[7] = {
0x04, // rice_order = 0, exp_golomb_order = 1, switch_bits = 0
0x28, // rice_order = 1, exp_golomb_order = 2, switch_bits = 0
0x4C, // rice_order = 2, exp_golomb_order = 3, switch_bits = 0
0x05, // rice_order = 0, exp_golomb_order = 1, switch_bits = 1
0x29, // rice_order = 1, exp_golomb_order = 2, switch_bits = 1
0x06, // rice_order = 0, exp_golomb_order = 1, switch_bits = 2
0x0A, // rice_order = 0, exp_golomb_order = 2, switch_bits = 2
};
/**
* Lookup tables for adaptive switching between codebooks
* according with previous run/level value.
*/
static uint8_t run_to_cb_index[16] =
{ 5, 5, 3, 3, 0, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 2 };
static uint8_t lev_to_cb_index[10] = { 0, 6, 3, 5, 0, 1, 1, 1, 1, 2 };
/**
* Decode AC coefficients for all blocks in a slice.
*/
static inline void decode_ac_coeffs(GetBitContext *gb, DCTELEM *out,
int blocks_per_slice,
int plane_size_factor,
const uint8_t *scan)
{
int pos, block_mask, run, level, sign, run_cb_index, lev_cb_index;
int max_coeffs, bits_left;
/* set initial prediction values */
run = 4;
level = 2;
max_coeffs = blocks_per_slice << 6;
block_mask = blocks_per_slice - 1;
for (pos = blocks_per_slice - 1; pos < max_coeffs;) {
run_cb_index = run_to_cb_index[FFMIN(run, 15)];
lev_cb_index = lev_to_cb_index[FFMIN(level, 9)];
bits_left = get_bits_left(gb);
if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
return;
run = decode_vlc_codeword(gb, ac_codebook[run_cb_index]);
bits_left = get_bits_left(gb);
if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
return;
level = decode_vlc_codeword(gb, ac_codebook[lev_cb_index]) + 1;
pos += run + 1;
if (pos >= max_coeffs)
break;
sign = get_sbits(gb, 1);
out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] =
(level ^ sign) - sign;
}
}
/**
* Decode a slice plane (luma or chroma).
*/
static void decode_slice_plane(ProresContext *ctx, ProresThreadData *td,
const uint8_t *buf,
int data_size, uint16_t *out_ptr,
int linesize, int mbs_per_slice,
int blocks_per_mb, int plane_size_factor,
const int16_t *qmat)
{
GetBitContext gb;
DCTELEM *block_ptr;
int mb_num, blocks_per_slice;
blocks_per_slice = mbs_per_slice * blocks_per_mb;
memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks));
init_get_bits(&gb, buf, data_size << 3);
decode_dc_coeffs(&gb, td->blocks, blocks_per_slice);
decode_ac_coeffs(&gb, td->blocks, blocks_per_slice,
plane_size_factor, ctx->scantable.permutated);
/* inverse quantization, inverse transform and output */
block_ptr = td->blocks;
for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat);
block_ptr += 64;
if (blocks_per_mb > 2) {
ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat);
block_ptr += 64;
}
ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
block_ptr += 64;
if (blocks_per_mb > 2) {
ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
block_ptr += 64;
}
}
}
static int decode_slice(AVCodecContext *avctx, void *tdata)
{
ProresThreadData *td = tdata;
ProresContext *ctx = avctx->priv_data;
int mb_x_pos = td->x_pos;
int mb_y_pos = td->y_pos;
int pic_num = ctx->pic_num;
int slice_num = td->slice_num;
int mbs_per_slice = td->slice_width;
const uint8_t *buf;
uint8_t *y_data, *u_data, *v_data;
AVFrame *pic = avctx->coded_frame;
int i, sf, slice_width_factor;
int slice_data_size, hdr_size, y_data_size, u_data_size, v_data_size;
int y_linesize, u_linesize, v_linesize;
buf = ctx->slice_data[slice_num].index;
slice_data_size = ctx->slice_data[slice_num + 1].index - buf;
slice_width_factor = av_log2(mbs_per_slice);
y_data = pic->data[0];
u_data = pic->data[1];
v_data = pic->data[2];
y_linesize = pic->linesize[0];
u_linesize = pic->linesize[1];
v_linesize = pic->linesize[2];
if (pic->interlaced_frame) {
if (!(pic_num ^ pic->top_field_first)) {
y_data += y_linesize;
u_data += u_linesize;
v_data += v_linesize;
}
y_linesize <<= 1;
u_linesize <<= 1;
v_linesize <<= 1;
}
if (slice_data_size < 6) {
av_log(avctx, AV_LOG_ERROR, "slice data too small\n");
return AVERROR_INVALIDDATA;
}
/* parse slice header */
hdr_size = buf[0] >> 3;
y_data_size = AV_RB16(buf + 2);
u_data_size = AV_RB16(buf + 4);
v_data_size = hdr_size > 7 ? AV_RB16(buf + 6) :
slice_data_size - y_data_size - u_data_size - hdr_size;
if (hdr_size + y_data_size + u_data_size + v_data_size > slice_data_size ||
v_data_size < 0 || hdr_size < 6) {
av_log(avctx, AV_LOG_ERROR, "invalid data size\n");
return AVERROR_INVALIDDATA;
}
sf = av_clip(buf[1], 1, 224);
sf = sf > 128 ? (sf - 96) << 2 : sf;
/* scale quantization matrixes according with slice's scale factor */
/* TODO: this can be SIMD-optimized a lot */
if (ctx->qmat_changed || sf != ctx->prev_slice_sf) {
ctx->prev_slice_sf = sf;
for (i = 0; i < 64; i++) {
ctx->qmat_luma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_luma[i] * sf;
ctx->qmat_chroma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_chroma[i] * sf;
}
}
/* decode luma plane */
decode_slice_plane(ctx, td, buf + hdr_size, y_data_size,
(uint16_t*) (y_data + (mb_y_pos << 4) * y_linesize +
(mb_x_pos << 5)), y_linesize,
mbs_per_slice, 4, slice_width_factor + 2,
ctx->qmat_luma_scaled);
/* decode U chroma plane */
decode_slice_plane(ctx, td, buf + hdr_size + y_data_size, u_data_size,
(uint16_t*) (u_data + (mb_y_pos << 4) * u_linesize +
(mb_x_pos << ctx->mb_chroma_factor)),
u_linesize, mbs_per_slice, ctx->num_chroma_blocks,
slice_width_factor + ctx->chroma_factor - 1,
ctx->qmat_chroma_scaled);
/* decode V chroma plane */
decode_slice_plane(ctx, td, buf + hdr_size + y_data_size + u_data_size,
v_data_size,
(uint16_t*) (v_data + (mb_y_pos << 4) * v_linesize +
(mb_x_pos << ctx->mb_chroma_factor)),
v_linesize, mbs_per_slice, ctx->num_chroma_blocks,
slice_width_factor + ctx->chroma_factor - 1,
ctx->qmat_chroma_scaled);
return 0;
}
static int decode_picture(ProresContext *ctx, int pic_num,
AVCodecContext *avctx)
{
int slice_num, slice_width, x_pos, y_pos;
slice_num = 0;
ctx->pic_num = pic_num;
for (y_pos = 0; y_pos < ctx->num_y_mbs; y_pos++) {
slice_width = 1 << ctx->slice_width_factor;
for (x_pos = 0; x_pos < ctx->num_x_mbs && slice_width;
x_pos += slice_width) {
while (ctx->num_x_mbs - x_pos < slice_width)
slice_width >>= 1;
ctx->slice_data[slice_num].slice_num = slice_num;
ctx->slice_data[slice_num].x_pos = x_pos;
ctx->slice_data[slice_num].y_pos = y_pos;
ctx->slice_data[slice_num].slice_width = slice_width;
slice_num++;
}
}
return avctx->execute(avctx, decode_slice,
ctx->slice_data, NULL, slice_num,
sizeof(ctx->slice_data[0]));
}
#define FRAME_ID MKBETAG('i', 'c', 'p', 'f')
#define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes)
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
AVPacket *avpkt)
{
ProresContext *ctx = avctx->priv_data;
AVFrame *picture = avctx->coded_frame;
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
int frame_hdr_size, pic_num, pic_data_size;
/* check frame atom container */
if (buf_size < 28 || buf_size < AV_RB32(buf) ||
AV_RB32(buf + 4) != FRAME_ID) {
av_log(avctx, AV_LOG_ERROR, "invalid frame\n");
return AVERROR_INVALIDDATA;
}
MOVE_DATA_PTR(8);
frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
if (frame_hdr_size < 0)
return AVERROR_INVALIDDATA;
MOVE_DATA_PTR(frame_hdr_size);
if (picture->data[0])
avctx->release_buffer(avctx, picture);
picture->reference = 0;
if (avctx->get_buffer(avctx, picture) < 0)
return -1;
for (pic_num = 0; ctx->picture.interlaced_frame - pic_num + 1; pic_num++) {
pic_data_size = decode_picture_header(ctx, buf, buf_size, avctx);
if (pic_data_size < 0)
return AVERROR_INVALIDDATA;
if (decode_picture(ctx, pic_num, avctx))
return -1;
MOVE_DATA_PTR(pic_data_size);
}
*data_size = sizeof(AVPicture);
*(AVFrame*) data = *avctx->coded_frame;
return avpkt->size;
}
static av_cold int decode_close(AVCodecContext *avctx)
{
ProresContext *ctx = avctx->priv_data;
if (ctx->picture.data[0])
avctx->release_buffer(avctx, &ctx->picture);
av_freep(&ctx->slice_data);
return 0;
}
AVCodec ff_prores_decoder = {
.name = "prores",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_PRORES,
.priv_data_size = sizeof(ProresContext),
.init = decode_init,
.close = decode_close,
.decode = decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_SLICE_THREADS,
.long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)")
};