1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-02 03:06:28 +02:00
FFmpeg/libavfilter/vf_w3fdif.c
Andreas Rheinhardt b4f5201967 avfilter: Replace query_formats callback with union of list and callback
If one looks at the many query_formats callbacks in existence,
one will immediately recognize that there is one type of default
callback for video and a slightly different default callback for
audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);"
for video with a filter-specific pix_fmts list. For audio, it is
the same with a filter-specific sample_fmts list together with
ff_set_common_all_samplerates() and ff_set_common_all_channel_counts().

This commit allows to remove the boilerplate query_formats callbacks
by replacing said callback with a union consisting the old callback
and pointers for pixel and sample format arrays. For the not uncommon
case in which these lists only contain a single entry (besides the
sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also
added to the union to store them directly in the AVFilter,
thereby avoiding a relocation.

The state of said union will be contained in a new, dedicated AVFilter
field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t
in order to create a hole for this new field; this is no problem, as
the maximum of all the nb_inputs is four; for nb_outputs it is only
two).

The state's default value coincides with the earlier default of
query_formats being unset, namely that the filter accepts all formats
(and also sample rates and channel counts/layouts for audio)
provided that these properties agree coincide for all inputs and
outputs.

By using different union members for audio and video filters
the type-unsafety of using the same functions for audio and video
lists will furthermore be more confined to formats.c than before.

When the new fields are used, they will also avoid allocations:
Currently something nearly equivalent to ff_default_query_formats()
is called after every successful call to a query_formats callback;
yet in the common case that the newly allocated AVFilterFormats
are not used at all (namely if there are no free links) these newly
allocated AVFilterFormats are freed again without ever being used.
Filters no longer using the callback will not exhibit this any more.

Reviewed-by: Paul B Mahol <onemda@gmail.com>
Reviewed-by: Nicolas George <george@nsup.org>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-10-05 17:48:25 +02:00

624 lines
22 KiB
C

/*
* Copyright (C) 2012 British Broadcasting Corporation, All Rights Reserved
* Author of de-interlace algorithm: Jim Easterbrook for BBC R&D
* Based on the process described by Martin Weston for BBC R&D
* Author of FFmpeg filter: Mark Himsley for BBC Broadcast Systems Development
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/common.h"
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#include "w3fdif.h"
typedef struct W3FDIFContext {
const AVClass *class;
int filter; ///< 0 is simple, 1 is more complex
int mode; ///< 0 is frame, 1 is field
int parity; ///< frame field parity
int deint; ///< which frames to deinterlace
int linesize[4]; ///< bytes of pixel data per line for each plane
int planeheight[4]; ///< height of each plane
int field; ///< which field are we on, 0 or 1
int eof;
int nb_planes;
AVFrame *prev, *cur, *next; ///< previous, current, next frames
int32_t **work_line; ///< lines we are calculating
int nb_threads;
int max;
W3FDIFDSPContext dsp;
} W3FDIFContext;
#define OFFSET(x) offsetof(W3FDIFContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
#define CONST(name, help, val, unit) { name, help, 0, AV_OPT_TYPE_CONST, {.i64=val}, 0, 0, FLAGS, unit }
static const AVOption w3fdif_options[] = {
{ "filter", "specify the filter", OFFSET(filter), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "filter" },
CONST("simple", NULL, 0, "filter"),
CONST("complex", NULL, 1, "filter"),
{ "mode", "specify the interlacing mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "mode"},
CONST("frame", "send one frame for each frame", 0, "mode"),
CONST("field", "send one frame for each field", 1, "mode"),
{ "parity", "specify the assumed picture field parity", OFFSET(parity), AV_OPT_TYPE_INT, {.i64=-1}, -1, 1, FLAGS, "parity" },
CONST("tff", "assume top field first", 0, "parity"),
CONST("bff", "assume bottom field first", 1, "parity"),
CONST("auto", "auto detect parity", -1, "parity"),
{ "deint", "specify which frames to deinterlace", OFFSET(deint), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "deint" },
CONST("all", "deinterlace all frames", 0, "deint"),
CONST("interlaced", "only deinterlace frames marked as interlaced", 1, "deint"),
{ NULL }
};
AVFILTER_DEFINE_CLASS(w3fdif);
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
AV_PIX_FMT_GRAY8,
AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV440P10,
AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12,
AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_NONE
};
return ff_set_common_formats_from_list(ctx, pix_fmts);
}
static void filter_simple_low(int32_t *work_line,
uint8_t *in_lines_cur[2],
const int16_t *coef, int linesize)
{
int i;
for (i = 0; i < linesize; i++) {
*work_line = *in_lines_cur[0]++ * coef[0];
*work_line++ += *in_lines_cur[1]++ * coef[1];
}
}
static void filter_complex_low(int32_t *work_line,
uint8_t *in_lines_cur[4],
const int16_t *coef, int linesize)
{
int i;
for (i = 0; i < linesize; i++) {
*work_line = *in_lines_cur[0]++ * coef[0];
*work_line += *in_lines_cur[1]++ * coef[1];
*work_line += *in_lines_cur[2]++ * coef[2];
*work_line++ += *in_lines_cur[3]++ * coef[3];
}
}
static void filter_simple_high(int32_t *work_line,
uint8_t *in_lines_cur[3],
uint8_t *in_lines_adj[3],
const int16_t *coef, int linesize)
{
int i;
for (i = 0; i < linesize; i++) {
*work_line += *in_lines_cur[0]++ * coef[0];
*work_line += *in_lines_adj[0]++ * coef[0];
*work_line += *in_lines_cur[1]++ * coef[1];
*work_line += *in_lines_adj[1]++ * coef[1];
*work_line += *in_lines_cur[2]++ * coef[2];
*work_line++ += *in_lines_adj[2]++ * coef[2];
}
}
static void filter_complex_high(int32_t *work_line,
uint8_t *in_lines_cur[5],
uint8_t *in_lines_adj[5],
const int16_t *coef, int linesize)
{
int i;
for (i = 0; i < linesize; i++) {
*work_line += *in_lines_cur[0]++ * coef[0];
*work_line += *in_lines_adj[0]++ * coef[0];
*work_line += *in_lines_cur[1]++ * coef[1];
*work_line += *in_lines_adj[1]++ * coef[1];
*work_line += *in_lines_cur[2]++ * coef[2];
*work_line += *in_lines_adj[2]++ * coef[2];
*work_line += *in_lines_cur[3]++ * coef[3];
*work_line += *in_lines_adj[3]++ * coef[3];
*work_line += *in_lines_cur[4]++ * coef[4];
*work_line++ += *in_lines_adj[4]++ * coef[4];
}
}
static void filter_scale(uint8_t *out_pixel, const int32_t *work_pixel, int linesize, int max)
{
int j;
for (j = 0; j < linesize; j++, out_pixel++, work_pixel++)
*out_pixel = av_clip(*work_pixel, 0, 255 * 256 * 128) >> 15;
}
static void filter16_simple_low(int32_t *work_line,
uint8_t *in_lines_cur8[2],
const int16_t *coef, int linesize)
{
uint16_t *in_lines_cur[2] = { (uint16_t *)in_lines_cur8[0], (uint16_t *)in_lines_cur8[1] };
int i;
linesize /= 2;
for (i = 0; i < linesize; i++) {
*work_line = *in_lines_cur[0]++ * coef[0];
*work_line++ += *in_lines_cur[1]++ * coef[1];
}
}
static void filter16_complex_low(int32_t *work_line,
uint8_t *in_lines_cur8[4],
const int16_t *coef, int linesize)
{
uint16_t *in_lines_cur[4] = { (uint16_t *)in_lines_cur8[0],
(uint16_t *)in_lines_cur8[1],
(uint16_t *)in_lines_cur8[2],
(uint16_t *)in_lines_cur8[3] };
int i;
linesize /= 2;
for (i = 0; i < linesize; i++) {
*work_line = *in_lines_cur[0]++ * coef[0];
*work_line += *in_lines_cur[1]++ * coef[1];
*work_line += *in_lines_cur[2]++ * coef[2];
*work_line++ += *in_lines_cur[3]++ * coef[3];
}
}
static void filter16_simple_high(int32_t *work_line,
uint8_t *in_lines_cur8[3],
uint8_t *in_lines_adj8[3],
const int16_t *coef, int linesize)
{
uint16_t *in_lines_cur[3] = { (uint16_t *)in_lines_cur8[0],
(uint16_t *)in_lines_cur8[1],
(uint16_t *)in_lines_cur8[2] };
uint16_t *in_lines_adj[3] = { (uint16_t *)in_lines_adj8[0],
(uint16_t *)in_lines_adj8[1],
(uint16_t *)in_lines_adj8[2] };
int i;
linesize /= 2;
for (i = 0; i < linesize; i++) {
*work_line += *in_lines_cur[0]++ * coef[0];
*work_line += *in_lines_adj[0]++ * coef[0];
*work_line += *in_lines_cur[1]++ * coef[1];
*work_line += *in_lines_adj[1]++ * coef[1];
*work_line += *in_lines_cur[2]++ * coef[2];
*work_line++ += *in_lines_adj[2]++ * coef[2];
}
}
static void filter16_complex_high(int32_t *work_line,
uint8_t *in_lines_cur8[5],
uint8_t *in_lines_adj8[5],
const int16_t *coef, int linesize)
{
uint16_t *in_lines_cur[5] = { (uint16_t *)in_lines_cur8[0],
(uint16_t *)in_lines_cur8[1],
(uint16_t *)in_lines_cur8[2],
(uint16_t *)in_lines_cur8[3],
(uint16_t *)in_lines_cur8[4] };
uint16_t *in_lines_adj[5] = { (uint16_t *)in_lines_adj8[0],
(uint16_t *)in_lines_adj8[1],
(uint16_t *)in_lines_adj8[2],
(uint16_t *)in_lines_adj8[3],
(uint16_t *)in_lines_adj8[4] };
int i;
linesize /= 2;
for (i = 0; i < linesize; i++) {
*work_line += *in_lines_cur[0]++ * coef[0];
*work_line += *in_lines_adj[0]++ * coef[0];
*work_line += *in_lines_cur[1]++ * coef[1];
*work_line += *in_lines_adj[1]++ * coef[1];
*work_line += *in_lines_cur[2]++ * coef[2];
*work_line += *in_lines_adj[2]++ * coef[2];
*work_line += *in_lines_cur[3]++ * coef[3];
*work_line += *in_lines_adj[3]++ * coef[3];
*work_line += *in_lines_cur[4]++ * coef[4];
*work_line++ += *in_lines_adj[4]++ * coef[4];
}
}
static void filter16_scale(uint8_t *out_pixel8, const int32_t *work_pixel, int linesize, int max)
{
uint16_t *out_pixel = (uint16_t *)out_pixel8;
int j;
linesize /= 2;
for (j = 0; j < linesize; j++, out_pixel++, work_pixel++)
*out_pixel = av_clip(*work_pixel, 0, max) >> 15;
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
W3FDIFContext *s = ctx->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
int ret, i, depth;
if ((ret = av_image_fill_linesizes(s->linesize, inlink->format, inlink->w)) < 0)
return ret;
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planeheight[0] = s->planeheight[3] = inlink->h;
if (inlink->h < 3) {
av_log(ctx, AV_LOG_ERROR, "Video of less than 3 lines is not supported\n");
return AVERROR(EINVAL);
}
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
s->nb_threads = ff_filter_get_nb_threads(ctx);
s->work_line = av_calloc(s->nb_threads, sizeof(*s->work_line));
if (!s->work_line)
return AVERROR(ENOMEM);
for (i = 0; i < s->nb_threads; i++) {
s->work_line[i] = av_calloc(FFALIGN(s->linesize[0], 32), sizeof(*s->work_line[0]));
if (!s->work_line[i])
return AVERROR(ENOMEM);
}
depth = desc->comp[0].depth;
s->max = ((1 << depth) - 1) * 256 * 128;
if (depth <= 8) {
s->dsp.filter_simple_low = filter_simple_low;
s->dsp.filter_complex_low = filter_complex_low;
s->dsp.filter_simple_high = filter_simple_high;
s->dsp.filter_complex_high = filter_complex_high;
s->dsp.filter_scale = filter_scale;
} else {
s->dsp.filter_simple_low = filter16_simple_low;
s->dsp.filter_complex_low = filter16_complex_low;
s->dsp.filter_simple_high = filter16_simple_high;
s->dsp.filter_complex_high = filter16_complex_high;
s->dsp.filter_scale = filter16_scale;
}
if (ARCH_X86)
ff_w3fdif_init_x86(&s->dsp, depth);
return 0;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterLink *inlink = outlink->src->inputs[0];
outlink->time_base = av_mul_q(inlink->time_base, (AVRational){1, 2});
outlink->frame_rate = av_mul_q(inlink->frame_rate, (AVRational){2, 1});
return 0;
}
/*
* Filter coefficients from PH-2071, scaled by 256 * 128.
* Each set of coefficients has a set for low-frequencies and high-frequencies.
* n_coef_lf[] and n_coef_hf[] are the number of coefs for simple and more-complex.
* It is important for later that n_coef_lf[] is even and n_coef_hf[] is odd.
* coef_lf[][] and coef_hf[][] are the coefficients for low-frequencies
* and high-frequencies for simple and more-complex mode.
*/
static const int8_t n_coef_lf[2] = { 2, 4 };
static const int16_t coef_lf[2][4] = {{ 16384, 16384, 0, 0},
{ -852, 17236, 17236, -852}};
static const int8_t n_coef_hf[2] = { 3, 5 };
static const int16_t coef_hf[2][5] = {{ -2048, 4096, -2048, 0, 0},
{ 1016, -3801, 5570, -3801, 1016}};
typedef struct ThreadData {
AVFrame *out, *cur, *adj;
} ThreadData;
static int deinterlace_plane_slice(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs, int plane)
{
W3FDIFContext *s = ctx->priv;
ThreadData *td = arg;
AVFrame *out = td->out;
AVFrame *cur = td->cur;
AVFrame *adj = td->adj;
const int filter = s->filter;
uint8_t *in_line, *in_lines_cur[5], *in_lines_adj[5];
uint8_t *out_line, *out_pixel;
int32_t *work_line, *work_pixel;
uint8_t *cur_data = cur->data[plane];
uint8_t *adj_data = adj->data[plane];
uint8_t *dst_data = out->data[plane];
const int linesize = s->linesize[plane];
const int height = s->planeheight[plane];
const int cur_line_stride = cur->linesize[plane];
const int adj_line_stride = adj->linesize[plane];
const int dst_line_stride = out->linesize[plane];
const int start = (height * jobnr) / nb_jobs;
const int end = (height * (jobnr+1)) / nb_jobs;
const int max = s->max;
const int interlaced = cur->interlaced_frame;
const int tff = s->field == (s->parity == -1 ? interlaced ? cur->top_field_first : 1 :
s->parity ^ 1);
int j, y_in, y_out;
/* copy unchanged the lines of the field */
y_out = start + (tff ^ (start & 1));
in_line = cur_data + (y_out * cur_line_stride);
out_line = dst_data + (y_out * dst_line_stride);
while (y_out < end) {
memcpy(out_line, in_line, linesize);
y_out += 2;
in_line += cur_line_stride * 2;
out_line += dst_line_stride * 2;
}
/* interpolate other lines of the field */
y_out = start + ((!tff) ^ (start & 1));
out_line = dst_data + (y_out * dst_line_stride);
while (y_out < end) {
/* get low vertical frequencies from current field */
for (j = 0; j < n_coef_lf[filter]; j++) {
y_in = (y_out + 1) + (j * 2) - n_coef_lf[filter];
while (y_in < 0)
y_in += 2;
while (y_in >= height)
y_in -= 2;
in_lines_cur[j] = cur_data + (y_in * cur_line_stride);
}
work_line = s->work_line[jobnr];
switch (n_coef_lf[filter]) {
case 2:
s->dsp.filter_simple_low(work_line, in_lines_cur,
coef_lf[filter], linesize);
break;
case 4:
s->dsp.filter_complex_low(work_line, in_lines_cur,
coef_lf[filter], linesize);
}
/* get high vertical frequencies from adjacent fields */
for (j = 0; j < n_coef_hf[filter]; j++) {
y_in = (y_out + 1) + (j * 2) - n_coef_hf[filter];
while (y_in < 0)
y_in += 2;
while (y_in >= height)
y_in -= 2;
in_lines_cur[j] = cur_data + (y_in * cur_line_stride);
in_lines_adj[j] = adj_data + (y_in * adj_line_stride);
}
work_line = s->work_line[jobnr];
switch (n_coef_hf[filter]) {
case 3:
s->dsp.filter_simple_high(work_line, in_lines_cur, in_lines_adj,
coef_hf[filter], linesize);
break;
case 5:
s->dsp.filter_complex_high(work_line, in_lines_cur, in_lines_adj,
coef_hf[filter], linesize);
}
/* save scaled result to the output frame, scaling down by 256 * 128 */
work_pixel = s->work_line[jobnr];
out_pixel = out_line;
s->dsp.filter_scale(out_pixel, work_pixel, linesize, max);
/* move on to next line */
y_out += 2;
out_line += dst_line_stride * 2;
}
return 0;
}
static int deinterlace_slice(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
{
W3FDIFContext *s = ctx->priv;
for (int p = 0; p < s->nb_planes; p++)
deinterlace_plane_slice(ctx, arg, jobnr, nb_jobs, p);
return 0;
}
static int filter(AVFilterContext *ctx, int is_second)
{
W3FDIFContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out, *adj;
ThreadData td;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out)
return AVERROR(ENOMEM);
av_frame_copy_props(out, s->cur);
out->interlaced_frame = 0;
if (!is_second) {
if (out->pts != AV_NOPTS_VALUE)
out->pts *= 2;
} else {
int64_t cur_pts = s->cur->pts;
int64_t next_pts = s->next->pts;
if (next_pts != AV_NOPTS_VALUE && cur_pts != AV_NOPTS_VALUE) {
out->pts = cur_pts + next_pts;
} else {
out->pts = AV_NOPTS_VALUE;
}
}
adj = s->field ? s->next : s->prev;
td.out = out; td.cur = s->cur; td.adj = adj;
ff_filter_execute(ctx, deinterlace_slice, &td, NULL,
FFMIN(s->planeheight[1], s->nb_threads));
if (s->mode)
s->field = !s->field;
return ff_filter_frame(outlink, out);
}
static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
{
AVFilterContext *ctx = inlink->dst;
W3FDIFContext *s = ctx->priv;
int ret;
av_frame_free(&s->prev);
s->prev = s->cur;
s->cur = s->next;
s->next = frame;
if (!s->cur) {
s->cur = av_frame_clone(s->next);
if (!s->cur)
return AVERROR(ENOMEM);
}
if ((s->deint && !s->cur->interlaced_frame) || ctx->is_disabled) {
AVFrame *out = av_frame_clone(s->cur);
if (!out)
return AVERROR(ENOMEM);
av_frame_free(&s->prev);
if (out->pts != AV_NOPTS_VALUE)
out->pts *= 2;
return ff_filter_frame(ctx->outputs[0], out);
}
if (!s->prev)
return 0;
ret = filter(ctx, 0);
if (ret < 0 || s->mode == 0)
return ret;
return filter(ctx, 1);
}
static int request_frame(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
W3FDIFContext *s = ctx->priv;
int ret;
if (s->eof)
return AVERROR_EOF;
ret = ff_request_frame(ctx->inputs[0]);
if (ret == AVERROR_EOF && s->cur) {
AVFrame *next = av_frame_clone(s->next);
if (!next)
return AVERROR(ENOMEM);
next->pts = s->next->pts * 2 - s->cur->pts;
filter_frame(ctx->inputs[0], next);
s->eof = 1;
} else if (ret < 0) {
return ret;
}
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
W3FDIFContext *s = ctx->priv;
int i;
av_frame_free(&s->prev);
av_frame_free(&s->cur );
av_frame_free(&s->next);
for (i = 0; i < s->nb_threads; i++)
av_freep(&s->work_line[i]);
av_freep(&s->work_line);
}
static const AVFilterPad w3fdif_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
static const AVFilterPad w3fdif_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
.request_frame = request_frame,
},
};
const AVFilter ff_vf_w3fdif = {
.name = "w3fdif",
.description = NULL_IF_CONFIG_SMALL("Apply Martin Weston three field deinterlace."),
.priv_size = sizeof(W3FDIFContext),
.priv_class = &w3fdif_class,
.uninit = uninit,
FILTER_INPUTS(w3fdif_inputs),
FILTER_OUTPUTS(w3fdif_outputs),
FILTER_QUERY_FUNC(query_formats),
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,
.process_command = ff_filter_process_command,
};